Simultaneous imposition of initial and boundary conditions via decoupled physics-informed neural networks for solving initial-boundary value problems
Enforcing initial and boundary conditions (I/BCs) poses challenges in physics-informed neural networks (PINNs). Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static problems; however, the simultaneous enforcement of I/BCs in dynamic problems r...
Saved in:
Published in | Applied mathematics and mechanics Vol. 46; no. 4; pp. 763 - 780 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2025
Springer Nature B.V |
Edition | English ed. |
Subjects | |
Online Access | Get full text |
ISSN | 0253-4827 1573-2754 |
DOI | 10.1007/s10483-025-3240-7 |
Cover
Loading…
Abstract | Enforcing initial and boundary conditions (I/BCs) poses challenges in physics-informed neural networks (PINNs). Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static problems; however, the simultaneous enforcement of I/BCs in dynamic problems remains challenging. To overcome this limitation, a novel approach called decoupled physics-informed neural network (dPINN) is proposed in this work. The dPINN operates based on the core idea of converting a partial differential equation (PDE) to a system of ordinary differential equations (ODEs) via the space-time decoupled formulation. To this end, the latent solution is expressed in the form of a linear combination of approximation functions and coefficients, where approximation functions are admissible and coefficients are unknowns of time that must be solved. Subsequently, the system of ODEs is obtained by implementing the weighted-residual form of the original PDE over the spatial domain. A multi-network structure is used to parameterize the set of coefficient functions, and the loss function of dPINN is established based on minimizing the residuals of the gained ODEs. In this scheme, the decoupled formulation leads to the independent handling of I/BCs. Accordingly, the BCs are automatically satisfied based on suitable selections of admissible functions. Meanwhile, the original ICs are replaced by the Galerkin form of the ICs concerning unknown coefficients, and the neural network (NN) outputs are modified to satisfy the gained ICs. Several benchmark problems involving different types of PDEs and I/BCs are used to demonstrate the superior performance of dPINN compared with regular PINN in terms of solution accuracy and computational cost. |
---|---|
AbstractList | Enforcing initial and boundary conditions (I/BCs) poses challenges in physics-informed neural networks (PINNs). Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static problems; however, the simultaneous enforcement of I/BCs in dynamic problems remains challenging. To overcome this limitation, a novel approach called decoupled physics-informed neural network (dPINN) is proposed in this work. The dPINN operates based on the core idea of converting a partial differential equation (PDE) to a system of ordinary differential equations (ODEs) via the space-time decoupled formulation. To this end, the latent solution is expressed in the form of a linear combination of approximation functions and coefficients, where approximation functions are admissible and coefficients are unknowns of time