Obtaining Ultra-long Wear Lifetime of Graphene Oxide Films Under High Contact Stress Through Soft and Hard Interbeded Formation Mode
As the quintessential representation of graphene derivatives, graphene oxide (GO) has demonstrated unparalleled potential in micro/nano electronic mechanical systems, which visibly enhances the efficiency and accuracy of moving mechanical devices. However, GO has always been subject to the problem o...
Saved in:
Published in | Tribology letters Vol. 73; no. 1; p. 4 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the quintessential representation of graphene derivatives, graphene oxide (GO) has demonstrated unparalleled potential in micro/nano electronic mechanical systems, which visibly enhances the efficiency and accuracy of moving mechanical devices. However, GO has always been subject to the problem of insufficient wear lifetime, and the subsequent improvement is still a challenge, especially under high contact stress. In this paper, making use of the strong charge interactions between positively charged poly(acrylamide-co-diallyldimethylammonium chloride) (Brand: PQ-7) and negatively charged GO, both were alternately spin-coated on the silicon substrates modified by 3-aminopropyltriethoxysilane as an adhesive layer to form (GO/PQ-7)
n
composite multilayer film. The service life of (GO/PQ-7)
5
multilayer film exceeds 27000 s under high load of 4N, which is 20 times longer than that of the GO film. The superior friction performance is ascribed to the distinctive structure of (GO/PQ-7)
n
composite multilayers, that is, an elastic 3-dimensional stack composed of rigid GO and flexible polymer. This soft and hard interbeded formation film not only integrates the interface well, but also effectively prevents the crack expansion. It also leverages the advantages of soft layers providing stress relief and hard layers providing load-bearing capacity. What's more, friction-induced conversion of partial GO to graphene ensures low friction at the sliding interface. This strategy provides an open platform for the design and fabrication of lubricating films for micro/nano electronic mechanical systems and other microdevices. |
---|---|
AbstractList | As the quintessential representation of graphene derivatives, graphene oxide (GO) has demonstrated unparalleled potential in micro/nano electronic mechanical systems, which visibly enhances the efficiency and accuracy of moving mechanical devices. However, GO has always been subject to the problem of insufficient wear lifetime, and the subsequent improvement is still a challenge, especially under high contact stress. In this paper, making use of the strong charge interactions between positively charged poly(acrylamide-co-diallyldimethylammonium chloride) (Brand: PQ-7) and negatively charged GO, both were alternately spin-coated on the silicon substrates modified by 3-aminopropyltriethoxysilane as an adhesive layer to form (GO/PQ-7)n composite multilayer film. The service life of (GO/PQ-7)5 multilayer film exceeds 27000 s under high load of 4N, which is 20 times longer than that of the GO film. The superior friction performance is ascribed to the distinctive structure of (GO/PQ-7)n composite multilayers, that is, an elastic 3-dimensional stack composed of