Beneficial role of Sn in rapid rust stabilization of weathering steel in marine environments
Weathering steel exhibits excellent corrosion resistance and is widely used in bridges, towers, railways, highways, and other engineering projects that are exposed to the atmosphere for long periods of time. However, before the formation of stable rust layers, weathering steel is prone to liquid rus...
Saved in:
Published in | International journal of minerals, metallurgy and materials Vol. 32; no. 5; pp. 1141 - 1150 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Beijing
University of Science and Technology Beijing
01.05.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Weathering steel exhibits excellent corrosion resistance and is widely used in bridges, towers, railways, highways, and other engineering projects that are exposed to the atmosphere for long periods of time. However, before the formation of stable rust layers, weathering steel is prone to liquid rust sagging and spattering, leading to environmental pollution and city appearance concerns. These factors limit the application and development of weathering steel. In this study, a rapid and environmentally friendly method was developed by introducing alloying elements, specifically investigating the role of Sn in the rapid stabilization of rust layers in marine atmospheric environments. The rust layer formed on weathering low-alloy steel exposed to prolonged outdoor conditions and laboratory immersion experiments was explored using electron probe micro-analyzer (EPMA), micro-Raman, X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. Results showed an optimal synergistic effect between Sn and Cr, which facilitated the accelerated densification of the rust layer. This beneficial effect enhanced the capability of the rust layer to resist Cl
−
erosion and improved the protection performance of the rust layer. |
---|---|
AbstractList | Weathering steel exhibits excellent corrosion resistance and is widely used in bridges, towers, railways, highways, and other engineering projects that are exposed to the atmosphere for long periods of time. However, before the formation of stable rust layers, weathering steel is prone to liquid rust sagging and spattering, leading to environmental pollution and city appearance concerns. These factors limit the application and development of weathering steel. In this study, a rapid and environmentally friendly method was developed by introducing alloying elements, specifically investigating the role of Sn in the rapid stabilization of rust layers in marine atmospheric environments. The rust layer formed on weathering low-alloy steel exposed to prolonged outdoor conditions and laboratory immersion experiments was explored using electron probe micro-analyzer (EPMA), micro-Raman, X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. Results showed an optimal synergistic effect between Sn and Cr, which facilitated the accelerated densification of the rust layer. This beneficial effect enhanced the capability of the rust layer to resist Cl− erosion and improved the protection performance of the rust layer. Weathering steel exhibits excellent corrosion resistance and is widely used in bridges, towers, railways, highways, and other engineering projects that are exposed to the atmosphere for long periods of time. However, before the formation of stable rust layers, weathering steel is prone to liquid rust sagging and spattering, leading to environmental pollution and city appearance