Simultaneous imposition of initial and boundary conditions via decoupled physics-informed neural networks for solving initial-boundary value problems

Enforcing initial and boundary conditions (I/BCs) poses challenges in physics-informed neural networks (PINNs). Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static problems; however, the simultaneous enforcement of I/BCs in dynamic problems r...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and mechanics Vol. 46; no. 4; pp. 763 - 780
Main Authors Luong, K. A., Wahab, M. A., Lee, J. H.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2025
Springer Nature B.V
EditionEnglish ed.
Subjects
Online AccessGet full text
ISSN0253-4827
1573-2754
DOI10.1007/s10483-025-3240-7

Cover

Loading…
Abstract Enforcing initial and boundary conditions (I/BCs) poses challenges in physics-informed neural networks (PINNs). Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static problems; however, the simultaneous enforcement of I/BCs in dynamic problems remains challenging. To overcome this limitation, a novel approach called decoupled physics-informed neural network (dPINN) is proposed in this work. The dPINN operates based on the core idea of converting a partial differential equation (PDE) to a system of ordinary differential equations (ODEs) via the space-time decoupled formulation. To this end, the latent solution is expressed in the form of a linear combination of approximation functions and coefficients, where approximation functions are admissible and coefficients are unknowns of time that must be solved. Subsequently, the system of ODEs is obtained by implementing the weighted-residual form of the original PDE over the spatial domain. A multi-network structure is used to parameterize the set of coefficient functions, and the loss function of dPINN is established based on minimizing the residuals of the gained ODEs. In this scheme, the decoupled formulation leads to the independent handling of I/BCs. Accordingly, the BCs are automatically satisfied based on suitable selections of admissible functions. Meanwhile, the original ICs are replaced by the Galerkin form of the ICs concerning unknown coefficients, and the neural network (NN) outputs are modified to satisfy the gained ICs. Several benchmark problems involving different types of PDEs and I/BCs are used to demonstrate the superior performance of dPINN compared with regular PINN in terms of solution accuracy and computational cost.
AbstractList Enforcing initial and boundary conditions (I/BCs) poses challenges in physics-informed neural networks (PINNs). Several PINN studies have gained significant achievements in developing techniques for imposing BCs in static problems; however, the simultaneous enforcement of I/BCs in dynamic problems remains challenging. To overcome this limitation, a novel approach called decoupled physics-informed neural network (dPINN) is proposed in this work. The dPINN operates based on the core idea of converting a partial differential equation (PDE) to a system of ordinary differential equations (ODEs) via the space-time decoupled formulation. To this end, the latent solution is expressed in the form of a linear combination of approximation functions and coefficients, where approximation functions are admissible and coefficients are unknowns of time that must be solved. Subsequently, the system of ODEs is obtained by implementing the weighted-residual form of the original PDE over the spatial domain. A multi-network structure is used to parameterize the set of coefficient functions, and the loss function of dPINN is established based on minimizing the residuals of the gained ODEs. In this scheme, the decoupled formulation leads to the independent handling of I/BCs. Accordingly, the BCs are automatically satisfied based on suitable selections of admissible functions. Meanwhile, the original ICs are replaced by the Galerkin form of the ICs concerning unknown coefficients, and the neural network (NN) outputs are modified to satisfy the gained ICs. Several benchmark problems involving different types of PDEs and I/BCs are used to demonstrate the superior performance of dPINN compared with regular PINN in terms of solution accuracy and computational cost.
Author Wahab, M. A.
Luong, K. A.
Lee, J. H.