rigid GO and flexible polymer. This soft and hard interbeded formation film not only integrates the interface well, but also effectively prevents the crack expansion. It also leverages the advantages of soft layers providing stress relief and hard layers providing load-bearing capacity. What's more, friction-induced conversion of partial GO to graphene ensures low friction at the sliding interface. This strategy provides an open platform for the design and fabrication of lubricating films for micro/nano electronic mechanical systems and other microdevices. As the quintessential representation of graphene derivatives, graphene oxide (GO) has demonstrated unparalleled potential in micro/nano electronic mechanical systems, which visibly enhances the efficiency and accuracy of moving mechanical devices. However, GO has always been subject to the problem of insufficient wear lifetime, and the subsequent improvement is still a challenge, especially under high contact stress. In this paper, making use of the strong charge interactions between positively charged poly(acrylamide-co-diallyldimethylammonium chloride) (Brand: PQ-7) and negatively charged GO, both were alternately spin-coated on the silicon substrates modified by 3-aminopropyltriethoxysilane as an adhesive layer to form (GO/PQ-7) n composite multilayer film. The service life of (GO/PQ-7) 5 multilayer film exceeds 27000 s under high load of 4N, which is 20 times longer than that of the GO film. The superior friction performance is ascribed to the distinctive structure of (GO/PQ-7) n composite multilayers, that is, an elastic 3-dimensional stack composed of rigid GO and flexible polymer. This soft and hard interbeded formation film not only integrates the interface well, but also effectively prevents the crack expansion. It also leverages the advantages of soft layers providing stress relief and hard layers providing load-bearing capacity. What's more, friction-induced conversion of partial GO to graphene ensures low friction at the sliding interface. This strategy provides an open platform for the design and fabrication of lubricating films for micro/nano electronic mechanical systems and other microdevices. |
ArticleNumber | 4 |
Author | Zhu, Hang Mu, Bo Zhang, Xingkai Liu, Yaqian Bai, Changning Wu, Gang Chen, Li |
Author_xml | – sequence: 1 givenname: Li surname: Chen fullname: Chen, Li email: chenli1981@lut.edu.cn organization: School of Petrochemical Technology, Lanzhou University of Technology – sequence: 2 givenname: Hang surname: Zhu fullname: Zhu, Hang organization: School of Petrochemical Technology, Lanzhou University of Technology – sequence: 3 givenname: Gang surname: Wu fullname: Wu, Gang organization: School of Petrochemical Technology, Lanzhou University of Technology – sequence: 4 givenname: Bo surname: Mu fullname: Mu, Bo organization: School of Petrochemical Technology, Lanzhou University of Technology – sequence: 5 givenname: Yaqian surname: Liu fullname: Liu, Yaqian organization: School of Petrochemical Technology, Lanzhou University of Technology, Key Laboratory of Science and Technology On Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 6 givenname: Xingkai surname: Zhang fullname: Zhang, Xingkai organization: Key Laboratory of Science and Technology On Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 7 givenname: Changning surname: Bai fullname: Bai, Changning email: baichangning@licp.cas.cn organization: Key Laboratory of Science and Technology On Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences |
BookMark | eNp9kMtKQzEQhoMo2FZfwFXAdTSXc-tSir1ApYu2uAw5J5M2pU1qkoLufXCjFdy5mmH4vxnm66NL5x0gdMfoA6O0foyM8WJIKC8IZcOCk_IC9VhZC8Jrxi5zT7kgTdOIa9SPcUdpxpqyhz4XbVLWWbfB630Kiux9bl9BBTy3BpI9APYGT4I6bsEBXrxbDXhs94eI105DwFO72eKRd0l1CS9TgBjxahv8KY-X3iSsnMZTFTSeuQShBQ0aj304qGS9wy9eww26Mmof4fa3DtB6_LwaTcl8MZmNnuak4zVNxJi6abqStoVWpRFCs1rxTtdly_N3VduBoEK1TFWVoFApU1TQNtoMO-iyFBADdH_eewz-7QQxyZ0_BZdPSsEEy5hgw5zi51QXfIwBjDwGe1DhQzIqv23Ls22Zbcsf27LMkDhDMYfdBsLf6n-oLzFvhUc |
Cites_doi | 10.1016/j.carbon.2009.01.049 10.1080/00222348.2012.661677 10.1016/S1748-0132(07)70140-8 10.1007/s12034-015-0893-0 10.1016/j.cej.2014.04.004 10.1080/1536383X.2019.1690471 10.1016/j.surfcoat.2014.06.038 10.1016/j.mee.2015.12.010 10.1002/(SICI)1521-4095(200006)12:11<805::AID-ADMA805>3.0.CO;2-0 10.3389/fchem.2021.740140 10.1002/admi.201500410 10.1021/acsami.6b06779 10.1039/C7NR06471C 10.1007/s40544-021-0588-z 10.1039/D1SM00690H 10.1038/s41598-018-25194-1 10.1088/0957-4484/23/49/495703 10.1007/s40544-014-0037-3 10.1007/s11249-015-0491-8 10.1007/s11249-012-0021-x 10.1021/la801744a 10.1039/C3CC47486K 10.1021/la102862d 10.1021/jp2052618 10.1016/j.surfin.2024.104071 10.1016/j.carbon.2008.09.045 10.3390/ma11071050 10.1002/adfm.202004498 10.1016/j.tsf.2019.05.032 10.1016/j.apsusc.2013.02.081 10.1016/j.carbon.2014.11.063 10.1002/adma.201405326 10.1016/j.triboint.2020.106533 10.1039/C7CS00485K 10.1146/annurev.physchem.55.091602.094445 10.1016/j.carbon.2013.07.055 10.1021/nl071822y 10.1016/j.carbon.2017.06.090 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Mar 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Mar 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11249-024-01942-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-2711 |
ExternalDocumentID | 10_1007_s11249_024_01942_5 |
GrantInformation_xml | – fundername: Lanzhou Youth Science and Technology Talent Innovation Project grantid: 2023-QN-82 – fundername: National Natural Science Foundation of China grantid: U22A20180; 51765036 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 06C 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- MQGED N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PDBOC PF0 PT4 PT5 PTHSS QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ |
ID | FETCH-LOGICAL-c270t-ff788c50b4da5f33d17a2cd75b20236bce303ab1a6630e6af46eb8df9cec194e3 |
IEDL.DBID | U2A |
ISSN | 1023-8883 |
IngestDate | Fri Jul 25 10:53:25 EDT 2025 Tue Jul 01 05:27:56 EDT 2025 Tue Feb 25 01:11:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Hard-soft combined Structural evolution Graphene oxide High loading capacity Friction performance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-ff788c50b4da5f33d17a2cd75b20236bce303ab1a6630e6af46eb8df9cec194e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3131663319 |
PQPubID | 2043827 |
ParticipantIDs | proquest_journals_3131663319 crossref_primary_10_1007_s11249_024_01942_5 springer_journals_10_1007_s11249_024_01942_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250300 2025-03-00 20250301 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 3 year: 2025 text: 20250300 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Tribology letters |
