A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes

Longitudinal studies with binary outcomes characterized by informative right censoring are commonly encountered in clinical, basic, behavioral, and health sciences. Approaches developed to analyze data with binary outcomes were mainly tailored to clustered or longitudinal data with missing completel...

Full description

Saved in:
Bibliographic Details
Published inStatistics in biosciences Vol. 11; no. 3; pp. 597 - 613
Main Authors Jaffa, Miran A., Jaffa, Ayad A.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1867-1764
1867-1772
DOI10.1007/s12561-019-09254-2

Cover

Abstract Longitudinal studies with binary outcomes characterized by informative right censoring are commonly encountered in clinical, basic, behavioral, and health sciences. Approaches developed to analyze data with binary outcomes were mainly tailored to clustered or longitudinal data with missing completely at random or at random. Studies that focused on informative right censoring with binary outcomes are characterized by their imbedded computational complexity and difficulty of implementation. Here we present a new maximum likelihood-based approach with repeated binary measures modeled in a generalized linear mixed model as a function of time and other covariates. The longitudinal binary outcome and the censoring process determined by the number of times a subject is observed share latent random variables (random intercept and slope) where these subject-specific random effects are common to both models. A simulation study and sensitivity analysis were conducted to test the model under different assumptions and censoring settings. Our results showed accuracy of the estimates generated under this model when censoring was fully informative or partially informative with dependence on the slopes. A successful implementation was undertaken on a cohort of renal transplant patients with blood urea nitrogen as a binary outcome measured over time to indicate normal and abnormal kidney function until the emanation of graft rejection that eventuated in informative right censoring. In addition to its novelty and accuracy, an additional key feature and advantage of the proposed model is its viability of implementation on available analytical tools and widespread application on any other longitudinal dataset with informative censoring.
AbstractList Longitudinal studies with binary outcomes characterized by informative right censoring are commonly encountered in clinical, basic, behavioral, and health sciences. Approaches developed to analyze data with binary outcomes were mainly tailored to clustered or longitudinal data with missing completely at random or at random. Studies that focused on informative right censoring with binary outcomes are characterized by their imbedded computational complexity and difficulty of implementation. Here we present a new maximum likelihood-based approach with repeated binary measures modeled in a generalized linear mixed model as a function of time and other covariates. The longitudinal binary outcome and the censoring process determined by the number of times a subject is observed share latent random variables (random intercept and slope) where these subject-specific random effects are common to both models. A simulation study and sensitivity analysis were conducted to test the model under different assumptions and censoring settings. Our results showed accuracy of the estimates generated under this model when censoring was fully informative or partially informative with dependence on the slopes. A successful implementation was undertaken on a cohort of renal transplant patients with blood urea nitrogen as a binary outcome measured over time to indicate normal and abnormal kidney function until the emanation of graft rejection that eventuated in informative right censoring. In addition to its novelty and accuracy, an additional key feature and advantage of the proposed model is its viability of implementation on available analytical tools and widespread application on any other longitudinal dataset with informative censoring.
Author Jaffa, Ayad A.
Jaffa, Miran A.
Author_xml – sequence: 1
  givenname: Miran A.
  surname: Jaffa
  fullname: Jaffa, Miran A.
  email: ms148@aub.edu.lb
  organization: Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut
– sequence: 2
  givenname: Ayad A.
  surname: Jaffa
  fullname: Jaffa, Ayad A.