Author_xml – sequence: 1
  givenname: K. A.
  surname: Luong
  fullname: Luong, K. A.
  organization: Deep Learning Architecture Research Center, Sejong University
– sequence: 2
  givenname: M. A.
  surname: Wahab
  fullname: Wahab, M. A.
  organization: Soete Laboratory, Department of Electrical Energy, Metals, Mechanical Constructions, and Systems, Faculty of Engineering and Architecture, Ghent University, College of Engineering, Yuan Ze University
– sequence: 3
  givenname: J. H.
  surname: Lee
  fullname: Lee, J. H.
  email: jhlee@sejong.ac.kr
  organization: Deep Learning Architecture Research Center, Sejong University
BookMark eNp1UDlOxDAUtRBIDMsB6CxRG7wlTkqE2CQkCqC2nPhn8JDYwU4GcRDui2FYKqq_veXr7aFtHzwgdMToCaNUnSZGZSUI5QURXFKittCCFUoQrgq5jRb5IIisuNpFeymtKKVSSblA7_dumPvJeAhzwm4YQ3KTCx6HDjufW9Nj4y1uwuytiW-4Dd5-IRJeO4MttGEee7B4fHpLrk3E-S7EIS88zDGzPUyvIT4nnNc4hX7t_PJHmvzKrk0_Ax5jaHoY0gHa6Uyf4PC77qPHy4uH82tye3d1c352S1qu6EQ6MMYKJW3DeF22QCWTNdRSCWkqW9qmbBpem7biLE-sa-o8QsGLEkCw2op9dLzRzcYvM6RJr8IcfbbUglWlELTkPKPYBtXGkFKETo_RDflrzaj-TF9v0tc5ZP2ZvlaZwzeclLF-CfFP-X_SB_Z3joE
Cites_doi 10.1016/j.neunet.2014.09.003
10.1515/nleng-2016-0031
10.12989/sem.1994.2.3.285
10.1007/978-1-4757-5592-3
10.1016/j.cma.2021.113933
10.1007/BF01436565
10.1016/j.cma.2020.113603
10.1007/s00366-023-01871-2
10.1002/qj.2327
10.1017/CBO9780511810817
10.1016/j.jcp.2018.10.045
10.1016/j.engstruct.2023.117290
10.1016/j.compfluid.2022.105632
10.1016/j.tws.2023.111044
10.1016/j.cma.2019.112790
10.1016/j.engappai.2024.108400
10.1080/00207178808906224
10.1007/BF01589116
10.1016/j.cma.2021.114333
10.1137/1.9780898717839
10.1002/nme.2476
10.1007/s00366-024-01971-7
ContentType Journal Article
Copyright Shanghai University 2025
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Shanghai University 2025
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s10483-025-3240-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
EISSN 1573-2754
Edition English ed.
EndPage 780
ExternalDocumentID 10_1007_s10483_025_3240_7
GroupedDBID -01
-0A
-SA
-S~
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
188
1N0
1SB
2.D
23M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VR
5VS
5XA
5XB
67Z
6NX
8RM
8TC
8UJ
92E
92I
92M
95-
95.
95~
96X
9D9
9DA
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBE
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
CAJEA
CCEZO
CCVFK
CHBEP
COF
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
H13
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IWAJR
IXD
IZIGR
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OVD
P19
P9R
PF0
PT4
PT5
Q--
Q-0
QOK
QOS
R-A
R89
R9I
REI
RHV
RNI
ROL
RPX
RSV
RT1
RZC
RZE
RZK
S..