PublicationTitleAbbrev | Tribol Lett |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | X Gao (1942_CR35) 2020; 30 E Broitman (1942_CR3) 2014; 2 H Kang (1942_CR25) 2009; 47 Y Qiao (1942_CR6) 2022 PF Li (1942_CR12) 2014; 254 L Chen (1942_CR21) 2024; 46 D Yang (1942_CR37) 2009; 47 UK Sur (1942_CR28) 2016; 39 X Cao (1942_CR4) 2018; 10 H Chen (1942_CR15) 2020; 151 P Saravanan (1942_CR17) 2016; 8 J Pu (1942_CR31) 2014; 50 HP Mungse (1942_CR13) 2016; 3 J Ou (1942_CR18) 2012; 48 L Chen (1942_CR5) 2016; 152 S Samanta (1942_CR22) 2019; 683 P Saravanan (1942_CR16) 2017; 122 M Cichomski (1942_CR9) 2013; 273 S Samanta (1942_CR40) 2021; 17 Y Wang (1942_CR19) 2015; 60 HH Huang (1942_CR27) 2018; 8 L Chen (1942_CR8) 2014 A Ferrari (1942_CR38) 1824; 2004 SH Kim (1942_CR1) 2007; 2 Y Jiang (1942_CR11) 2012; 23 W Eck (1942_CR30) 2000; 12 H Lee (1942_CR32) 2015; 27 J Ou (1942_CR14) 2010; 26 SY Toh (1942_CR34) 2014; 251 JI Paredes (1942_CR26) 2008; 24 L Dong (1942_CR10) 2017; 46 R Maboudian (1942_CR2) 2004; 55 D Shu (1942_CR39) 2020; 28 YB Wang (1942_CR7) 2012; 51 G Bai (1942_CR29) 2015; 84 L Chen (1942_CR33) 2021; 9 R Muzyka (1942_CR36) 2018; 11 KN Kudin (1942_CR24) 2008; 8 M Acik (1942_CR23) 2011; 115 J Chen (1942_CR20) 2013; 64 |
References_xml | – volume: 47 start-page: 1520 issue: 6 year: 2009 ident: 1942_CR25 publication-title: Carbon doi: 10.1016/j.carbon.2009.01.049 – volume: 51 start-page: 2064 year: 2012 ident: 1942_CR7 publication-title: J. Macromol. Sci. Part B doi: 10.1080/00222348.2012.661677 – volume: 2 start-page: 22 year: 2007 ident: 1942_CR1 publication-title: NanoToday doi: 10.1016/S1748-0132(07)70140-8 – volume: 39 start-page: 159 year: 2016 ident: 1942_CR28 publication-title: Bull. Mater. Sci. doi: 10.1007/s12034-015-0893-0 – volume-title: Surfactants in Tribology year: 2014 ident: 1942_CR8 – volume: 251 start-page: 422 year: 2014 ident: 1942_CR34 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.04.004 – volume: 28 start-page: 394 issue: 5 year: 2020 ident: 1942_CR39 publication-title: Fullerenes, Nanotubes, Carbon Nanostruct. doi: 10.1080/1536383X.2019.1690471 – volume: 254 start-page: 298 year: 2014 ident: 1942_CR12 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2014.06.038 – volume: 152 start-page: 1 year: 2016 ident: 1942_CR5 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2015.12.010 – volume: 12 start-page: 805 issue: 11 year: 2000 ident: 1942_CR30 publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(200006)12:11<805::AID-ADMA805>3.0.CO;2-0 – volume: 9 year: 2021 ident: 1942_CR33 publication-title: Front. Chem. doi: 10.3389/fchem.2021.740140 – volume: 3 start-page: 1500410 year: 2016 ident: 1942_CR13 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201500410 – volume: 8 start-page: 27179 issue: 40 year: 2016 ident: 1942_CR17 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b06779 – volume: 10 start-page: 378 year: 2018 ident: 1942_CR4 publication-title: Nanoscale doi: 10.1039/C7NR06471C – year: 2022 ident: 1942_CR6 publication-title: Friction doi: 10.1007/s40544-021-0588-z – volume: 17 start-page: 7014 issue: 29 year: 2021 ident: 