Greedy algorithms for stochastic monotone k-submodular maximization under full-bandit feedback

In this paper, we theoretically study the Combinatorial Multi-Armed Bandit problem with stochastic monotone k -submodular reward function under full-bandit feedback. In this setting, the decision-maker is allowed to select a super arm composed of multiple base arms in each round and then receives it...

Full description

Saved in:
Bibliographic Details
Published inJournal of combinatorial optimization Vol. 49; no. 1
Main Authors Sun, Xin, Guo, Tiande, Han, Congying, Zhang, Hongyang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1382-6905
1573-2886
DOI10.1007/s10878-024-01240-9

Cover

Loading…
Abstract In this paper, we theoretically study the Combinatorial Multi-Armed Bandit problem with stochastic monotone k -submodular reward function under full-bandit feedback. In this setting, the decision-maker is allowed to select a super arm composed of multiple base arms in each round and then receives its k -submodular reward. The k -submodularity enriches the application scenarios of the problem we consider in contexts characterized by diverse options. We present two simple greedy algorithms for two budget constraints (total size and individual size) and provide the theoretical analysis for upper bound of the regret value. For the total size budget, the proposed algorithm achieves a 1 2 -regret upper bound by O ~ T 2 3 ( k n ) 1 3 B where T is the time horizon, n is the number of base arms and B denotes the budget. For the individual size budget, the proposed algorithm achieves a 1 3 -regret with the same upper bound. Moreover, we conduct numerical experiments on these two algorithms to empirically demonstrate the effectiveness.
AbstractList In this paper, we theoretically study the Combinatorial Multi-Armed Bandit problem with stochastic monotone k -submodular reward function under full-bandit feedback. In this setting, the decision-maker is allowed to select a super arm composed of multiple base arms in each round and then receives its k -submodular reward. The k -submodularity enriches the application scenarios of the problem we consider in contexts characterized by diverse options. We present two simple greedy algorithms for two budget constraints (total size and individual size) and provide the theoretical analysis for upper bound of the regret value. For the total size budget, the proposed algorithm achieves a 1 2 -regret upper bound by O ~ T 2 3 ( k n ) 1 3 B where T is the time horizon, n is the number of base arms and B denotes the budget. For the individual size budget, the proposed algorithm achieves a 1 3 -regret with the same upper bound. Moreover, we conduct numerical experiments on these two algorithms to empirically demonstrate the effectiveness.
In this paper, we theoretically study the Combinatorial Multi-Armed Bandit problem with stochastic monotone k-submodular reward function under full-bandit feedback. In this setting, the decision-maker is allowed to select a super arm composed of multiple base arms in each round and then receives its k-submodular reward. The k-submodularity enriches the application scenarios of the problem we consider in contexts characterized by diverse options. We present two simple greedy algorithms for two budget constraints (total size and individual size) and provide the theoretical analysis for upper bound of the regret value. For the total size budget, the proposed algorithm achieves a 12-regret upper bound by O~T23(kn)13B where T is the time horizon, n is the number of base arms and B denotes the budget. For the individual size budget, the proposed algorithm achieves a 13-regret with the same upper bound. Moreover, we conduct numerical experiments on these two algorithms to empirically demonstrate the effectiveness.