S16
S1Z
S26
S27
S28
S3B
SAP
SCL
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T8Q
TCJ
TEORI
TGP
TSG
TSK
TSV
TUC
TUS
U1F
U1G
U2A
U5A
U5K
UG4
UGNYK
UOJIU
UTJUX
UY8
UZ4
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
ZWQNP
~8M
~A9
~L9
~LB
AAYXX
ABBRH
AFDZB
AFOHR
AGQPQ
AMVHM
ATHPR
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-feaad374db1296ce04149e94734a8d6db6bb29ac821d6d1fb9b29e5256ee319d3
IEDL.DBID U2A
ISSN 0253-4827
IngestDate Fri Jul 25 09:48:06 EDT 2025
Sun Jul 06 05:04:01 EDT 2025
Fri Apr 04 01:15:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords O241
TP18
decoupled formulation
decoupled physics-informed neural network (dPINN)
Galerkin method
68T07
initial-boundary value problem (IBVP)
machine learning
35Lxx
35Kxx
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-feaad374db1296ce04149e94734a8d6db6bb29ac821d6d1fb9b29e5256ee319d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3186330622
PQPubID 2043692
PageCount 18
ParticipantIDs proquest_journals_3186330622
crossref_primary_10_1007_s10483_025_3240_7
springer_journals_10_1007_s10483_025_3240_7
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationSubtitle English Edition
PublicationTitle Applied mathematics and mechanics
PublicationTitleAbbrev Appl. Math. Mech.-Engl. Ed
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References A G Baydin (3240_CR9) 2018; 18
J N Reddy (3240_CR2) 1993
R A Horn (3240_CR21) 1985
M Raissi (3240_CR8) 2019; 378
V Mukundan (3240_CR26) 2016; 5
N Sukumar (3240_CR14) 2022; 389
R J Leveque (3240_CR4) 2007
G B Warburton (3240_CR6) 1976
K A Luong (3240_CR15) 2024; 40
J Schmidhuber (3240_CR18) 2015; 61
W Li (3240_CR17) 2021; 383
D T Trinh (3240_CR11) 2024; 301
D C Liu (3240_CR25) 1989; 45
M Abadi (3240_CR23) 2016
M Razzaghi (3240_CR20) 1988; 48
T Le-Duc (3240_CR10) 2024; 133
P Karnakov (3240_CR29) 2024; 3
E H Müller (3240_CR3) 2014; 140
J Stoer (3240_CR19) 1980
K A Luong (3240_CR22) 2024; 40
M Yin (3240_CR13) 2021; 375
J H Lin (3240_CR28) 1994; 2
E Samaniego (3240_CR16) 2020; 362
S Koric (3240_CR5) 2009; 78
J Douglas (3240_CR7) 1973; 20
Y Yang (3240_CR12) 2022; 248
K A Luong (3240_CR27) 2023; 191
D P Kingma (3240_CR24) 2015
E F Toro (3240_CR1) 2013
References_xml – volume: 61
  start-page: 85
  year: 2015
  ident: 3240_CR18
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.003
– volume-title: Riemann Solvers and Numerical Methods for Fluid Dynamics: a Practical Introduction
  year: 2013
  ident: 3240_CR1
– volume: 5
  start-page: 219
  issue: 4
  year: 2016
  ident: 3240_CR26
  publication-title: Nonlinear Engineering
  doi: 10.1515/nleng-2016-0031
– volume: 2
  start-page: 285
  issue: 3
  year: 1994
  ident: 3240_CR28
  publication-title: Structural Engineering and Mechanics: an International Journal
  doi: 10.12989/sem.1994.2.3.285
– volume-title: Introduction to Numerical Analysis
  year: 1980
  ident: 3240_CR19
  doi: 10.1007/978-1-4757-5592-3
– volume: 383
  start-page: 113933
  year: 2021
  ident: 3240_CR17
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2021.113933
– volume: 20
  start-page: 213
  year: 1973
  ident: 3240_CR7
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01436565
– volume: 375
  start-page: 113603
  year: 2021
  ident: 3240_CR13
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2020.113603
– volume: 40
  start-page: 1717
  year: 2024
  ident: 3240_CR22
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-023-01871-2
– volume-title: An Introduction to the Finite Element Method
  year: 1993
  ident: 3240_CR2
– volume: 140
  start-page: 2608
  issue: 685
  year: 2014
  ident: 3240_CR3
  publication-title: Quarterly Journal of the Royal Meteorological Society
  doi: 10.1002/qj.2327
– volume-title: Matrix Analysis
  year: 1985
  ident: 3240_CR21
  doi: 10.1017/CBO9780511810817
– volume: 378
  start-page: 686
  year: 2019
  ident: 3240_CR8
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2018.10.045
– volume: 18
  start-page: 1
  issue: 153
  year: 2018
  ident: 3240_CR9
  publication-title: Journal of Machine Learning Research
– volume: 301
  start-page: 117290
  year: 2024
  ident: 3240_CR11
  publication-title: Engineering Structures
  doi: 10.1016/j.engstruct.2023.117290
– volume: 248
  start-page: 105632
  year: 2022
  ident: 3240_CR12
  publication-title: Computers & Fluids
  doi: 10.1016/j.compfluid.2022.105632
– volume: 191
  start-page: 111044
  year: 2023
  ident: 3240_CR27
  publication-title: Thin-Walled Structures
  doi: 10.1016/j.tws.2023.111044
– start-page: 265
  volume-title: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation
  year: 2016
  ident: 3240_CR23
– volume: 362
  start-page: 112790
  year: 2020
  ident: 3240_CR16
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2019.112790
– volume: 133
  start-page: 108400
  year: 2024
  ident: 3240_CR10
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2024.108400
– volume: 3
  start-page: 005
  issue: 1
  year: 2024
  ident: 3240_CR29
  publication-title: PNAS Nexus
– volume: 48
  start-page: 887
  issue: 3
  year: 1988
  ident: 3240_CR20
  publication-title: International Journal of Control
  doi: 10.1080/00207178808906224
– volume: 45
  start-page: 503
  issue: 1
  year: 1989
  ident: 3240_CR25
  publication-title: Mathematical Programming
  doi: 10.1007/BF01589116
– volume: 389
  start-page: 114333
  year: 2022
  ident: 3240_CR14
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2021.114333
– volume-title: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems
  year: 2007
  ident: 3240_CR4
  doi: 10.1137/1.9780898717839
– volume-title: International Conference on Learning Representations
  year: 2015
  ident: 3240_CR24
– volume: 78
  start-page: 1
  issue: 1
  year: 2009
  ident: 3240_CR5
  publication-title: International Journal for Numerical Methods in Engineering
  doi: 10.1002/nme.2476
– volume-title: The Dynamical Behaviour of Structures
  year: 1976
  ident: 3240_CR6
– volume: 40
  start-page: 3253
  year: 2024
  ident: 3240_CR15
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-024-01971-7
SSID ssj0004744
Score 2.364611
Snippet Enforcing initial and boundary conditions (I/BCs) poses challenges in physics-informed neural networks (PINNs). Several PINN studies have gained significant...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 763
SubjectTerms Applications of Mathematics
Approximation
Boundary conditions
Boundary value problems
Classical Mechanics
Fluid- and Aerodynamics
Mathematical analysis
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Neural networks
Ordinary differential equations
Partial Differential Equations
Physics
Title Simultaneous imposition of initial and boundary conditions via decoupled physics-informed neural networks for solving initial-boundary value problems
URI https://link.springer.com/article/10.1007/s10483-025-3240-7
https://www.proquest.com/docview/3186330622
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8CAeIpCqTwwgSwlsZM0Y4VaKlBZoFKZIr8iRYK0alokfgj_l3MeDSAYGO3YN-TO9n2-83cAl0ZYBheDIEe5AeWJ0jSSTkgToRjjiW-4shf6k4dgPOV3M39WvePO62z3OiRZ7NRfHrvxvo05-tSSyNFwG9q-he5oxFNv0DyGDIsKrjiOUctxWYcyfxPx_TBqPMwfQdHirBntw17lJJJBqdUD2DLZIexONgyr-RF8PKY2F1BkBqE7SV_r5CsyT0hqE4Jwvsg0kUXZpOU7Qdyry_Qs8pYKohF2rhcvRpPybiOnJYUqdliKS5ydlQniOcFughZqbx5q0XQj1pKFG1KVpcmPYToaPt2MaVVigSovdFY0MUJoFnIt8dwPlHE4IiYT8ZBx0be1pgIpvUiovudiy01khE3jo59kDC5ezU6glc0zcwpEJ0pKJm3kRnEmlXCYQWzjCFdFDmOqA1f1v44XJZNG3HAmW8XEqJjYKiYOO9CttRFXiyqPcfsJGEIcz-vAda2h5vOfws7-NfocdjxrIUV2Thdaq-XaXKDjsZI9aA9un--HvcLgPgFMbNaR
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9MIEtJ7LzGClEVaLvQSt0svyJFgrRqWiR-CP-Xcx4NIBgY7dg35M72ne_zdwhdG2EZXAwEOcoNCEuUJrF0QpIIRSlLfMOUvdAfjoL-hD1O_Wn1jjuv0e51SrLYqb88dmORzTn6xJLIkXATbYEvEFkc18TrNo8hw6KCK4yjxHJc1qnM30R8P4waD_NHUrQ4a3r7aK9yEnG31OoB2jDZIdodrhlW8yP08ZxaLKDIDITuOH2twVd4luDUAoJgvsg0lkXZpMU7hrhXl_As_JYKrCHsXM1fjMbl3UZOSgpV6LAUlzA7KwHiOYZuDBZqbx5q0WQt1pKFG1yVpcmP0aR3P77rk6rEAlFe6CxJYoTQNGRawrkfKOMwiJhMzELKRGRrTQVSerFQkedCy01kDE3jg59kDCxeTU9QK5tl5hRhnSgpqbSZG8WoVMKhBmIbR7gqdihVbXRT_2s-L5k0eMOZbBXDQTHcKoaHbdSptcGrRZVz2H4CCiGO57XRba2h5vOfws7-NfoKbffHwwEfPIyeztGOZ62lQOp0UGu5WJkLcEKW8rIwuk_RRtfw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGK16h48KUuT7DZpjkUt9dEiaKG3sK9AQdPSpII_xP_rTB6tih48ZrM7kJ3J7szOt98Qcm4lMrhYCHK06zMRa8NC5QQslppzEbes0Hig3x_4vaG4G7VGZZ3TtEK7VynJ4k4DsjQlWXNq4uaXi2-ijfnHFkNCORaskjVYjV0066HXWV6MDPJqrtCPM-S7rNKav4n4vjEtvc0fCdJ83-luk63SYaSdQsM7ZMUmu2Szv2BbTffIx9MYcYEysRDG0_FrBcSik5iOERwE42ViqMpLKM3eKXysKaBa9G0sqYEQdD59sYYW5xwpK-hUoQHpLmF0UoDFUwrNFKwVTyEq0WwhFonDLS1L1KT7ZNi9eb7qsbLcAtNe4GQstlIaHgijwAfwtXUERE82FAEXso11p3ylvFDqtufCkxurEB5tC3wma2HqDT8gtWSS2ENCTayV4gqzOFpwpaXDLcQ5jnR16HCu6-SimutoWrBqREv-ZFRMBIqJUDFRUCeNShtR-YOlESxFPodwx_Pq5LLS0PL1n8KO_tX7jKw_Xnejh9vB_THZ8NBYctBOg9Sy2dyegD-SqdPc5j4BHwPcLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+imposition+of+initial+and+boundary+conditions+via+decoupled+physics-informed+neural+networks+for+solving+initial-boundary+value+problems&rft.jtitle=Applied+mathematics+and+mechanics&rft.au=Luong%2C+K.+A.&rft.au=Wahab%2C+M.+A.&rft.au=Lee%2C+J.+H.&rft.date=2025-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0253-4827&rft.eissn=1573-2754&rft.volume=46&rft.issue=4&rft.spage=763&rft.epage=780&rft_id=info:doi/10.1007%2Fs10483-025-3240-7&rft.externalDocID=10_1007_s10483_025_3240_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0253-4827&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0253-4827&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0253-4827&client=summon