1942_CR40 publication-title: Soft Matter doi: 10.1039/D1SM00690H – volume: 8 start-page: 6849 year: 2018 ident: 1942_CR27 publication-title: Sci. Rep. doi: 10.1038/s41598-018-25194-1 – volume: 23 start-page: 495703 year: 2012 ident: 1942_CR11 publication-title: Nanotechnology doi: 10.1088/0957-4484/23/49/495703 – volume: 2 start-page: 40 year: 2014 ident: 1942_CR3 publication-title: Friction doi: 10.1007/s40544-014-0037-3 – volume: 60 start-page: 1 year: 2015 ident: 1942_CR19 publication-title: Tribol. Lett. doi: 10.1007/s11249-015-0491-8 – volume: 48 start-page: 407 issue: 3 year: 2012 ident: 1942_CR18 publication-title: Tribol. Lett. doi: 10.1007/s11249-012-0021-x – volume: 24 start-page: 10560 issue: 19 year: 2008 ident: 1942_CR26 publication-title: Langmuir doi: 10.1021/la801744a – volume: 50 start-page: 469 issue: 4 year: 2014 ident: 1942_CR31 publication-title: Chem. Commun. doi: 10.1039/C3CC47486K – volume: 26 start-page: 15830 year: 2010 ident: 1942_CR14 publication-title: Langmuir doi: 10.1021/la102862d – volume: 115 start-page: 19761 issue: 40 year: 2011 ident: 1942_CR23 publication-title: J. Phys. Chem. C doi: 10.1021/jp2052618 – volume: 46 year: 2024 ident: 1942_CR21 publication-title: Surf. Interfaces doi: 10.1016/j.surfin.2024.104071 – volume: 47 start-page: 145 issue: 1 year: 2009 ident: 1942_CR37 publication-title: Carbon doi: 10.1016/j.carbon.2008.09.045 – volume: 11 start-page: 1050 issue: 7 year: 2018 ident: 1942_CR36 publication-title: Materials doi: 10.3390/ma11071050 – volume: 30 start-page: 2004498 issue: 46 year: 2020 ident: 1942_CR35 publication-title: Adv. Func. Mater. doi: 10.1002/adfm.202004498 – volume: 683 start-page: 16 year: 2019 ident: 1942_CR22 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2019.05.032 – volume: 273 start-page: 570 year: 2013 ident: 1942_CR9 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.02.081 – volume: 84 start-page: 197 issue: 1 year: 2015 ident: 1942_CR29 publication-title: Carbon doi: 10.1016/j.carbon.2014.11.063 – volume: 27 start-page: 2252 issue: 13 year: 2015 ident: 1942_CR32 publication-title: Adv. Mater. doi: 10.1002/adma.201405326 – volume: 151 year: 2020 ident: 1942_CR15 publication-title: Tribol. Int. doi: 10.1016/j.triboint.2020.106533 – volume: 2004 start-page: 2289 issue: 362 year: 1824 ident: 1942_CR38 publication-title: Phys. Eng. Sci. – volume: 46 start-page: 7306 year: 2017 ident: 1942_CR10 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00485K – volume: 55 start-page: 35 year: 2004 ident: 1942_CR2 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.55.091602.094445 – volume: 64 start-page: 225 year: 2013 ident: 1942_CR20 publication-title: Carbon doi: 10.1016/j.carbon.2013.07.055 – volume: 8 start-page: 36 issue: 1 year: 2008 ident: 1942_CR24 publication-title: Nano Lett. doi: 10.1021/nl071822y – volume: 122 start-page: 395 year: 2017 ident: 1942_CR16 publication-title: Carbon doi: 10.1016/j.carbon.2017.06.090 |
SSID | ssj0010085 |
Score | 2.4125135 |
Snippet | As the quintessential representation of graphene derivatives, graphene oxide (GO) has demonstrated unparalleled potential in micro/nano electronic mechanical... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4 |