  organization: Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Department of Medicine, Medical University of South Carolina
BookMark eNp9kMtOwzAQRS1UJNrCD7CyxDpgO6mdLNuKR6VIVDzWlpOMm5TWDrYLYsen41IEOzYzo9G9o7lnhAbGGkDonJJLSoi48pRNOE0ILRJSsEmWsCM0pDkXCRWCDX5nnp2gkfdrQjgXRTFEn1Ncdi-w6Vprm2SmPDR42vfOqrrF711o8WOrXFyWKoAJ-EGZxm7xUjm1hQDOY20dDi3g0ppVF3ZNZ9QGz2J1HziK8cJExVaF7g3wHIy3rjMrvHS2Bu_Bn6JjrTYezn76GD3fXD_N75Ly_nYxn5ZJzQQJiW5ymqqsrlTG9KShWaF0UeVQacp4lmkmaA45r3jDIIWJqKBipNEAPK9rnubpGF0c7sZsrzvwQa7tzsVfvWQpJbwQgrKoYgdV7az3DrTsXbeNUSQlck9aHkjLSFp-k5Z7U3ow-X6fDdzf6X9cX03ChTY
Cites_doi 10.1111/j.1541-0420.2007.00884.x
10.1177/0962280206075308
10.1093/biomet/80.1.141
10.1093/biostatistics/kxr041
10.1214/10-AOAS390
10.1093/biomet/89.3.617
10.1002/bimj.201400064
10.1201/9781420011180
10.1093/biomet/84.1.33
10.1111/j.0006-341X.2001.00404.x
10.1002/9781119013563
10.1111/j.0006-341X.2001.00103.x
10.1111/rssc.12210
10.1086/268133
10.2307/2533193
10.1111/j.0006-341X.1999.00688.x
10.1023/A:1008999824193
10.2307/2981739
10.1111/j.1541-0420.2007.00894.x
10.2307/2986113
10.1111/j.0006-341X.2002.00631.x
10.2307/2534023
10.2307/2532775
10.1093/biomet/63.3.581
10.2307/2533439
10.1111/j.0006-341X.2000.00602.x
10.2307/2532944
10.2307/2531905
10.1080/01621459.1998.10473693
10.1093/biomet/73.1.13
10.1111/1467-9868.00386
10.1198/016214504000000674
10.1080/10618600.1995.10474663
ContentType Journal Article
Copyright International Chinese Statistical Association 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: International Chinese Statistical Association 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s12561-019-09254-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
EISSN 1867-1772
EndPage 613
ExternalDocumentID 10_1007_s12561_019_09254_2
GrantInformation_xml – fundername: National Heart, Lung, and Blood Institute
  grantid: HL077192
  funderid: http://dx.doi.org/10.13039/100000050
GroupedDBID ---
-5D
-5G
-BR
-EM
-~C
06D
0R~
0VY
1N0
203
29Q
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
6NX
8UJ
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
AYJHY
BA0
BAPOH
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9R
PT4
QOS
R89
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7U
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-fd813a4cba42f5d149af9b8ebf12644f2718e86b6d2e3e57beb20dfee68cc6383
IEDL.DBID AGYKE
ISSN 1867-1764
IngestDate Fri Jul 25 11:17:00 EDT 2025
Tue Jul 08 02:36:26 EDT 2025
Fri Feb 21 02:30:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Likelihood-based estimation
Generalized linear mixed models
Logit mixed model
Informative right censoring
Longitudinal binary outcome
Shared latent parameter models
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-fd813a4cba42f5d149af9b8ebf12644f2718e86b6d2e3e57beb20dfee68cc6383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2310697712
PQPubID 2044104
PageCount 17
ParticipantIDs proquest_journals_2310697712
crossref_primary_10_1007_s12561_019_09254_2
springer_journals_10_1007_s12561_019_09254_2
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Journal of the International Chinese Statistical Association
PublicationTitle Statistics in biosciences
PublicationTitleAbbrev Stat Biosci
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Rubin (CR2) 1976; 63
De Gruttola, Ming (CR3) 1994; 50
Roy, Daniels (CR12) 2008; 64
Diggle, Kenward (CR1) 1994; 43
Koch, Imrey, Reinfurt (CR16) 1972; 28
Daniels, Hogan (CR34) 2008
Alfo, Aitkin (CR33) 2000; 10
Rotnitzky, Scharfstein, Su, Robins (CR9) 2001; 57
Lipsitz, Laird, Harrington (CR18) 1994; 50
Albert (CR25) 2000; 56
Heagerty (CR14) 1999; 55
Albert, Follman (CR27) 2007; 16
Albert, Follmann, Wang, Suh (CR26) 2002; 58
Liang, Zeger (CR20) 1986; 73
Su (CR29) 2012; 13
Chan (CR31) 2016; 58
Ten Have, Pulkstenis, Kunselman, Landis (CR23) 1998; 54
Fletcher (CR36) 1987
Rizopoulus, Verbeke, Lesaffre, Vanrenterghem (CR28) 2008; 64
Woolson, Clarke (CR19) 1984; 147
Wu, Carroll (CR4) 1988; 44
Molenberghs, Kenward, Lesaffre (CR35) 1997; 84
Little (CR7) 1995; 90
Kyoung, Lee (CR30) 2015; 22
Pinheiro, Bates (CR37) 1995; 4
Guo, Ratcliffe, Ten Have (CR5) 2004; 99
Lipsitz, Fitzmaurice, Sleeper, Zhao (CR13) 1995; 51
Pulkstenis, Ten Have, Landis (CR24) 1998; 93
Fitzmaurice, Laird (CR21) 1993; 80
Scharfstein, Robins (CR11) 2002; 89
Lehnen, Koch (CR17) 1974; 38
Scharfstein, Robins, Eddings, Rotnitzky (CR10) 2001; 57
Birmingham, Rotnitzky, Fitzmaurice (CR6) 2003; 65
Little, Rubin (CR8) 2002
Parzen, Ghosh, Lipsitz, Sinha, Fitzmaurice, Mallick, Ibrahim (CR15) 2011; 5
Li, Su (CR32) 2018; 67
Fitzmaurice, Laird, Lipsitz (CR22) 1994; 50
L Su (9254_CR29) 2012; 13
P Diggle (9254_CR1) 1994; 43
Y Kyoung (9254_CR30) 2015; 22
DB Rubin (9254_CR2) 1976; 63
J Roy (9254_CR12) 2008; 64
PJ Heagerty (9254_CR14) 1999; 55
DO Scharfstein (9254_CR10) 2001; 57
SP Albert (9254_CR27) 2007; 16
A Rotnitzky (9254_CR9) 2001; 57
Q Li (9254_CR32) 2018; 67
SR Lipsitz (9254_CR13) 1995; 51
ER Pulkstenis (9254_CR24) 1998; 93
MC Wu (9254_CR4) 1988; 44
SR Lipsitz (9254_CR18) 1994; 50
M Alfo (9254_CR33) 2000; 10
G Molenberghs (9254_CR35) 1997; 84
J Birmingham (9254_CR6) 2003; 65
V De Gruttola (9254_CR3) 1994; 50
MJ Daniels (9254_CR34) 2008
RF Woolson (9254_CR19) 1984; 147
SP Albert (9254_CR26) 2002; 58
DO Scharfstein (9254_CR11) 2002; 89
GG Koch (9254_CR16) 1972; 28
SP Albert (9254_CR25) 2000; 56
RJA Little (9254_CR8) 2002
RG Lehnen (9254_CR17) 1974; 38
GM Fitzmaurice (9254_CR22) 1994; 50
KY Liang (9254_CR20) 1986; 73
JSK Chan (9254_CR31) 2016; 58
GM Fitzmaurice (9254_CR21) 1993; 80
D Rizopoulus (9254_CR28) 2008; 64
RJA Little (9254_CR7) 1995; 90
TR Ten Have (9254_CR23) 1998; 54
M Parzen (9254_CR15) 2011; 5
JC Pinheiro (9254_CR37) 1995; 4
W Guo (9254_CR5) 2004; 99
R Fletcher (9254_CR36) 1987
References_xml – volume: 64
  start-page: 538
  year: 2008
  end-page: 545
  ident: CR12
  article-title: A general class of pattern-mixture models for nonignorable dropout with many possible dropout times
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00884.x
– volume: 16
  start-page: 417
  year: 2007
  end-page: 439
  ident: CR27
  article-title: Random effects and latent processes approaches for analyzing binary longitudinal data with missingness: a comparison of approaches using opiate clinical trial data
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280206075308
– volume: 80
  start-page: 141
  year: 1993
  end-page: 151
  ident: CR21
  article-title: A likelihood-based method for analysing longitudinal binary responses
  publication-title: Biometrika
  doi: 10.1093/biomet/80.1.141
– volume: 13
  start-page: 355
  issue: 2
  year: 2012
  end-page: 368
  ident: CR29
  article-title: A marginalized conditional linear model for longitudinal binary data when informative dropout occurs in continuous time
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxr041
– volume: 5
  start-page: 449
  issue: 1
  year: 2011
  end-page: 467
  ident: CR15
  article-title: A generalized linear mixed model for longitudinal binary data with a marginal logit link function
  publication-title: Ann Appl Stat
  doi: 10.1214/10-AOAS390
– volume: 89
  start-page: 617
  year: 2002
  end-page: 634
  ident: CR11
  article-title: Estimation of the failure time distribution in the presence of informative censoring
  publication-title: Biometrika
  doi: 10.1093/biomet/89.3.617
– volume: 58
  start-page: 549
  issue: 3
  year: 2016
  end-page: 569
  ident: CR31
  article-title: Bayesian informative dropout model for longitudinal binary data with random effects using conditional and joint modeling approaches
  publication-title: Biom J
  doi: 10.1002/bimj.201400064
– year: 2008
  ident: CR34
  publication-title: Missing data in longitudinal studies
  doi: 10.1201/9781420011180
– volume: 4
  start-page: 12
  year: 1995
  end-page: 35
  ident: CR37
  article-title: Approximations to the log-likelihood function in the nonlinear mixed-effects model
  publication-title: J Comput Graph Stat
– volume: 84
  start-page: 33
  year: 1997
  end-page: 34
  ident: CR35
  article-title: The analysis of longitudinal ordinal data with nonrandom dropout
  publication-title: Biometrika
  doi: 10.1093/biomet/84.1.33
– volume: 57
  start-page: 404
  year: 2001
  end-page: 413
  ident: CR10
  article-title: Inference in randomized studies with informative censoring and discrete time-to-event endpoints
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2001.00404.x
– year: 2002
  ident: CR8
  publication-title: Statistical analysis with missing data
  doi: 10.1002/9781119013563
– volume: 57
  start-page: 103
  year: 2001
  end-page: 113
  ident: CR9
  article-title: Methods for conducting sensitivity analysis of trials with potentially nonignorable competing causes of censoring
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2001.00103.x
– volume: 67
  start-page: 145
  issue: 1
  year: 2018
  end-page: 163
  ident: CR32
  article-title: Accommodating informative dropout and death: a joint modeling approach for longitudinal and semicompeting risks data
  publication-title: J R Stat Soc Ser C
  doi: 10.1111/rssc.12210
– volume: 38
  start-page: 40
  year: 1974
  end-page: 56
  ident: CR17
  article-title: Analyzing panel data with uncontrolled attrition
  publication-title: Public Opin Q
  doi: 10.1086/268133
– volume: 50
  start-page: 11
  issue: 1
  year: 1994
  end-page: 24
  ident: CR18
  article-title: Weighted least squares analysis of repeated categorical measurements with outcomes subject to nonresponse
  publication-title: Biometrics
  doi: 10.2307/2533193
– volume: 55
  start-page: 688
  year: 1999
  end-page: 698
  ident: CR14
  article-title: Marginally specified logistic-normal models for longitudinal binary data
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00688.x
– volume: 10
  start-page: 279
  year: 2000
  end-page: 287
  ident: CR33
  article-title: Random coefficient models for binary longitudinal responses with attrition
  publication-title: Stat Comput
  doi: 10.1023/A:1008999824193
– volume: 147
  start-page: 87
  year: 1984
  end-page: 99
  ident: CR19
  article-title: Analysis of categorical incomplete longitudinal data
  publication-title: J R Stat Soc Ser A
  doi: 10.2307/2981739
– volume: 64
  start-page: 611
  year: 2008
  ident: CR28
  article-title: A two-part joint model for the analysis of survival and longitudinal binary data with excess zeros
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00894.x
– volume: 43
  start-page: 49
  year: 1994
  end-page: 94
  ident: CR1
  article-title: Informative dropout in longitudinal data analysis
  publication-title: Appl Stat
  doi: 10.2307/2986113
– volume: 28
  start-page: 633
  year: 1972
  end-page: 692
  ident: CR16
  article-title: Linear model analysis of categorical data with incomplete response vectors
  publication-title: Biometrics
– year: 1987
  ident: CR36
  publication-title: Practical methods of optimization
– volume: 58
  start-page: 631
  year: 2002
  end-page: 642
  ident: CR26
  article-title: A latent autoregressive model for longitudinal binary data subject to informative missingness
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2002.00631.x
– volume: 22
  start-page: 589
  issue: 6
  year: 2015
  end-page: 598
  ident: CR30
  article-title: Bayesian pattern mixture model for longitudinal binary data with nonignorable missingness
  publication-title: Commun Stat Appl Method
– volume: 54
  start-page: 367
  issue: 1
  year: 1998
  end-page: 383
  ident: CR23
  article-title: Mixed effects logistic regression models for longitudinal binary response data with informative drop-out
  publication-title: Biometrics
  doi: 10.2307/2534023
– volume: 90
  start-page: 1113
  year: 1995
  end-page: 1121
  ident: CR7
  article-title: Modeling the dropout mechanism in repeated measures studies
  publication-title: J Am Stat Assoc
– volume: 50
  start-page: 601
  issue: 3
  year: 1994
  end-page: 612
  ident: CR22
  article-title: Analyzing incomplete longitudinal binary responses: a likelihood-based approach
  publication-title: Biometrics
  doi: 10.2307/2532775
– volume: 63
  start-page: 581
  year: 1976
  end-page: 590
  ident: CR2
  article-title: Inference and missing data
  publication-title: Biometrika
  doi: 10.1093/biomet/63.3.581
– volume: 50
  start-page: 1003
  year: 1994
  end-page: 1014
  ident: CR3
  article-title: Modelling progression of CD4-lymphocyte count and its relationship to survival time
  publication-title: Biometrics
  doi: 10.2307/2533439
– volume: 56
  start-page: 602
  year: 2000
  end-page: 608
  ident: CR25
  article-title: A translational model for longitudinal binary data subject to nonignorbale missing data
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.00602.x
– volume: 51
  start-page: 562
  issue: 2
  year: 1995
  end-page: 570
  ident: CR13
  article-title: Estimation methods for the joint distribution of repeated binary observations
  publication-title: Biometrics
  doi: 10.2307/2532944
– volume: 44
  start-page: 175
  year: 1988
  end-page: 188
  ident: CR4
  article-title: Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
  publication-title: Biometrics
  doi: 10.2307/2531905
– volume: 93
  start-page: 438
  issue: 442
  year: 1998
  end-page: 450
  ident: CR24
  article-title: Model for the analysis of binary longitudinal pain data subject to informative dropout through remedication
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1998.10473693
– volume: 73
  start-page: 13
  year: 1986
  end-page: 22
  ident: CR20
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
  doi: 10.1093/biomet/73.1.13
– volume: 65
  start-page: 275
  year: 2003
  end-page: 297
  ident: CR6
  article-title: Pattern-mixture and selection models for analyzing longitudinal data with monotone missing patterns
  publication-title: J Roy Stat Soc B
  doi: 10.1111/1467-9868.00386
– volume: 99
  start-page: 929
  year: 2004
  end-page: 937
  ident: CR5
  article-title: A random pattern-mixture model for longitudinal data with dropouts
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214504000000674
– volume: 65
  start-page: 275
  year: 2003
  ident: 9254_CR6
  publication-title: J Roy Stat Soc B
  doi: 10.1111/1467-9868.00386
– volume: 89
  start-page: 617
  year: 2002
  ident: 9254_CR11
  publication-title: Biometrika
  doi: 10.1093/biomet/89.3.617
– volume-title: Practical methods of optimization
  year: 1987
  ident: 9254_CR36
– volume: 51
  start-page: 562
  issue: 2
  year: 1995
  ident: 9254_CR13
  publication-title: Biometrics
  doi: 10.2307/2532944
– volume: 16
  start-page: 417
  year: 2007
  ident: 9254_CR27
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280206075308
– volume: 4
  start-page: 12
  year: 1995
  ident: 9254_CR37
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.1995.10474663
– volume: 64
  start-page: 611
  year: 2008
  ident: 9254_CR28
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00894.x
– volume: 58
  start-page: 631
  year: 2002
  ident: 9254_CR26
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2002.00631.x
– volume: 13
  start-page: 355
  issue: 2
  year: 2012
  ident: 9254_CR29
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxr041
– volume-title: Missing data in longitudinal studies
  year: 2008
  ident: 9254_CR34
  doi: 10.1201/9781420011180
– volume: 38
  start-page: 40
  year: 1974
  ident: 9254_CR17
  publication-title: Public Opin Q
  doi: 10.1086/268133
– volume: 43
  start-page: 49
  year: 1994
  ident: 9254_CR1
  publication-title: Appl Stat
  doi: 10.2307/2986113
– volume: 93
  start-page: 438
  issue: 442
  year: 1998
  ident: 9254_CR24
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1998.10473693
– volume: 58
  start-page: 549
  issue: 3
  year: 2016
  ident: 9254_CR31
  publication-title: Biom J
  doi: 10.1002/bimj.201400064
– volume: 56
  start-page: 602
  year: 2000
  ident: 9254_CR25
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.00602.x
– volume: 28
  start-page: 633
  year: 1972
  ident: 9254_CR16
  publication-title: Biometrics
– volume: 5
  start-page: 449
  issue: 1
  year: 2011
  ident: 9254_CR15
  publication-title: Ann Appl Stat
  doi: 10.1214/10-AOAS390
– volume: 44
  start-page: 175
  year: 1988
  ident: 9254_CR4
  publication-title: Biometrics
  doi: 10.2307/2531905
– volume: 90
  start-page: 1113
  year: 1995
  ident: 9254_CR7
  publication-title: J Am Stat Assoc
– volume: 64
  start-page: 538
  year: 2008
  ident: 9254_CR12
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00884.x
– volume: 55
  start-page: 688
  year: 1999
  ident: 9254_CR14
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00688.x
– volume: 50
  start-page: 601
  issue: 3
  year: 1994
  ident: 9254_CR22
  publication-title: Biometrics
  doi: 10.2307/2532775
– volume: 63
  start-page: 581
  year: 1976
  ident: 9254_CR2
  publication-title: Biometrika
  doi: 10.1093/biomet/63.3.581
– volume: 50
  start-page: 1003
  year: 1994
  ident: 9254_CR3
  publication-title: Biometrics
  doi: 10.2307/2533439
– volume-title: Statistical analysis with missing data
  year: 2002
  ident: 9254_CR8
  doi: 10.1002/9781119013563
– volume: 54
  start-page: 367
  issue: 1
  year: 1998
  ident: 9254_CR23
  publication-title: Biometrics
  doi: 10.2307/2534023
– volume: 84
  start-page: 33
  year: 1997
  ident: 9254_CR35
  publication-title: Biometrika
  doi: 10.1093/biomet/84.1.33
– volume: 147
  start-page: 87
  year: 1984
  ident: 9254_CR19
  publication-title: J R Stat Soc Ser A
  doi: 10.2307/2981739
– volume: 10
  start-page: 279
  year: 2000
  ident: 9254_CR33
  publication-title: Stat Comput
  doi: 10.1023/A:1008999824193
– volume: 99
  start-page: 929
  year: 2004
  ident: 9254_CR5
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214504000000674
– volume: 22
  start-page: 589
  issue: 6
  year: 2015
  ident: 9254_CR30
  publication-title: Commun Stat Appl Method
– volume: 57
  start-page: 404
  year: 2001
  ident: 9254_CR10
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2001.00404.x
– volume: 57
  start-page: 103
  year: 2001
  ident: 9254_CR9
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2001.00103.x
– volume: 73
  start-page: 13
  year: 1986
  ident: 9254_CR20
  publication-title: Biometrika
  doi: 10.1093/biomet/73.1.13
– volume: 80
  start-page: 141
  year: 1993
  ident: 9254_CR21
  publication-title: Biometrika
  doi: 10.1093/biomet/80.1.141
– volume: 67
  start-page: 145
  issue: 1
  year: 2018
  ident: 9254_CR32
  publication-title: J R Stat Soc Ser C
  doi: 10.1111/rssc.12210
– volume: 50
  start-page: 11
  issue: 1
  year: 1994
  ident: 9254_CR18
  publication-title: Biometrics
  doi: 10.2307/2533193
SSID ssj0066799
Score 2.108846
Snippet Longitudinal studies with binary outcomes characterized by informative right censoring are commonly encountered in clinical, basic, behavioral, and health...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 597
SubjectTerms Accuracy
Biostatistics
Computer applications
Computer simulation
Correlation analysis
Dependence
Graft rejection
Health Sciences
Kidney transplantation
Mathematics and Statistics
Medicine
Model testing
Random variables
Sensitivity analysis
Statistical models
Statistics
Statistics for Life Sciences
Theoretical Ecology/Statistics
Urea
Viability
Title A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes
URI https://link.springer.com/article/10.1007/s12561-019-09254-2
https://www.proquest.com/docview/2310697712
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gnjxLT7LHrzpSjdJ8zimYhWtImJBT2GfIGoqNr148qc7k24oih68Zpcl2dnMfLMz8w3AYaLDWAkZ8I42EY-EcVyFOuFKZonQJtNO0z3k9U18MYwuH7oPvihs3GS7NyHJWlPPit3QOpPrSyk-6NZwVLwLXZFmaQsW8vPHq7NGA8dxUveNJK42IkCMfLHM76t8N0gzlPkjMFrbm_4KDJs3naaZPJ9MKnWiP36QOP73U1Zh2QNQlk9PzBrM2XIdFq99iH0dlgh-TtmbN-AzZ4OnZ_vyROTHvIcWz7Dcs5AzusJlRPiMDwcIWcuK3cnSjF7ZraSUL-LtZIiJGWJMNhhRY6SJoSZcrFcXATOczHw5FClddooudZ0PyHz5gh1vwrB_dn96wX3PBq6DpFNxZ1IRykgrGQWua9D_ki5TqVVOEPRyAdpCm8YqNoENbTdR6Nl3jLM2TrVGXRBuQasclXYbWGLCCLWNzFKDTryRSoSW6AkFIqhEObMDR43gircpNUcxI2GmHS5wh4t6h4tgB_Yb2Rb-Nx0XBG5jRMACh48bUc2G_15t93_T92ApIGnXaTD70KreJ_YAwUyl2nh2-73eTduf4TbMD4P8C24B7kk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6ioL2IVsVq1Ry8aaD76D6O22Kpui0iLfQW8oSibsVu7_50Z7ZZiqIHr5uQw04y800y3zeEXMcqiKQnfNZROmShpy2TgYqZFGnsKZ0qq_AecjSOhtPwYdadOVLYsq52r58kK0-9IbtBdMbUF0t8IK1h4Hh3AAwk2Ldg6me1_42iuOoaiUptKH8YOqrM72t8D0cbjPnjWbSKNoMDsu9gIs3Wdj0kW6Zokt2RewhvkgaCxLXG8hH5zGg-fzGvc5QoZj2IS5pmTiuc4kUrRVlm-JgDsCxK-iwKvXijTwILs1BdkwJypYAEab7A9kUrja2yaK-i6lKYTB1pCV0j7UPiW1XtUUcyMMtjMh3cTfpD5jorMOXHnZJZnXiBCJUUoW-7GrIkYVOZGGk9BEjWh4hlkkhG2jeB6cYS8u-OtsZEiVJwYoMTsl0sCnNKaKyDEHyCSBMNqbYW0gsMigh6gHNiaXWL3NQ_mL-vBTT4RioZzcHBHLwyB_dbpF3bgLvDtOQIQSPAqR4M39Z22Qz_vdrZ_6Zfkb3hZJTz_H78eE4aPm6TqnClTbbLj5W5APhRystqt30BE9TRyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YTAgXo6gRRd2DN93AtqWPY0EJKhBiJOHW7DMhaiECd3-6M30ENXrw2t1s0s7uzDfd-b4h5CpQri-5cFhbaY95XFsmXRUwKaKAKx0pq_A_5GjsD6bew6wz-8Liz6rdyyvJnNOAKk3purXUtrUlvkGkxjQYy30gxWHghHfBHXPc6VMnLn2x7wdZB0lUbUMpRK-gzfy-xvfQtMWbP65Is8jT3yd7BWSkcW7jA7Jj0jqpjopL8TqpIWDM9ZYPyUdMh_MX8zpHuWLWhRilaVzohlP86UpRohkeDgW-L30SqV680YnAIi1U2qSAYimgQjpcYCujjca2WbSb0XYpTKYFgQndJO1BEpxV8NGCcGBWR2Tav3vuDVjRZYEpJ2ivmdUhd4WnpPAc29GQMQkbydBIyxEsWQeilwl96WvHuKYTSMjF29oa44dKwel1j0klXaTmhNBAux74BxGFGtJuLSR3DQoKcsA8gbS6Qa7LD5wsczGNZCubjOZIwBxJZo7EaZBmaYOkOFirBOGoD5iVw_BNaZft8N-rnf5v-iWpTm77yfB-_HhGag7ukqyGpUkq6_eNOQckspYX2Wb7BFB91gY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Likelihood-Based+Approach+with+Shared+Latent+Random+Parameters+for+the+Longitudinal+Binary+and+Informative+Censoring+Processes&rft.jtitle=Statistics+in+biosciences&rft.au=Jaffa%2C+Miran+A&rft.au=Jaffa%2C+Ayad+A&rft.date=2019-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1867-1764&rft.eissn=1867-1772&rft.volume=11&rft.issue=3&rft.spage=597&rft.epage=613&rft_id=info:doi/10.1007%2Fs12561-019-09254-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-1764&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-1764&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-1764&client=summon