that must be solved. Subsequently, the system of ODEs is obtained by implementing the weighted-residual form of the original PDE over the spatial domain. A multi-network structure is used to parameterize the set of coefficient functions, and the loss function of dPINN is established based on minimizing the residuals of the gained ODEs. In this scheme, the decoupled formulation leads to the independent handling of I/BCs. Accordingly, the BCs are automatically satisfied based on suitable selections of admissible functions. Meanwhile, the original ICs are replaced by the Galerkin form of the ICs concerning unknown coefficients, and the neural network (NN) outputs are modified to satisfy the gained ICs. Several benchmark problems involving different types of PDEs and I/BCs are used to demonstrate the superior performance of dPINN compared with regular PINN in terms of solution accuracy and computational cost. |
Author | Wahab, M. A. Luong, K. A. Lee, J. H. |
Author_xml | – sequence: 1 givenname: K. A. surname: Luong fullname: Luong, K. A. organization: Deep Learning Architecture Research Center, Sejong University – sequence: 2 givenname: M. A. surname: Wahab fullname: Wahab, M. A. organization: Soete Laboratory, Department of Electrical Energy, Metals, Mechanical Constructions, and Systems, Faculty of Engineering and Architecture, Ghent University, College of Engineering, Yuan Ze University – sequence: 3 givenname: J. H. surname: Lee fullname: Lee, J. H. email: jhlee@sejong.ac.kr organization: Deep Learning Architecture Research Center, Sejong University |
BookMark | eNp1UDlOxDAUtRBIDMsB6CxRG7wlTkqE2CQkCqC2nPhn8JDYwU4GcRDui2FYKqq_veXr7aFtHzwgdMToCaNUnSZGZSUI5QURXFKittCCFUoQrgq5jRb5IIisuNpFeymtKKVSSblA7_dumPvJeAhzwm4YQ3KTCx6HDjufW9Nj4y1uwuytiW-4Dd5-IRJeO4MttGEee7B4fHpLrk3E-S7EIS88zDGzPUyvIT4nnNc4hX7t_PJHmvzKrk0_Ax5jaHoY0gHa6Uyf4PC77qPHy4uH82tye3d1c352S1qu6EQ6MMYKJW3DeF22QCWTNdRSCWkqW9qmbBpem7biLE-sa-o8QsGLEkCw2op9dLzRzcYvM6RJr8IcfbbUglWlELTkPKPYBtXGkFKETo_RDflrzaj-TF9v0tc5ZP2ZvlaZwzeclLF-CfFP-X_SB_Z3joE |
Cites_doi | 10.1016/j.neunet.2014.09.003 10.1515/nleng-2016-0031 10.12989/sem.1994.2.3.285 10.1007/978-1-4757-5592-3 10.1016/j.cma.2021.113933 10.1007/BF01436565 10.1016/j.cma.2020.113603 10.1007/s00366-023-01871-2 10.1002/qj.2327 10.1017/CBO9780511810817 10.1016/j.jcp.2018.10.045 10.1016/j.engstruct.2023.117290 10.1016/j.compfluid.2022.105632 10.1016/j.tws.2023.111044 10.1016/j.cma.2019.112790 10.1016/j.engappai.2024.108400 10.1080/00207178808906224 10.1007/BF01589116 10.1016/j.cma.2021.114333 10.1137/1.9780898717839 10.1002/nme.2476 10.1007/s00366-024-01971-7 |
ContentType | Journal Article |
Copyright | Shanghai University 2025 Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Shanghai University 2025 – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10483-025-3240-7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Physics |
EISSN | 1573-2754 |
Edition | English ed. |
EndPage | 780 |
ExternalDocumentID | 10_1007_s10483_025_3240_7 |
GroupedDBID | -01 -0A -SA -S~ -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 188 1N0 1SB 2.D 23M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 5XA 5XB 67Z 6NX 8RM 8TC 8UJ 92E 92I 92M 95- 95. 95~ 96X 9D9 9DA AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBE ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYFIA AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG CAJEA CCEZO CCVFK CHBEP COF CS3 CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IWAJR IXD IZIGR I~X I~Z J-C JBSCW JUIAU JZLTJ KOV LAK LLZTM M4Y MA- N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P19 P9R PF0 PT4 PT5 Q-- Q-0 QOK QOS R-A R89 R9I REI RHV RNI ROL RPX RSV RT1 RZC RZE RZK S.. S16 S1Z S26 S27 S28 S3B SAP SCL SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T8Q TCJ TEORI TGP TSG TSK TSV TUC TUS U1F U1G U2A U5A U5K UG4 UGNYK UOJIU UTJUX UY8 UZ4 UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ZWQNP ~8M ~A9 ~L9 ~LB AAYXX ABBRH AFDZB AFOHR AGQPQ AMVHM ATHPR CITATION ABRTQ |
ID | FETCH-LOGICAL-c270t-feaad374db1296ce04149e94734a8d6db6bb29ac821d6d1fb9b29e5256ee319d3 |
IEDL.DBID | U2A |
ISSN | 0253-4827 |
IngestDate | Fri Jul 25 09:48:06 EDT 2025 Sun Jul 06 05:04:01 EDT 2025 Fri Apr 04 01:15:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | O241 TP18 decoupled formulation decoupled physics-informed neural network (dPINN) Galerkin method 68T07 initial-boundary value problem (IBVP) machine learning 35Lxx 35Kxx |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-feaad374db1296ce04149e94734a8d6db6bb29ac821d6d1fb9b29e5256ee319d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3186330622 |
PQPubID | 2043692 |
PageCount | 18 |
ParticipantIDs | proquest_journals_3186330622 crossref_primary_10_1007_s10483_025_3240_7 springer_journals_10_1007_s10483_025_3240_7 |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
PublicationSubtitle | English Edition |
PublicationTitle | Applied mathematics and mechanics |
PublicationTitleAbbrev | Appl. Math. Mech.-Engl. Ed |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | A G Baydin (3240_CR9) 2018; 18 J N Reddy (3240_CR2) 1993 R A Horn (3240_CR21) 1985 M Raissi (3240_CR8) 2019; 378 V Mukundan (3240_CR26) 2016; 5 N Sukumar (3240_CR14) 2022; 389 R J Leveque (3240_CR4) 2007 G B Warburton (3240_CR6) 1976 K A Luong (3240_CR15) 2024; 40 J Schmidhuber (3240_CR18) 2015; 61 W Li (3240_CR17) 2021; 383 D T Trinh (3240_CR11) 2024; 301 D C Liu (3240_CR25) 1989; 45 M Abadi (3240_CR23) 2016 M Razzaghi (3240_CR20) 1988; 48 T Le-Duc (3240_CR10) 2024; 133 P Karnakov (3240_CR29) 2024; 3 E H Müller (3240_CR3) 2014; 140 J Stoer (3240_CR19) 1980 K A Luong (3240_CR22) 2024; 40 M Yin (3240_CR13) 2021; 375 J H Lin (3240_CR28) 1994; 2 E Samaniego (3240_CR16) 2020; 362 S Koric (3240_CR5) 2009; 78 J Douglas (3240_CR7) 1973; 20 Y Yang (3240_CR12) 2022; 248 K A Luong (3240_CR27) 2023; 191 D P Kingma (3240_CR24) 2015 E F Toro (3240_CR1) 2013 |
References_xml | – volume: 61 start-page: 85 year: 2015 ident: 3240_CR18 publication-title: Neural Networks doi: 10.1016/j.neunet.2014.09.003 – volume-title: Riemann Solvers and Numerical Methods for Fluid Dynamics: a Practical Introduction year: 2013 ident: 3240_CR1 – volume: 5 start-page: 219 issue: 4 year: 2016 ident: 3240_CR26 publication-title: Nonlinear Engineering doi: 10.1515/nleng-2016-0031 – volume: 2 start-page: 285 issue: 3 year: 1994 ident: 3240_CR28 publication-title: Structural Engineering and Mechanics: an International Journal doi: 10.12989/sem.1994.2.3.285 – volume-title: Introduction to Numerical Analysis year: 1980 ident: 3240_CR19 doi: 10.1007/978-1-4757-5592-3 – volume: 383 start-page: 113933 year: 2021 ident: 3240_CR17 publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2021.113933 – volume: 20 start-page: 213 year: 1973 ident: 3240_CR7 publication-title: Numerische Mathematik doi: 10.1007/BF01436565 – volume: 375 start-page: 113603 year: 2021 ident: 3240_CR13 publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2020.113603 – volume: 40 start-page: 1717 year: 2024 ident: 3240_CR22 publication-title: Engineering with Computers doi: 10.1007/s00366-023-01871-2 – volume-title: An Introduction to the Finite Element Method year: 1993 ident: 3240_CR2 – volume: 140 start-page: 2608 issue: 685 year: 2014 ident: 3240_CR3 publication-title: Quarterly Journal of the Royal Meteorological Society doi: 10.1002/qj.2327 – volume-title: Matrix Analysis year: 1985 ident: 3240_CR21 doi: 10.1017/CBO9780511810817 – volume: 378 start-page: 686 year: 2019 ident: 3240_CR8 publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2018.10.045 – volume: 18 start-page: 1 issue: 153 year: 2018 ident: 3240_CR9 publication-title: Journal of Machine Learning Research – volume: 301 start-page: 117290 year: 2024 ident: 3240_CR11 publication-title: Engineering Structures doi: 10.1016/j.engstruct.2023.117290 – volume: 248 start-page: 105632 year: 2022 ident: 3240_CR12 publication-title: Computers & Fluids doi: 10.1016/j.compfluid.2022.105632 – volume: 191 start-page: 111044 year: 2023 ident: 3240_CR27 publication-title: Thin-Walled Structures doi: 10.1016/j.tws.2023.111044 – start-page: 265 volume-title: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation year: 2016 ident: 3240_CR23 – volume: 362 start-page: 112790 year: 2020 ident: 3240_CR16 publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2019.112790 – volume: 133 start-page: 108400 year: 2024 ident: 3240_CR10 publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2024.108400 – volume: 3 start-page: 005 issue: 1 year: 2024 ident: 3240_CR29 publication-title: PNAS Nexus – volume: 48 start-page: 887 issue: 3 year: 1988 ident: 3240_CR20 publication-title: International Journal of Control doi: 10.1080/00207178808906224 – volume: 45 start-page: 503 issue: 1 year: 1989 ident: 3240_CR25 publication-title: Mathematical Programming doi: 10.1007/BF01589116 – volume: 389 start-page: 114333 year: 2022 ident: 3240_CR14 publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2021.114333 – volume-title: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems year: 2007 ident: 3240_CR4 doi: 10.1137/1.9780898717839 – volume-title: International Conference on Learning Representations year: 2015 ident: 3240_CR24 – volume: 78 start-page: 1 issue: 1 year: 2009 ident: 3240_CR5 publication-title: International Journal for Numerical Methods in Engineering doi: 10.1002/nme.2476 – volume-title: The Dynamical Behaviour of Structures year: 1976 ident: 3240_CR6 – volume: 40 start-page: 3253 year: 2024 ident: 3240_CR15 publication-title: Engineering with Computers doi: 10.1007/s00366-024-01971-7 |
SSID | ssj0004744 |
Score | 2.364611 |
Snippet | Enforcing initial and boundary conditions (I/BCs) poses challenges in physics-informed neural networks (PINNs). Several PINN studies have gained significant... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 763 |