SubjectTerms | Acrylamide Adhesive strength Aminopropyltriethoxysilane Chemistry and Materials Science Contact stresses Corrosion and Coatings Friction Graphene Graphical representations Materials Science Mechanical devices Mechanical systems Multilayers Nanotechnology Original Paper Oxide coatings Physical Chemistry Polymer films Service life assessment Silicon substrates Spin coating Surfaces and Interfaces Theoretical and Applied Mechanics Thin Films Three dimensional composites Tribology |
Title | Obtaining Ultra-long Wear Lifetime of Graphene Oxide Films Under High Contact Stress Through Soft and Hard Interbeded Formation Mode |
URI | https://link.springer.com/article/10.1007/s11249-024-01942-5 https://www.proquest.com/docview/3131663319 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vehBfGK1yhy86UKT3STtsUgf-OqhDdZT2CcUaittBH-AP9zZbWJV9OAtkOwSdiYz82UeHyEXUUO2GGeWJlYklAsWUtlKBI24RmPIuNCeh-z-Ie6n_GYcjYumsGVZ7V6mJL2lXje7OZ5kij4F4W-LI4TaJNXIYXfU4jRsf-YOXBThc5who4jvWNEq8_se393ROsb8kRb13qa7S3aKMBHaK7nukQ0z2yfbX4YHHpD3gcxX9A6QTvOFoNM5Xj6i5sLdxBpHGg9zCz03kRoNGgzeJtpAdzJ9XoJnOwJX4wFuPJVQOQx90wiMVrw9METzDGKmwaX2wf83lEYbDd2y2xEcjdohSbud0XWfFpwKVIVJI6fWIuZVKCGuRWQZ00EiQqWTSDoe9Vgqgz5NyEBgJNIwsbA8NrKpbUsZhSdm2BGpzOYzc0ygGSuuEmuFcH4-TBCPKleEYiSXiJNYjVyWR5u9rEZnZOshyU4QGS7MvCCyqEbq5elnxWe0zFjAAnwRNBM1clVKZH37791O_vf4KdkKHa-vry2rk0q-eDVnGGzk8pxU272n286517EPKdzNQA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oHtSD8RlR1Dl4002gu23hSIyIyuMARG7NPhMSLAZq4g_whzu7tKJGD96atLtpZrYz83UeHyGXYVU2GGeWxlbElAsWUNmIBQ25RmPIuNCeh6zbi9oj_jAOx3lT2KKodi9Skt5Sr5rdHE8yRZ-C8LfBEUKtkw0MBuqukGsUND9zBy6K8DnOgFHEdyxvlfl9j-_uaBVj_kiLem_T2iU7eZgIzaVe98iaSffJ9pfhgQfkvS-zJb0DjKbZXNDpDC-f8ORCZ2KNI42HmYU7N5EaDRr03ybaQGsyfV6AZzsCV-MBbjyVUBkMfNMIDJe8PTBA8wwi1eBS--D_G0qjjYZW0e0IjkbtkIxat8ObNs05FagK4mpGrUXMq1BDXIvQMqZrsQiUjkPpeNQjqQz6NCFrAiORqomE5ZGRdW0byiiUmGFHpJTOUnNMoB4prmJrhXB-PogRjypXhGIkl4iTWJlcFaJNXpajM5LVkGSniAQXJl4RSVgmlUL6Sf4ZLRJWYzV8ETQTZXJdaGR1--_dTv73-AXZbA-7naRz33s8JVuB4_j1dWYVUsrmr-YMA49Mnvtz9gGJCc6f |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB60guhBXLFa9R286WCbmSTNsahxbwUteguzQqGmRSP4A_zhvpk0VkUP3gLJDGG-l7fkLR8h-2FTJowzS2MrYsoFC6hMYkFDrlEZMi605yG76UbnfX75GD5-6eL31e5VSrLsaXBTmvLiaKzt0bTxzXEmU7QvGAonHMOpWTKH6rjl5LofdD7zCM6j8PnOgFGM9dikbeb3Pb6bpqm_-SNF6i1PukyWJi4jdEqMV8iMyVfJ4pdBgmvkvSeLkuoB-sPiWdDhCC8fUIrhemCNI5CHkYUzN50alRv03gbaQDoYPr2AZz4CV-8BblSVUAXc-QYSuC85fOAOVTWIXINL84P_hyiNNhrSqvMRHKXaOumnp_fH53TCr0BVEDcLai3GvwrR4lqEljHdikWgdBxKx6keSWXQvgnZEuiVNE0kLI-MbGubKKPwxAzbILV8lJtNAu1IcRVbK4Sz-UGMsalyBSlGcokxE6uTg-pos3E5RiObDkx2QGS4MPNAZGGdNKrTzyaf1EvGEF58EcS4Tg4rRKa3_95t63-P75H525M0u77oXm2ThcDR_fqSswapFc-vZgd9kELuejH7AKBm0ts |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Obtaining+Ultra-long+Wear+Lifetime+of+Graphene+Oxide+Films+Under+High+Contact+Stress+Through+Soft+and+Hard+Interbeded+Formation+Mode&rft.jtitle=Tribology+letters&rft.au=Chen%2C+Li&rft.au=Zhu%2C+Hang&rft.au=Wu%2C+Gang&rft.au=Mu%2C+Bo&rft.date=2025-03-01&rft.issn=1023-8883&rft.eissn=1573-2711&rft.volume=73&rft.issue=1&rft_id=info:doi/10.1007%2Fs11249-024-01942-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11249_024_01942_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1023-8883&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1023-8883&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1023-8883&client=summon |