ArticleNumber 7
Author Han, Congying
Guo, Tiande
Zhang, Hongyang
Sun, Xin
Author_xml – sequence: 1
  givenname: Xin
  surname: Sun
  fullname: Sun, Xin
  organization: School of Mathematics and Physics, University of Science and Technology Beijing
– sequence: 2
  givenname: Tiande
  surname: Guo
  fullname: Guo, Tiande
  organization: School of Mathematical Sciences, University of Chinese Academy of Sciences
– sequence: 3
  givenname: Congying
  surname: Han
  fullname: Han, Congying
  email: hancy@ucas.ac.cn
  organization: School of Mathematical Sciences, University of Chinese Academy of Sciences
– sequence: 4
  givenname: Hongyang
  surname: Zhang
  fullname: Zhang, Hongyang
  organization: School of Mathematics and Statistics, Ningbo University
BookMark eNp9kE1LwzAAhoNMcE7_gKeA52iSNh89ytApDLzo1ZA0ydatbWbSgvPXG63gzdP7Ht4PeM7BrA-9A-CK4BuCsbhNBEshEaYlwoSWGFUnYE6YKBCVks-yLyRFvMLsDJyntMMYZ1_OwdsqOmePULebEJth2yXoQ4RpCPVWp6GpYRf6MOQ3uEdpNF2wY6sj7PRH0zWfemhCD8feugj92LbI6N42A_R51Oh6fwFOvW6Tu_zVBXh9uH9ZPqL18-ppebdGNRV4QF5TWgnPeCWYtsRyVvOCcG6kd7LgRItaC4NrzKj1RlJDqDbaOmG88cyaYgGup91DDO-jS4PahTH2-VIVpCSYM0lZTtEpVceQUnReHWLT6XhUBKtvjmriqDJH9cNRVblUTKWUw_3Gxb_pf1pfUah6AQ
Cites_doi 10.1287/moor.2018.0955
10.1007/978-3-642-32147-4_40
10.1137/S0097539700382820
10.1137/1.9781611975482.19
10.1007/s10878-022-00875-w
10.1145/285055.285059
10.1137/1.9781611973082.83
10.1137/1.9781611973402.108
10.1109/FOCS.2011.46
10.1145/3313276.3316304
10.3934/jimo.2022031
10.1080/01621459.1963.10500830
10.1137/080733991
10.1287/mnsc.2022.4558
10.1609/aaai.v35i8.16860
10.1109/TEVC.2021.3103386
10.1007/BF01588971
10.1137/1.9781611976465.69
10.1137/130920277
10.1287/moor.3.3.177
10.1090/S0002-9904-1952-09620-8
10.1007/s00453-020-00757-9
10.1137/1.9781611974331.ch30
10.1137/1.9781611973075.90
10.1145/227683.227684
10.1016/j.disopt.2017.01.003
10.1287/moor.2016.0842
10.1137/S0097539701398375
10.1109/ICCV.2013.288
10.1007/978-3-031-49193-1_10
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s10878-024-01240-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
ExternalDocumentID 10_1007_s10878_024_01240_9
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12301419
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Key Technologies Research and Development Program
  grantid: 2021YFA1000403
  funderid: http://dx.doi.org/10.13039/501100012165
– fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  grantid: 11991022
  funderid: http://dx.doi.org/10.13039/100014718
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-fa2297f56975ad1d65c63166b8fe8361a7ca7b0c052dfb82b12abade7bfbf5db3
IEDL.DBID U2A
ISSN 1382-6905
IngestDate Sun Jul 13 05:37:23 EDT 2025
Tue Jul 01 03:13:07 EDT 2025
Fri Feb 21 02:37:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Stochastic reward
submodular
Budget constraints
Full-bandit feedback
Combinatorial multi-armed bandit
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-fa2297f56975ad1d65c63166b8fe8361a7ca7b0c052dfb82b12abade7bfbf5db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3141065825
PQPubID 2043856
ParticipantIDs proquest_journals_3141065825
crossref_primary_10_1007_s10878_024_01240_9
springer_journals_10_1007_s10878_024_01240_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250100
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References X Sun (1240_CR38) 2023; 19
1240_CR29
W Hoeffding (1240_CR19) 1963; 58
H Robbins (1240_CR32) 1952; 58
P Auer (1240_CR1) 2002; 32
1240_CR23
1240_CR22
1240_CR21
1240_CR28
1240_CR27
W Chen (1240_CR8) 2021
1240_CR20
GL Nemhauser (1240_CR25) 1978; 14
1240_CR42
1240_CR9
1240_CR41
1240_CR40
R Niazadeh (1240_CR26) 2020; 69
1240_CR6
1240_CR2
U Feige (1240_CR10) 1998; 45
M Feldman (1240_CR11) 2021; 83
1240_CR3
S Sakaue (1240_CR33) 2017; 23
MX Goemans (1240_CR16) 1995; 42
1240_CR18