concerns. These factors limit the application and development of weathering steel. In this study, a rapid and environmentally friendly method was developed by introducing alloying elements, specifically investigating the role of Sn in the rapid stabilization of rust layers in marine atmospheric environments. The rust layer formed on weathering low-alloy steel exposed to prolonged outdoor conditions and laboratory immersion experiments was explored using electron probe micro-analyzer (EPMA), micro-Raman, X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. Results showed an optimal synergistic effect between Sn and Cr, which facilitated the accelerated densification of the rust layer. This beneficial effect enhanced the capability of the rust layer to resist Cl − erosion and improved the protection performance of the rust layer. |
Author | Cheng, Xuequn Li, Xiaogang Yang, Liu |
Author_xml | – sequence: 1 givenname: Liu surname: Yang fullname: Yang, Liu organization: Institute of Advanced Materials and Technology, University of Science and Technology Beijing – sequence: 2 givenname: Xuequn surname: Cheng fullname: Cheng, Xuequn email: chengxuequn@ustb.edu.cn organization: Institute of Advanced Materials and Technology, University of Science and Technology Beijing – sequence: 3 givenname: Xiaogang surname: Li fullname: Li, Xiaogang organization: Institute of Advanced Materials and Technology, University of Science and Technology Beijing |
BookMark | eNp1kEtLxDAUhYMoODP6A9wVXEfzaJtmqYMvGHChggshZNIbzdBJatJR9NebUsGVqyTc75x7cuZo3wcPCJ1QckYJEeeJsppyTFiJmRQVbvbQjDa1xJTw5_18r0WJSyHlIZqntCGkFoKIGXq5BA_WGae7IoYOimCLB184X0Tdu7aIuzQUadBr17lvPbjgR-IT9PAG0fnXPAPoRn6r8xsK8B8uBr8FP6QjdGB1l-D491ygp-urx-UtXt3f3C0vVtgwQQZswXDOiLFa8EpYoqVojGmbslqbRuaklW0rgJbXlLWtFDJjhku6BtZS0jZ8gU4n3z6G9x2kQW3CLvq8UnFGeSVpVmSKTpSJIaUIVvXR5dRfihI1lqimElUuUY0lqtGZTZrUj7-F-Of8v-gHwFN3Rw |
Cites_doi | 10.2472/jsms.56.1035 10.1016/j.corsci.2023.111595 10.4028/www.scientific.net/AMR.773.406 10.1016/j.conbuildmat.2021.123108 10.1016/j.corsci.2023.111349 10.1007/s12613-014-0954-1 10.1016/S0010-938X(72)90671-3 10.1016/j.corsci.2021.109242 10.1016/j.corsci.2014.07.011 10.1016/j.corsci.2022.110813 10.1016/j.matchemphys.2013.01.028 10.1016/S0010-938X(71)80072-0 10.1016/j.jmrt.2022.10.106 10.1016/j.corsci.2022.110396 10.1016/j.corsci.2023.111808 10.1016/j.jmst.2021.05.086 10.1016/j.conbuildmat.2021.122298 10.1016/j.corsci.2022.110279 10.1016/j.corsci.2005.04.005 10.1016/j.jallcom.2020.155095 10.1016/0013-4686(84)87028-0 10.1016/j.corsci.2022.110814 10.1016/j.conbuildmat.2021.125211 10.1007/s12613-023-2661-2 10.1016/j.jmst.2020.12.014 10.1016/j.corsci.2009.08.036 10.1016/j.corsci.2022.110741 10.1016/0010-938X(83)90024-0 10.1007/s12613-023-2641-6 10.1016/j.corsci.2019.108416 10.1016/j.corsci.2024.112058 10.1016/j.corsci.2020.108693 10.1007/s40195-018-0855-9 10.1016/j.corsci.2021.109353 10.1016/j.corsci.2022.110936 10.1007/s12613-021-2268-4 10.1016/j.corsci.2017.04.024 10.1016/j.jmst.2020.01.023 10.1007/s12613-023-2762-y 10.3390/met10070905 10.20964/2020.01.20 10.1016/j.heliyon.2023.e23842 10.1016/j.conbuildmat.2023.133029 |
ContentType | Journal Article |
Copyright | University of Science and Technology Beijing 2025 Copyright Springer Nature B.V. May 2025 |
Copyright_xml | – notice: University of Science and Technology Beijing 2025 – notice: Copyright Springer Nature B.V. May 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s12613-024-2975-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1869-103X |
EndPage | 1150 |
ExternalDocumentID | 10_1007_s12613_024_2975_8 |
GroupedDBID | --K -SB -S~ 06D 0R~ 0VY 1B1 1N0 1~5 2KG 2LR 2VQ 30V 4.4 406 408 40D 4G. 67Z 7-5 71M 8RM 92H 92I 96X AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG ATHPR AXYYD AYFIA BENPR BGLVJ BGNMA BHPHI BKSAR CAG CAJEB CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FDB FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 H13 HCIFZ HF~ HMJXF HRMNR HVGLF HZ~ IKXTQ IWAJR IXD J-C JBSCW JZLTJ KB. KOV LLZTM M41 M4Y NPVJJ NQJWS NU0 O9- O9J OZT P2P P9N PCBAR PDBOC PHGZM PHGZT PQGLB PT4 Q-- R9I RIG ROL RSV S1Z S27 S3B SCL SCM SDG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TCJ TGT TSG U1G U2A U5L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 ZMTXR ~A9 AAYXX ACMFV CITATION |
ID | FETCH-LOGICAL-c270t-fec3320cfa7357f0a978ccd845bc890675fd5eed3612dd979735c391be2d10d83 |
IEDL.DBID | U2A |
ISSN | 1674-4799 |
IngestDate | Fri Jul 25 09:35:06 EDT 2025 Tue Jul 01 05:06:31 EDT 2025 Mon Jul 21 06:22:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | marine atmosphere Sn weathering steel rapid stabilization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-fec3320cfa7357f0a978ccd845bc890675fd5eed3612dd979735c391be2d10d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3213591735 |
PQPubID | 2043631 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3213591735 crossref_primary_10_1007_s12613_024_2975_8 springer_journals_10_1007_s12613_024_2975_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250500 2025-05-00 20250501 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 5 year: 2025 text: 20250500 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | International journal of minerals, metallurgy and materials |
PublicationTitleAbbrev | Int J Miner Metall Mater |
PublicationYear | 2025 |
Publisher | University of Science and Technology Beijing Springer Nature B.V |
Publisher_xml | – name: University of Science and Technology Beijing – name: Springer Nature B.V |
References | 2975_CR41 2975_CR42 J Wang (2975_CR32) 2013; 139 2975_CR40 T Misawa (2975_CR24) 1971; 11 TL Zhao (2975_CR38) 2022; 21 2975_CR21 H Cano (2975_CR39) 2014; 87 M Stratmann (2975_CR22) 1983; 23 YY Yang (2975_CR44) 2019; 32 2975_CR25 S Jiang (2975_CR27) 2017; 123 XJ Yang (2975_CR19) 2024; 31 MH Sun (2975_CR15) 2021; 81 PP Wang (2975_CR34) 2022; 29 J Liu (2975_CR18) 2024; 31 CI House (2975_CR43) 1984; 29 2975_CR7 CY Wan (2975_CR29) 2020; 15 2975_CR6 2975_CR5 2975_CR4 2975_CR3 2975_CR31 2975_CR2 2975_CR1 2975_CR13 M Kimura (2975_CR26) 2005; 47 2975_CR10 2975_CR16 2975_CR17 2975_CR14 2975_CR36 2975_CR37 UR Evans (2975_CR23) 1972; 12 T Kamimura (2975_CR8) 2007; 56 ZB Pei (2975_CR20) 2021; 64 ND Nam (2975_CR30) 2010; 52 XJ Yang (2975_CR28) 2022; 104 Q Li (2975_CR35) 2021; 59 GL Sun (2975_CR12) 2014; 21 N Xiao (2975_CR33) 2023; 30 2975_CR9 JP Han (2975_CR11) 2013; 773 |
References_xml | – volume: 56 start-page: 1035 issue: 11 year: 2007 ident: 2975_CR8 publication-title: J. Soc. Mat. Sci., Japan doi: 10.2472/jsms.56.1035 – ident: 2975_CR25 doi: 10.1016/j.corsci.2023.111595 – volume: 773 start-page: 406 year: 2013 ident: 2975_CR11 publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.773.406 – ident: 2975_CR3 doi: 10.1016/j.conbuildmat.2021.123108 – ident: 2975_CR5 doi: 10.1016/j.corsci.2023.111349 – volume: 21 start-page: 654 issue: 7 year: 2014 ident: 2975_CR12 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-014-0954-1 – volume: 12 start-page: 227 issue: 3 year: 1972 ident: 2975_CR23 publication-title: Corros. Sci. doi: 10.1016/S0010-938X(72)90671-3 – ident: 2975_CR37 doi: 10.1016/j.corsci.2021.109242 – volume: 87 start-page: 438 year: 2014 ident: 2975_CR39 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2014.07.011 – ident: 2975_CR40 doi: 10.1016/j.corsci.2022.110813 – volume: 139 start-page: 225 issue: 1 year: 2013 ident: 2975_CR32 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2013.01.028 – volume: 11 start-page: 35 issue: 1 year: 1971 ident: 2975_CR24 publication-title: Corros. Sci. doi: 10.1016/S0010-938X(71)80072-0 – volume: 21 start-page: 3181 year: 2022 ident: 2975_CR38 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.10.106 – ident: 2975_CR10 doi: 10.1016/j.corsci.2022.110396 – ident: 2975_CR14 doi: 10.1016/j.corsci.2023.111808 – volume: 104 start-page: 67 year: 2022 ident: 2975_CR28 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.05.086 – ident: 2975_CR42 doi: 10.1016/j.conbuildmat.2021.122298 – ident: 2975_CR16 doi: 10.1016/j.corsci.2022.110279 – volume: 47 start-page: 2499 issue: 10 year: 2005 ident: 2975_CR26 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2005.04.005 – ident: 2975_CR2 doi: 10.1016/j.jallcom.2020.155095 – volume: 59 start-page: 829 issue: 6 year: 2021 ident: 2975_CR35 publication-title: Acta Metall. Sin. – volume: 29 start-page: 1459 issue: 10 year: 1984 ident: 2975_CR43 publication-title: Electrochim. Acta doi: 10.1016/0013-4686(84)87028-0 – ident: 2975_CR7 doi: 10.1016/j.corsci.2022.110814 – ident: 2975_CR36 doi: 10.1016/j.conbuildmat.2021.125211 – volume: 31 start-page: 1311 issue: 6 year: 2024 ident: 2975_CR19 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-023-2661-2 – volume: 81 start-page: 175 year: 2021 ident: 2975_CR15 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.12.014 – volume: 52 start-page: 14 issue: 1 year: 2010 ident: 2975_CR30 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2009.08.036 – ident: 2975_CR41 doi: 10.1016/j.corsci.2022.110741 – volume: 23 start-page: 969 issue: 9 year: 1983 ident: 2975_CR22 publication-title: Corros. Sci. doi: 10.1016/0010-938X(83)90024-0 – volume: 30 start-page: 1667 issue: 9 year: 2023 ident: 2975_CR33 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-023-2641-6 – ident: 2975_CR1 doi: 10.1016/j.corsci.2019.108416 – ident: 2975_CR13 doi: 10.1016/j.corsci.2024.112058 – ident: 2975_CR31 doi: 10.1016/j.corsci.2020.108693 – volume: 32 start-page: 98 issue: 1 year: 2019 ident: 2975_CR44 publication-title: Acta Metall. Sin. doi: 10.1007/s40195-018-0855-9 – ident: 2975_CR4 doi: 10.1016/j.corsci.2021.109353 – ident: 2975_CR6 doi: 10.1016/j.corsci.2022.110936 – volume: 29 start-page: 1559 issue: 8 year: 2022 ident: 2975_CR34 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-021-2268-4 – volume: 123 start-page: 217 year: 2017 ident: 2975_CR27 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2017.04.024 – volume: 64 start-page: 214 year: 2021 ident: 2975_CR20 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.01.023 – volume: 31 start-page: 750 issue: 4 year: 2024 ident: 2975_CR18 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-023-2762-y – ident: 2975_CR21 doi: 10.3390/met10070905 – volume: 15 start-page: 26 issue: 1 year: 2020 ident: 2975_CR29 publication-title: Int. J. Electrochem. Sci. doi: 10.20964/2020.01.20 – ident: 2975_CR9 doi: 10.1016/j.heliyon.2023.e23842 – ident: 2975_CR17 doi: 10.1016/j.conbuildmat.2023.133029 |
SSID | ssj0067707 |
Score | 2.3937376 |
Snippet | Weathering steel exhibits excellent corrosion resistance and is widely used in bridges, towers, railways, highways, and other engineering projects that are... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1141 |
SubjectTerms | Alloying elements Alloys Atmospheric corrosion Bridge towers Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Composites Corrosion and Coatings Corrosion resistance Corrosion resistant steels Densification Electron probes Erosion resistance Glass Low alloy steels Marine environment Materials Science Metallic Materials Morphology Natural Materials Photoelectrons Railway engineering Research Article Rusting Sensors Spectrum analysis Stabilization Steel Surfaces and Interfaces Synergistic effect Thin Films Tribology Weathering Weathering steels X ray photoelectron spectroscopy |
Title | Beneficial role of Sn in rapid rust stabilization of weathering steel in marine environments |
URI | https://link.springer.com/article/10.1007/s12613-024-2975-8 https://www.proquest.com/docview/3213591735 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA3aXvQgfmK1lhw8KYHdZLNJjlVai6IXLVQQlt1NVgq6LW3Fv-_MfrBV9OA5jxwmuzNvMvMmhJwnPo9t4gkmtTIsUNqwJFApAzwHPsFD6TBRvH8IR-PgdiInlY57WXe71yXJwlM3Yjcg-1hzDBiqQZneJG0JqTv2cY15v3a_oVKFRhq76_HayNSlzN-2-B6MGob5oyhaxJrhLtmpSCLtl6e6RzZcvk-210YHHpCXK3BS5fQHih2CdJbRx5xOc7qI51NLUUpBgflh72uptETEp6sEf6-w5twb4t9jFADSdcXbIRkPB0_XI1a9lMBSrrwVy1wqBPfSLFZCqsyLITdMU6sDmaTaYFKQWQnRUACfsdYoA7BUGB8OxPqe1eKItPJZ7o4JDT2hM5zhLrBCFxvtkszxMOGhiH0ndIdc1CaL5uVAjKgZfYz2jcC-Edo3AnC3NmpU_RvLSHBfSMgSheyQy9rQzfKfm538C31Ktjg-1Vv0JnZJa7X4cGfAH1ZJj7T7N893g17x3XwBSvq90Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVl9QEuIEuJncTOgQOrWlq4QKUekEIWB1WCULVFFd_DjzKTRS0IDhx69siyXmzPm8y8McBhZIswiSzJXa187ijt88hRMUd7gXxCeK6hQPH2zqu3nZuO25mBz0oLk1e7VynJ_KYei92Q7FPO0eGkBuW6rKRsmo8RxmmD08YlftQjIa6vHi7qvHxKgMdCWUOemlhKYcVpqKSrUivE4CmOE-24Uax9Ys1p4qK7kOjwk8RXPprF0rdxxYltJVrivLMwj9xD09Fpi7PquveUyjXZVM1Pv6n8KnX625K_O78xo_2RhM192_UKLJeklJ0Vu2gVZky2BksTrQrX4fEcL8Wi2wSjikT2lrL7jHUz1g973YSRdIMh06Ra20LZSRYjUwoMn3HMmBeyfw1JcMgmFXYb0J4KnJswl71lZguYZ0mdUs94SRnB0NcmSo3wIuHJ0DZS1-C4gizoFQ04gnGrZcI3QHwDwjdA490K1KA8i4NAClu6GJVKtwYnFdDj4T8n2_6X9QEs1B9uW0GrcdfcgUVBzwTndZG7MDfsv5s95C7DaD_fOwyepr1ZvwBmZfmO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5WBdGD-MS3OehFCdsmbZMePPhafCPoggehtk0qC1oXrYi_yr_oTB-sih48eM4Qwtck801nvgnAeuKK2CSO5L5WIfeUDnniqZSjvUA-IQLfUqB4dh4cdr3ja_-6Be-NFqasdm9SkpWmgbo05UW7b7L2QPiGxJ_yjx4nZSjXdVXliX17xZjteftoHz_whhCdg6u9Q14_K8BToZyCZzaVUjhpFivpq8yJMZBKU6M9P0l1SAw6Mz66DonO35hQhWiWytDF1RvXMVrivEMw4pH4GA9QV-w0V3-gVKnPpsp--mUVNmnUn5b81REO2O23hGzp5zqTMFETVLZT7agpaNl8GsY_tS2cgZtdvCCrzhOMqhPZY8Yuc9bL2VPc7xlGMg6GrJPqbiuVJ1m82lpseIdj1t6T_UNM4kP2WW03C91_gXMOhvPH3M4DCxypM-ofLyk7GIfaJpkVQSICGbtW6gXYbCCL-lUzjmjQdpnwjRDfiPCN0Hi5ATWqz-VzJIUrfYxQpb8AWw3Qg-FfJ1v8k_UajF7sd6LTo_OTJRgT9GJwWSK5DMPF04tdQRpTJKvl1mFw-9979QM0sf3B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beneficial+role+of+Sn+in+rapid+rust+stabilization+of+weathering+steel+in+marine+environments&rft.jtitle=International+journal+of+minerals%2C+metallurgy+and+materials&rft.au=Yang%2C+Liu&rft.au=Cheng%2C+Xuequn&rft.au=Li%2C+Xiaogang&rft.date=2025-05-01&rft.pub=University+of+Science+and+Technology+Beijing&rft.issn=1674-4799&rft.eissn=1869-103X&rft.volume=32&rft.issue=5&rft.spage=1141&rft.epage=1150&rft_id=info:doi/10.1007%2Fs12613-024-2975-8&rft.externalDocID=10_1007_s12613_024_2975_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-4799&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-4799&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-4799&client=summon |