SubjectTerms | Applications of Mathematics Approximation Boundary conditions Boundary value problems Classical Mechanics Fluid- and Aerodynamics Mathematical analysis Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Neural networks Ordinary differential equations Partial Differential Equations Physics |
Title | Simultaneous imposition of initial and boundary conditions via decoupled physics-informed neural networks for solving initial-boundary value problems |
URI | https://link.springer.com/article/10.1007/s10483-025-3240-7 https://www.proquest.com/docview/3186330622 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8CAeIpCqTwwgSwlsZM0Y4VaKlBZoFKZIr8iRYK0alokfgj_l3MeDSAYGO3YN-TO9n2-83cAl0ZYBheDIEe5AeWJ0jSSTkgToRjjiW-4shf6k4dgPOV3M39WvePO62z3OiRZ7NRfHrvxvo05-tSSyNFwG9q-he5oxFNv0DyGDIsKrjiOUctxWYcyfxPx_TBqPMwfQdHirBntw17lJJJBqdUD2DLZIexONgyr-RF8PKY2F1BkBqE7SV_r5CsyT0hqE4Jwvsg0kUXZpOU7Qdyry_Qs8pYKohF2rhcvRpPybiOnJYUqdliKS5ydlQniOcFughZqbx5q0XQj1pKFG1KVpcmPYToaPt2MaVVigSovdFY0MUJoFnIt8dwPlHE4IiYT8ZBx0be1pgIpvUiovudiy01khE3jo59kDC5ezU6glc0zcwpEJ0pKJm3kRnEmlXCYQWzjCFdFDmOqA1f1v44XJZNG3HAmW8XEqJjYKiYOO9CttRFXiyqPcfsJGEIcz-vAda2h5vOfws7-NfocdjxrIUV2Thdaq-XaXKDjsZI9aA9un--HvcLgPgFMbNaR |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9MIEtJ7LzGClEVaLvQSt0svyJFgrRqWiR-CP-Xcx4NIBgY7dg35M72ne_zdwhdG2EZXAwEOcoNCEuUJrF0QpIIRSlLfMOUvdAfjoL-hD1O_Wn1jjuv0e51SrLYqb88dmORzTn6xJLIkXATbYEvEFkc18TrNo8hw6KCK4yjxHJc1qnM30R8P4waD_NHUrQ4a3r7aK9yEnG31OoB2jDZIdodrhlW8yP08ZxaLKDIDITuOH2twVd4luDUAoJgvsg0lkXZpMU7hrhXl_As_JYKrCHsXM1fjMbl3UZOSgpV6LAUlzA7KwHiOYZuDBZqbx5q0WQt1pKFG1yVpcmP0aR3P77rk6rEAlFe6CxJYoTQNGRawrkfKOMwiJhMzELKRGRrTQVSerFQkedCy01kDE3jg59kDCxeTU9QK5tl5hRhnSgpqbSZG8WoVMKhBmIbR7gqdihVbXRT_2s-L5k0eMOZbBXDQTHcKoaHbdSptcGrRZVz2H4CCiGO57XRba2h5vOfws7-NfoKbffHwwEfPIyeztGOZ62lQOp0UGu5WJkLcEKW8rIwuk_RRtfw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGK16h48KUuT7DZpjkUt9dEiaKG3sK9AQdPSpII_xP_rTB6tih48ZrM7kJ3J7szOt98Qcm4lMrhYCHK06zMRa8NC5QQslppzEbes0Hig3x_4vaG4G7VGZZ3TtEK7VynJ4k4DsjQlWXNq4uaXi2-ijfnHFkNCORaskjVYjV0066HXWV6MDPJqrtCPM-S7rNKav4n4vjEtvc0fCdJ83-luk63SYaSdQsM7ZMUmu2Szv2BbTffIx9MYcYEysRDG0_FrBcSik5iOERwE42ViqMpLKM3eKXysKaBa9G0sqYEQdD59sYYW5xwpK-hUoQHpLmF0UoDFUwrNFKwVTyEq0WwhFonDLS1L1KT7ZNi9eb7qsbLcAtNe4GQstlIaHgijwAfwtXUERE82FAEXso11p3ylvFDqtufCkxurEB5tC3wma2HqDT8gtWSS2ENCTayV4gqzOFpwpaXDLcQ5jnR16HCu6-SimutoWrBqREv-ZFRMBIqJUDFRUCeNShtR-YOlESxFPodwx_Pq5LLS0PL1n8KO_tX7jKw_Xnejh9vB_THZ8NBYctBOg9Sy2dyegD-SqdPc5j4BHwPcLA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+imposition+of+initial+and+boundary+conditions+via+decoupled+physics-informed+neural+networks+for+solving+initial-boundary+value+problems&rft.jtitle=Applied+mathematics+and+mechanics&rft.au=Luong%2C+K.+A.&rft.au=Wahab%2C+M.+A.&rft.au=Lee%2C+J.+H.&rft.date=2025-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0253-4827&rft.eissn=1573-2754&rft.volume=46&rft.issue=4&rft.spage=763&rft.epage=780&rft_id=info:doi/10.1007%2Fs10483-025-3240-7&rft.externalDocID=10_1007_s10483_025_3240_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0253-4827&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0253-4827&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0253-4827&client=summon |