N Buchbinder (1240_CR4) 2019; 44
C Chekuri (1240_CR7) 2005; 35
1240_CR12
1240_CR34
1240_CR17
1240_CR39
G Călinescu (1240_CR5) 2011; 40
1240_CR15
M Sviridenko (1240_CR35) 2017; 42
1240_CR14
1240_CR36
1240_CR31
1240_CR30
Y Filmus (1240_CR13) 2014; 43
GL Nemhauser (1240_CR24) 1978; 3
X Sun (1240_CR37) 2022; 44
References_xml – volume: 44
  start-page: 988
  issue: 3
  year: 2019
  ident: 1240_CR4
  publication-title: Math Oper Res
  doi: 10.1287/moor.2018.0955
– ident: 1240_CR41
– ident: 1240_CR20
  doi: 10.1007/978-3-642-32147-4_40
– ident: 1240_CR39
– ident: 1240_CR9
– volume: 35
  start-page: 713
  issue: 3
  year: 2005
  ident: 1240_CR7
  publication-title: SIAM J Comput
  doi: 10.1137/S0097539700382820
– ident: 1240_CR30
– ident: 1240_CR2
  doi: 10.1137/1.9781611975482.19
– volume: 44
  start-page: 3212
  year: 2022
  ident: 1240_CR37
  publication-title: J Comb Opt
  doi: 10.1007/s10878-022-00875-w
– volume: 45
  start-page: 634
  issue: 4
  year: 1998
  ident: 1240_CR10
  publication-title: J ACM
  doi: 10.1145/285055.285059
– ident: 1240_CR27
– ident: 1240_CR34
– ident: 1240_CR15
  doi: 10.1137/1.9781611973082.83
– ident: 1240_CR29
– ident: 1240_CR40
  doi: 10.1137/1.9781611973402.108
– ident: 1240_CR12
  doi: 10.1109/FOCS.2011.46
– ident: 1240_CR3
  doi: 10.1145/3313276.3316304
– volume: 19
  start-page: 2050
  issue: 3
  year: 2023
  ident: 1240_CR38
  publication-title: J Ind Manag Opt
  doi: 10.3934/jimo.2022031
– volume: 58
  start-page: 13
  issue: 301
  year: 1963
  ident: 1240_CR19
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1963.10500830
– volume: 40
  start-page: 1740
  issue: 6
  year: 2011
  ident: 1240_CR5
  publication-title: SIAM J Comput
  doi: 10.1137/080733991
– ident: 1240_CR23
– volume: 69
  start-page: 3797
  issue: 7
  year: 2020
  ident: 1240_CR26
  publication-title: Manag Sci
  doi: 10.1287/mnsc.2022.4558
– ident: 1240_CR42
– ident: 1240_CR6
  doi: 10.1609/aaai.v35i8.16860
– year: 2021
  ident: 1240_CR8
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2021.3103386
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  ident: 1240_CR25
  publication-title: Math Progr
  doi: 10.1007/BF01588971
– ident: 1240_CR22
  doi: 10.1137/1.9781611976465.69
– volume: 43
  start-page: 514
  issue: 2
  year: 2014
  ident: 1240_CR13
  publication-title: SIAM J Comput
  doi: 10.1137/130920277
– ident: 1240_CR31
– volume: 3
  start-page: 177
  issue: 3
  year: 1978
  ident: 1240_CR24
  publication-title: Math Oper Res
  doi: 10.1287/moor.3.3.177
– volume: 58
  start-page: 527
  issue: 5
  year: 1952
  ident: 1240_CR32
  publication-title: Bull Am Math Soc
  doi: 10.1090/S0002-9904-1952-09620-8
– volume: 83
  start-page: 853
  issue: 3
  year: 2021
  ident: 1240_CR11
  publication-title: Algorithmica
  doi: 10.1007/s00453-020-00757-9
– ident: 1240_CR21
  doi: 10.1137/1.9781611974331.ch30
– ident: 1240_CR18
  doi: 10.1137/1.9781611973075.90
– ident: 1240_CR28
– ident: 1240_CR14
– volume: 42
  start-page: 1115
  issue: 6
  year: 1995
  ident: 1240_CR16
  publication-title: J ACM
  doi: 10.1145/227683.227684
– volume: 23
  start-page: 105
  year: 2017
  ident: 1240_CR33
  publication-title: Discret Opt
  doi: 10.1016/j.disopt.2017.01.003
– volume: 42
  start-page: 1197
  issue: 4
  year: 2017
  ident: 1240_CR35
  publication-title: Math Oper Res
  doi: 10.1287/moor.2016.0842
– volume: 32
  start-page: 48
  issue: 1
  year: 2002
  ident: 1240_CR1
  publication-title: SIAM J Comput
  doi: 10.1137/S0097539701398375
– ident: 1240_CR17
  doi: 10.1109/ICCV.2013.288
– ident: 1240_CR36
  doi: 10.1007/978-3-031-49193-1_10
SSID ssj0009054
Score 2.3551326
Snippet In this paper, we theoretically study the Combinatorial Multi-Armed Bandit problem with stochastic monotone k -submodular reward function under full-bandit...
In this paper, we theoretically study the Combinatorial Multi-Armed Bandit problem with stochastic monotone k-submodular reward function under full-bandit...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Budgets
Combinatorial analysis
Combinatorics
Convex and Discrete Geometry
Decision theory
Feedback
Greedy algorithms
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Multi-armed bandit problems
Operations Research/Decision Theory
Optimization
Theory of Computation
Upper bounds
Title Greedy algorithms for stochastic monotone k-submodular maximization under full-bandit feedback
URI https://link.springer.com/article/10.1007/s10878-024-01240-9
https://www.proquest.com/docview/3141065825
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgXWBAfIpCqTywgaXEie1krFBLBSoTlcpC5I-YotIWNUGCf885TUhBMDBGsU7R5ZJ7Z997h9C55LGJPB4TLVkIBYojK3NqiEqpH2odpVY7vvPwjg9G4c2YjUtSWFZ1u1dHksWfeo3sFjk1WOq6JiAPkXgTNZmr3SGKR7RbS-16bDXKFrAj1H6spMr8buN7Oqox5o9j0SLb9HfRTgkTcXf1XvfQRjrfR9tr4oFwNfxSXM0O0KNroDEfWL48LaDen8wyDHAUA7TTE-m0mDHE28Ipb-MpySAJLoxrQMUz-f48K7mY2BHKltjtyBPl6C45tmBUST09RKN-7_5qQMrZCURT4eXESkpjYRmPBZPGN5xpHvicq8imUcB9KbQUytMeo8aqiCqfSiVNKpRVlhkVHKHGHJ7pGOFigbUq1Azgh_QjrrUVqQlMTKUwsoUuKhcmryuJjKQWQ3YOT8DhSeHwJG6hduXlpPxcsiRw3aaAhShrocvK8_Xtv62d_G_5Kdqibn5vsYXSRo18-ZaeAajIVQc1u9cPt71OEUufSw7HmQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDMCA-BSFAh7YwFLi1E4yVoiqQNuplTph-SOmqLRFTZDg33NOE1IQDIxRrFN0cXLv7PeeEbqUPDaRx2OiJWtCg-LEypwaohLqN7WOEqud3rnX551h837ERoUoLC3Z7uWWZP6nXhG7Rc4NljrWBNQhEq-jDQADkSNyDWmrstr12PIoW8CO0PuxQirze4zv5ajCmD-2RfNq095FOwVMxK3le91Da8lsH22vmAfCVe_LcTU9QI-OQGM-sHx5mkO_P56mGOAoBminx9J5MWOYb3PnvI0nJIUiODeOgIqn8v15WmgxsROULbBbkSfKyV0ybCGoknpyiIbt28FNhxRnJxBNQy8jVlIah5bxOGTS-IYzzQOfcxXZJAq4L0MtQ-Vpj1FjVUSVT6WSJgmVVZYZFRyh2gye6RjhfIC1qqkZwA_pR1xrGyYmMDGVoZF1dFWmULwuLTJEZYbsEi4g4SJPuIjrqFFmWRSfSyoCxzYFLERZHV2Xma9u_x3t5H_DL9BmZ9Driu5d_-EUbVF3lm--nNJAtWzxlpwBwMjUeT6fPgGS38j4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGK16h686dJkk90kx6IWXy0eLPRk2EfWSu2DJoL-e2eT1FTRg8eQZQiTSeab3fm-QehU8EiHDo-IEsyHAsWSlTnVRCbU9ZUKE6Ms37nT5dc9_7bP-gss_rzbfX4kWXAarErTOGtOtWkuEN9CqwxLbQcF5CQSLaMV-B27Nq57tFXJ7jqsGGsLOBLqQFbSZn638T01VXjzxxFpnnnam2ijhIy4VbzjLbSUjLfR-oKQIFx1vtRX0x30ZJtp9AcWr88TqP0HoxQDNMUA89RAWF1mDLE3sSrceEhSSIgTbZtR8Ui8v4xKXia25LIZtrvzRFrqS4YNGJVCDXdRr331eHFNyjkKRNHAyYgRlEaBYTwKmNCu5kxxz-VchiYJPe6KQIlAOsphVBsZUulSIYVOAmmkYVp6e6g2hmfaRzhfYIz0FQMoItyQK2WCRHs6oiLQoo7O5i6Mp4VcRlwJI1uHx-DwOHd4HNVRY-7luPx00tiznaeAiyiro_O556vbf1s7-N_yE7T6cNmO72-6d4dojdqxvvnOSgPVstlbcgRYI5PHeTh9AkiRzTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greedy+algorithms+for+stochastic+monotone+k-submodular+maximization+under+full-bandit+feedback&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Sun%2C+Xin&rft.au=Guo%2C+Tiande&rft.au=Han%2C+Congying&rft.au=Zhang%2C+Hongyang&rft.date=2025-01-01&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=49&rft.issue=1&rft_id=info:doi/10.1007%2Fs10878-024-01240-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10878_024_01240_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon