Multi-omic characterization of mechanisms contributing to rapid phenotypic plasticity in the coral Acropora cervicornis under divergent environments

Phenotypic plasticity is defined as a property of individual genotypes to produce different phenotypes when exposed to different environmental conditions. This ability may be expressed at behavioral, biochemical, physiological, and/or developmental levels, exerting direct influence over species'...

Full description

Saved in:
Bibliographic Details
Published inCoral reefs Vol. 43; no. 1; pp. 53 - 66
Main Authors Rodriguez-Casariego, Javier A., Mercado-Molina, Alex, Lemos, Leila Soledade, Quinete, Natalia Soares, Bellantuono, Anthony, Rodriguez-Lanetty, Mauricio, Sabat, Alberto, Eirin-Lopez, Jose M.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phenotypic plasticity is defined as a property of individual genotypes to produce different phenotypes when exposed to different environmental conditions. This ability may be expressed at behavioral, biochemical, physiological, and/or developmental levels, exerting direct influence over species' demographic performance. In reef-building corals, a group critically threatened by global change in the Anthropocene, non-genetic mechanisms (i.e., epigenetic and microbiome variation) have been shown to participate in plastic physiological responses to environmental change. Yet, the precise way in which these mechanisms interact, contribute to such responses, and their adaptive potential is still obscure. The present work aims to fill this gap by using a multi-omics approach to elucidate the contribution and interconnection of the mechanisms modulating phenotypic plasticity in staghorn coral ( Acropora cervicornis ) clones subject to different depth conditions. Results show changes in lipidome, epigenome and transcriptome, but not in symbiotic and microbial communities. In addition, a potential shift toward a more heterotrophic feeding behavior was evidenced in corals at the deeper site. These observations are consistent with a multi-mechanism modulation of rapid acclimation in corals, underscoring the complexity of this process and the importance of a multifactorial approach to inform potential intervention to enhance coral adaptive capacity.
AbstractList Phenotypic plasticity is defined as a property of individual genotypes to produce different phenotypes when exposed to different environmental conditions. This ability may be expressed at behavioral, biochemical, physiological, and/or developmental levels, exerting direct influence over species' demographic performance. In reef-building corals, a group critically threatened by global change in the Anthropocene, non-genetic mechanisms (i.e., epigenetic and microbiome variation) have been shown to participate in plastic physiological responses to environmental change. Yet, the precise way in which these mechanisms interact, contribute to such responses, and their adaptive potential is still obscure. The present work aims to fill this gap by using a multi-omics approach to elucidate the contribution and interconnection of the mechanisms modulating phenotypic plasticity in staghorn coral (Acropora cervicornis) clones subject to different depth conditions. Results show changes in lipidome, epigenome and transcriptome, but not in symbiotic and microbial communities. In addition, a potential shift toward a more heterotrophic feeding behavior was evidenced in corals at the deeper site. These observations are consistent with a multi-mechanism modulation of rapid acclimation in corals, underscoring the complexity of this process and the importance of a multifactorial approach to inform potential intervention to enhance coral adaptive capacity.
Phenotypic plasticity is defined as a property of individual genotypes to produce different phenotypes when exposed to different environmental conditions. This ability may be expressed at behavioral, biochemical, physiological, and/or developmental levels, exerting direct influence over species' demographic performance. In reef-building corals, a group critically threatened by global change in the Anthropocene, non-genetic mechanisms (i.e., epigenetic and microbiome variation) have been shown to participate in plastic physiological responses to environmental change. Yet, the precise way in which these mechanisms interact, contribute to such responses, and their adaptive potential is still obscure. The present work aims to fill this gap by using a multi-omics approach to elucidate the contribution and interconnection of the mechanisms modulating phenotypic plasticity in staghorn coral ( Acropora cervicornis ) clones subject to different depth conditions. Results show changes in lipidome, epigenome and transcriptome, but not in symbiotic and microbial communities. In addition, a potential shift toward a more heterotrophic feeding behavior was evidenced in corals at the deeper site. These observations are consistent with a multi-mechanism modulation of rapid acclimation in corals, underscoring the complexity of this process and the importance of a multifactorial approach to inform potential intervention to enhance coral adaptive capacity.
Author Rodriguez-Casariego, Javier A.
Eirin-Lopez, Jose M.
Rodriguez-Lanetty, Mauricio
Lemos, Leila Soledade
Quinete, Natalia Soares
Bellantuono, Anthony
Mercado-Molina, Alex
Sabat, Alberto
Author_xml – sequence: 1
  givenname: Javier A.
  surname: Rodriguez-Casariego
  fullname: Rodriguez-Casariego, Javier A.
  organization: Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Department of Biology, University of Puerto Rico, Río Piedras
– sequence: 2
  givenname: Alex
  surname: Mercado-Molina
  fullname: Mercado-Molina, Alex
  organization: Sociedad Ambiente Marino
– sequence: 3
  givenname: Leila Soledade
  surname: Lemos
  fullname: Lemos, Leila Soledade
  organization: Department of Chemistry and Biochemistry, Institute of Environment, Florida International University
– sequence: 4
  givenname: Natalia Soares
  surname: Quinete
  fullname: Quinete, Natalia Soares
  organization: Department of Chemistry and Biochemistry, Institute of Environment, Florida International University
– sequence: 5
  givenname: Anthony
  surname: Bellantuono
  fullname: Bellantuono, Anthony
  organization: Department of Biological Sciences, Florida International University
– sequence: 6
  givenname: Mauricio
  surname: Rodriguez-Lanetty
  fullname: Rodriguez-Lanetty, Mauricio
  organization: Department of Biological Sciences, Florida International University
– sequence: 7
  givenname: Alberto
  surname: Sabat
  fullname: Sabat, Alberto
  organization: Department of Biology, University of Puerto Rico, Río Piedras
– sequence: 8
  givenname: Jose M.
  orcidid: 0000-0002-8041-9770
  surname: Eirin-Lopez
  fullname: Eirin-Lopez, Jose M.
  email: jeirinlo@fiu.edu
  organization: Environmental Epigenetics Laboratory, Institute of Environment, Florida International University
BookMark eNp9kMtKBDEQRYMoOD5-wFXAdWsl6XRPliK-QHGj65BO18xEppM2SQ-M3-EHGx3BnYuiiuKeW9Q9Ivs-eCTkjMEFA2gvE4AQ8wq4KFXXTaX2yIzVglegWrlPZtByXtXA54fkKKU3AJBSiRn5fJrW2VVhcJbalYnGZozuw2QXPA0LOmDZepeGRG3wObpuys4vaQ40mtH1dFyhD3k7Fn5cm5SddXlLnad5hQWJZk2vbAxjmajFuHFlV_zo5HuMtHcbjEv0maLfuBj8UOZ0Qg4WZp3w9Lcfk9fbm5fr--rx-e7h-uqxsryFXGHX1L0t30qsu6arG1gw07C2Z9J0TCpmOSAw2TNle4agpJwbNA0vYfVtB-KYnO98xxjeJ0xZv4Up-nJScyWEaIErWVR8pypvpBRxocfoBhO3moH-Tl_v0tclff2TvlYFEjsoFbFfYvyz_of6AvEPjcM
Cites_doi 10.1111/gcb.16192
10.1038/nature06937
10.1007/s00227-019-3616-z
10.1038/ismej.2016.101
10.1371/journal.pone.0123394
10.1111/gcb.14901
10.1007/s00128-020-03078-3
10.1126/sciadv.aat2142
10.1111/mec.14517
10.1007/s002270100674
10.1016/S0022-0981(00)00237-9
10.1371/journal.pgen.1005445
10.1371/journal.pone.0050685
10.1007/BF00302104
10.1186/s12864-022-08474-z
10.32942/OSF.IO/GY5PR
10.1186/1471-2164-14-228
10.3354/meps14192
10.1371/journal.pone.0058652
10.3389/fmars.2020.00225
10.1146/annurev-marine-041911-111611
10.3389/fmars.2019.00792
10.1007/s00227-004-1337-3
10.1007/s00227-005-0114-2
10.1371/journal.pone.0081821
10.1146/10.1038/nature15256
10.1016/j.cell.2008.04.026
10.1038/ncomms1954
10.3389/fmars.2019.00005
10.1007/978-0-387-89366-2_1
10.1111/gcb.13833
10.1038/srep27688
10.1007/s00338-018-01743-y
10.1038/s41559-018-0715-z
10.1073/pnas.1813749115
10.1002/jcp.24054
10.4319/lo.2011.56.6.2402
10.1007/s00338-013-1100-7
10.1146/annurev-marine-010318-095114
10.3389/fmicb.2021.666510
10.1126/sciadv.aar8028
10.1111/1755-0998.12529
10.1101/2022.05.10.491282
10.1111/1755-0998.13004
10.1093/bioinformatics/btr167
10.1038/s41559-016-0014
10.5670/oceanog.2009.95
10.3389/fphys.2017.00490
10.3389/fmars.2016.00112
10.4319/lo.2007.52.2.0716
10.3389/fmars.2020.560424
10.1016/S0022-0981(01)00333-1
10.1098/rspb.2012.1454
10.1038/s41579-019-0223-4
10.1111/mec.14452
10.7717/peerj.14629
10.1038/nclimate1958
10.1007/s00338-021-02094-x
10.1111/mec.15526
10.1007/s00338-019-01865-x
10.1038/s41558-019-0687-2
10.14806/ej.17.1.200
10.1038/s41576-018-0069-z
10.1016/j.tree.2021.06.014
10.1038/nrg2398
10.1111/eva.12408
10.3354/meps288115
10.1038/srep38112
10.1038/s42003-019-0543-y
10.1098/rstb.2018.0178
10.1038/ngeo1830
10.1111/mec.16246
10.1038/nmeth.1923
10.1038/s41586-019-1411-0
10.1186/s12983-020-0350-9
10.1002/ecy.3760
10.1111/mec.15820
10.4319/lo.2011.56.4.1429
10.1093/gbe/evv085
10.24072/pcjournal.79
10.1007/s00338-013-1046-9
ContentType Journal Article
Copyright The Author(s), under exclusive licence to International Coral Reef Society (ICRS) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to International Coral Reef Society (ICRS) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7T7
7TN
7XB
88I
8FD
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H95
HCIFZ
L.G
M2P
M7N
P64
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
DOI 10.1007/s00338-023-02446-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Science Database (ProQuest)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Oceanography
EISSN 1432-0975
EndPage 66
ExternalDocumentID 10_1007_s00338_023_02446_9
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1810981; 1921402; 2112265
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -4W
-5A
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4R4
5GY
5QI
5VS
67M
67Z
6NX
6TJ
78A
7XC
88I
8CJ
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABPPZ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L8X
LAS
LK5
LLZTM
M2P
M4Y
M7R
MA-
MQGED
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VQA
W23
W48
WJK
WK6
WK8
XJT
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z86
Z8S
Z8T
ZCA
ZMTXR
ZOVNA
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7T7
7TN
7XB
8FD
8FK
ABRTQ
C1K
F1W
FR3
H95
L.G
M7N
P64
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c270t-eb64dc4465e4b6b460f1a617d15ab1591c20e015d19cd1e09558aea62003d7b03
IEDL.DBID U2A
ISSN 0722-4028
IngestDate Sat Aug 23 14:44:09 EDT 2025
Tue Jul 01 01:52:46 EDT 2025
Fri Feb 21 02:41:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Lipidome
Transcriptome
Epigenetics
Phenotypic plasticity
Symbiodiniaceae
Staghorn coral
WGBS
Microbiome
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-eb64dc4465e4b6b460f1a617d15ab1591c20e015d19cd1e09558aea62003d7b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8041-9770
PQID 2933370295
PQPubID 54060
PageCount 14
ParticipantIDs proquest_journals_2933370295
crossref_primary_10_1007_s00338_023_02446_9
springer_journals_10_1007_s00338_023_02446_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240200
2024-02-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 2
  year: 2024
  text: 20240200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Journal of the International Coral Reef Society
PublicationTitle Coral reefs
PublicationTitleAbbrev Coral Reefs
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References PayneJLWagnerAThe causes of evolvability and their evolutionNat Rev Genet2018201243810.1038/s41576-018-0069-z
VenkataramanYRDowney-WallAMRiesJWestfieldIWhiteSJRobertsSBLotterhosKEGeneral DNA methylation patterns and environmentally-induced differential methylation in the eastern oyster (Crassostrea Virginica)Front Mar Sci2020722510.3389/fmars.2020.00225
RiveraHEAichelmanHEFiferJEKriefallNGWuitchikDMWuitchikSJSDaviesSWA framework for understanding gene expression plasticity and its influence on stress toleranceMol Ecol2021306138113971:CAS:528:DC%2BB3MXosFKjur8%3D3350329810.1111/mec.15820
CharriezLKathleenLSLemosYCRodríguez-CasariegoJAEirin-LopezJMHauser-DavisRAGardinaliPQuineteNApplication of an improved chloroform-free lipid extraction method to staghorn coral (Acropora Cervicornis) lipidomics assessmentsBull Environ Contam Toxicol202110.1007/s00128-020-03078-3
DaviesSWMarchettiARiesJBCastilloKDThermal and pCO2 stress elicit divergent transcriptomic responses in a resilient coralFront Mar Sci2016311210.3389/fmars.2016.00112
WeizmanELevyOThe role of chromatin dynamics under global warming response in the symbiotic coral model aiptasiaCommun Biol20192August28231396562667775010.1038/s42003-019-0543-y
HackerottSMartellHAEirin-LopezJMCoral environmental memory: causes, mechanisms, and consequences for future reefsTrends Ecol Evol20213611101110233436617010.1016/j.tree.2021.06.014
DonohoeDRBultmanSJMetaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expressionJ Cell Physiol20122279316931771:CAS:528:DC%2BC38Xnt1Knt7c%3D22261928333888210.1002/jcp.24054
RossetSKosterGBrandsmaJHuntANPostleADD’AngeloCLipidome analysis of symbiodiniaceae reveals possible mechanisms of heat stress tolerance in reef coral symbiontsCoral Reefs2019386124112532019CorRe..38.1241R10.1007/s00338-019-01865-x
O’DonnellKELohrKEBartelsEBaumsIBPattersonJTAcropora cervicornis genet performance and symbiont identity throughout the restoration processCoral Reefs2018374110911182018CorRe..37.1109O10.1007/s00338-018-01743-y
Eirin-LopezJMPutnamHMMarine environmental epigeneticsAnn Rev Mar Sci201910.1146/annurev-marine-010318-09511429958066
BellantuonoAJGranados-CifuentesCMillerDJHoegh-GuldbergORodriguez-LanettyMCoral thermal tolerance: tuning gene expression to resist thermal stressPLoS ONE201210.1371/journal.pone.0050685232263553511300
van WoesikRShlesingerTGrottoliAGToonenRJThurberRVWarnerMEHulverAMCoral-bleaching responses to climate change across biological scalesGlob Change Biol202228144229425010.1111/gcb.16192
HerreraMLiewYJVennATambuttéEZoccolaDTambuttéSCuiGArandaMNew insights from transcriptomic data reveal differential effects of CO2 acidification stress on photosynthesis of an endosymbiotic dinoflagellate in hospiteFront Microbiol202112July66651034349734832656310.3389/fmicb.2021.666510
FeelyRADoneySCCooleySROcean acidification: present conditions and future changes in a high-CO2 WorldOceanography2009224364710.5670/oceanog.2009.95
R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org
DoneySCMary RuckelshausJDuffyEBarryJPChanFEnglishCAGalindoHMClimate change impacts on marine ecosystemsAnn Rev Mar Sci2012411372245796710.1146/annurev-marine-041911-111611
PochonXPawlowskiJZaninettiLRowanRHigh genetic diversity and relative specificity among symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferansMar Biol200113961069107810.1007/s002270100674
LewisCNeelyKRodriguez-LanettyMRecurring episodes of thermal stress shift the balance from a dominant host-specialist to a background host-generalist zooxanthella in the threatened pillar coral, Dendrogyra cylindrusFront Mar Sci201910.3389/fmars.2019.00005
SolomonSLGrottoliAGWarnerMELevasSSchoepfVMuñoz-GarciaALipid class composition of annually bleached caribbean coralsMar Biol20191671710.1007/s00227-019-3616-z
LangmeadBSalzbergSLFast gapped-read alignment with bowtie 2Nat Methods2012943573591:CAS:528:DC%2BC38Xjt1Oqt7c%3D22388286332238110.1038/nmeth.1923
AnthonyKRNConnollySRHoegh-GuldbergOBleaching, energetics, and coral mortality risk: effects of temperature, light, and sediment regimeLimnol Oceanogr20075227167262007LimOc..52..716A10.4319/lo.2007.52.2.0716
Bonamour S, Chevin L-M, Charmantier A, Teplitsky C (2019) Phenotypic plasticity in response to climate change: the importance of cue variation. Philos Trans R Soc Lond Ser B Biol Sci 374(1768):20180178
CavalliGHeardEAdvances in epigenetics link genetics to the environment and diseaseNature201957177664894992019Natur.571..489C1:CAS:528:DC%2BC1MXhsVeqs7rO3134130210.1038/s41586-019-1411-0
Traylor-KnowlesNRoseNHPalumbiSRThe cell specificity of gene expression in the response to heat stress in coralsJ Exp Biol2017220Pt 101837184528254881
Guschina IA, Harwood JL (2009) Algal lipids and effect of the environment on their biochemistry. In: Kainz M, Brett MT, Arts MT (eds) Lipids in aquatic ecosystems, 1–24. Springer, New York
LöfgrenLForsbergG-BStåhlmanMThe BUME method: a new rapid and simple chloroform-free method for total lipid extraction of animal tissueSci Rep20166June276882016NatSR...627688L27282822490132410.1038/srep27688
DixonGMatzMChanges in gene body methylation do not correlate with changes in gene expression in anthozoa or hexapodaBMC Genomics20222312341:CAS:528:DC%2BB38XpsVyjsbc%3D35337260895712110.1186/s12864-022-08474-z
EdmundsPJZooplanktivory ameliorates the effects of ocean acidification on the reef coralPoritessppLimnol Oceanogr2011566240224102011LimOc..56.2402E1:CAS:528:DC%2BC3MXhs1yntLrM10.4319/lo.2011.56.6.2402
López-MauryLMargueratSBählerJTuning gene expression to changing environments: from rapid responses to evolutionary adaptationNat Rev Genet200810.1038/nrg239818591982
SinghTSakaiKIshida-CastañedaJIguchiAShort-term improvement of heat tolerance in naturally growing acropora corals in okinawaPeerJ202311Januarye1462936627918982661310.7717/peerj.14629
ShiXNgD-KZhangCComaiLYeWJeffrey ChenZCis- and trans-regulatory divergence between progenitor species determines gene-expression novelty in arabidopsis allopolyploidsNat Commun20123July9502012NatCo...3..950S2280555710.1038/ncomms1954
Vidal-DupiolJZoccolaDTambuttéEGrunauCCosseauCSmithKMFreitagMDheillyNMAllemandDTambuttéSGenes related to ion-transport and energy production are upregulated in response to CO2-driven pH decrease in corals: new insights from transcriptome analysisPLoS ONE201383e586522013PLoSO...858652V1:CAS:528:DC%2BC3sXlvVOqu7w%3D23544045360976110.1371/journal.pone.0058652
DimondJLRobertsSBConvergence of DNA methylation profiles of the reef coral porites astreoides in a novel environmentFront Mar Sci2020679210.3389/fmars.2019.00792
AinsworthTDHurdCLGatesRDBoydPWHow do we overcome abrupt degradation of marine ecosystems and meet the challenge of heat waves and climate extremes?Glob Change Biol20202623433542020GCBio..26..343A10.1111/gcb.14901
Ferrier-PagèsCPeiranoAAbbateMCocitoSNegriARottierCRieraPRodolfo-MetalpaRReynaudSSummer autotrophy and winter heterotrophy in the temperate symbiotic coralcladocora caespitosaLimnol Oceanogr2011564142914382011LimOc..56.1429F10.4319/lo.2011.56.4.1429
TremblayPGoriAMaguerJFHoogenboomMFerrier-PagèsCHeterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stressSci Rep201610.1038/srep38112279221155138838
YamashiroHOkuHOnagaKIwasakiHTakaraKCoral tumors store reduced level of lipidsJ Exp Mar Biol Ecol200126521711791:CAS:528:DC%2BD3MXos1Orsb8%3D10.1016/S0022-0981(01)00333-1
RobinsonJPWWilsonSKRobinsonJGerryCLucasJAssanCGovindenRJenningsSGrahamNAJProductive instability of coral reef fisheries after climate-driven regime shiftsNat Ecol Evol2019321831903042074310.1038/s41559-018-0715-z
PutnamHMStatMPochonXGatesRDEndosymbiotic flexibility associates with environmental sensitivity in scleractinian coralsProc Biol Sci R Soc201227917464352436110.1098/rspb.2012.1454
Andrews S, et al (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham Institute, Cambridge, UK
Ghalambor CK, Hoke KL, Ruell EW, Fischer EK, Reznick DN, Hughes KA (2015) Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525(7569):372–375. https://doi.org/10.1146/10.1038/nature15256
GrottoliAGRodriguesLJJuarezCLipids and stable carbon isotopes in two species of hawaiian corals, porites compressa and montipora verrucosa, following a bleaching eventMar Biol200414536216311:CAS:528:DC%2BD2cXnt1Glur0%3D10.1007/s00227-004-1337-3
HumeBCCSmithEGZieglerMWarringtonHJMBurtJALaJeunesseTCWiedenmannJVoolstraCRSymPortal: a novel analytical framework and platform for coral algal symbiont next-ge and perhaps more importantly, on host regulated mechanisms to rapidly acclimatneration sequencing ITS2 profilingMol Ecol Resour2019194106310801:CAS:528:DC%2BC1MXhtFyks7rP30740899661810910.1111/1755-0998.13004
BayRAPalumbiSRRapid acclimation ability mediated by transcriptome changes in reef-building coralsGenome Biol Evol201576160216121:CAS:528:DC%2BC2MXhs1WhsrvK25979751449407310.1093/gbe/evv085
Rodriguez-CasariegoJACunningRBakerACEirin-LopezJMSymbiont shuffling induces differential DNA methylation responses to thermal stress in the coral montastraea cavernosaMol Ecol20223125886021:CAS:528:DC%2BB38XkvValsrc%3D3468936310.1111/mec.16246
BaumsIBHughesCRHellbergMEMendelian microsatellite loci for the caribbean coral acropora palmataMar Ecol Prog Ser20052881151272005MEPS..288..115B1:CAS:528:DC%2BD2MXlsFahs7Y%3D10.3354/meps288115
LibermanRShlesingerTLoyaYBenayahuYSoft coral reproductive phenology along a depth gradient: can ‘going deeper’ provide a viable refuge?Ecology20221039e37603558292710.1002/ecy.3760
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.J 17(1):10–12
Li Y, Liew YJ, Cui G, Cziesielski MJ, Zahran N, Michell CT, Voolstra CR, Aranda M (2018) DNA methylation regulates transcriptional homeostasis of algal endosymbiosis i
X Pochon (2446_CR57) 2001; 139
JPW Robinson (2446_CR66) 2019; 3
I Arai (2446_CR7) 1993; 12
JM Eirin-Lopez (2446_CR25) 2019
JA Rodríguez-Casariego (2446_CR67) 2020; 7
SW Davies (2446_CR18) 2016; 3
KRN Anthony (2446_CR6) 2007; 52
IB Baums (2446_CR9) 2005; 288
C Rosenzweig (2446_CR69) 2008; 453
ME Strader (2446_CR75) 2020; 17
HM Putnam (2446_CR60) 2016
F Krueger (2446_CR40) 2011; 27
D Campo (2446_CR14) 2017; 11
2446_CR47
2446_CR88
G Dixon (2446_CR20) 2022; 23
2446_CR45
BCC Hume (2446_CR35) 2019; 19
L Charriez (2446_CR16) 2021
P Tremblay (2446_CR79) 2014; 33
S Baumgarten (2446_CR8) 2018; 27
R Cunning (2446_CR17) 2020
YJ Liew (2446_CR46) 2020; 10
RA Bay (2446_CR10) 2015; 7
G Dixon (2446_CR21) 2018; 115
C Ferrier-Pagès (2446_CR27) 2011; 56
B Langmead (2446_CR41) 2012; 9
JE Parkinson (2446_CR55) 2018; 27
C Rivera-Casas (2446_CR64) 2017; 8
2446_CR13
P Tremblay (2446_CR80) 2016
2446_CR4
2446_CR12
TD Ainsworth (2446_CR3) 2020; 26
YR Venkataraman (2446_CR83) 2020; 7
2446_CR2
2446_CR1
R Liberman (2446_CR43) 2022; 103
2446_CR51
2446_CR52
S Rosset (2446_CR70) 2019; 38
H Yanagida (2446_CR87) 2015; 11
RA Feely (2446_CR26) 2009; 22
S Libro (2446_CR44) 2013; 8
JL Payne (2446_CR56) 2018; 20
PJ Edmunds (2446_CR24) 2011; 56
KE O’Donnell (2446_CR53) 2018; 37
R van Woesik (2446_CR82) 2022; 28
HM Putnam (2446_CR59) 2012; 279
KR Anthony (2446_CR5) 2000; 252
CD Kenkel (2446_CR39) 2018; 24
N Traylor-Knowles (2446_CR78) 2017; 220
T Singh (2446_CR73) 2023; 11
C Lewis (2446_CR42) 2019
BK Lohman (2446_CR49) 2016; 16
G Cavalli (2446_CR15) 2019; 571
SC Doney (2446_CR22) 2012; 4
DR Donohoe (2446_CR23) 2012; 227
EMU Jung (2446_CR37) 2021; 40
H Yamashiro (2446_CR86) 2001; 265
X Shi (2446_CR72) 2012; 3
SL Solomon (2446_CR74) 2019; 167
MO Indergard (2446_CR36) 2022; 701
HE Rivera (2446_CR65) 2021; 30
E Weizman (2446_CR85) 2019; 2
2446_CR61
S Hackerott (2446_CR32) 2021; 36
JA Rodriguez-Casariego (2446_CR68) 2022; 31
P Regnier (2446_CR63) 2013; 6
J Vidal-Dupiol (2446_CR84) 2013; 8
L López-Maury (2446_CR50) 2008
JL Dimond (2446_CR19) 2020; 6
AG Grottoli (2446_CR29) 2004; 145
AJ Bellantuono (2446_CR11) 2012
CD Kenkel (2446_CR38) 2016; 1
C Granados-Cifuentes (2446_CR28) 2013; 14
L Löfgren (2446_CR48) 2016; 6
DJ Thornhill (2446_CR76) 2006; 148
M Herrera (2446_CR33) 2021; 12
2446_CR31
ES Poloczanska (2446_CR58) 2013; 3
MJH van Oppen (2446_CR81) 2019; 17
EK Towle (2446_CR77) 2015
2446_CR71
I Grummt (2446_CR30) 2008; 133
O Hoegh-Guldberg (2446_CR34) 2017; 4
D Ogawa (2446_CR54) 2013; 32
References_xml – reference: CunningRBakerACThermotolerant coral symbionts modulate heat stress-responsive genes in their hostsMol Ecol202010.1111/mec.1552632585772
– reference: DixonGLiaoYiBayLKMatzMVRole of gene body methylation in acclimatization and adaptation in a basal metazoanProc Natl Acad Sci USA20181155213342133462018PNAS..11513342D1:CAS:528:DC%2BC1cXisF2rsrnM30530646631085210.1073/pnas.1813749115
– reference: DaviesSWMarchettiARiesJBCastilloKDThermal and pCO2 stress elicit divergent transcriptomic responses in a resilient coralFront Mar Sci2016311210.3389/fmars.2016.00112
– reference: Nawaz K, Cziesielski MJ, Mariappan KG, Cui G, Aranda M (2022) Histone modifications and DNA methylation act cooperatively in regulating symbiosis genes in the sea anemone Aiptasia. bioRxiv. https://doi.org/10.1101/2022.05.10.491282
– reference: Rodríguez-CasariegoJAMercado-MolinaAEGarcia-SoutoDOrtiz-RiveraIMLopesCBaumsIBSabatAMEirin-LopezJMGenome-wide DNA methylation analysis reveals a conserved epigenetic response to seasonal environmental variation in the staghorn coral acropora cervicornisFront Mar Sci2020782210.3389/fmars.2020.560424
– reference: Ferrier-PagèsCPeiranoAAbbateMCocitoSNegriARottierCRieraPRodolfo-MetalpaRReynaudSSummer autotrophy and winter heterotrophy in the temperate symbiotic coralcladocora caespitosaLimnol Oceanogr2011564142914382011LimOc..56.1429F10.4319/lo.2011.56.4.1429
– reference: Guschina IA, Harwood JL (2009) Algal lipids and effect of the environment on their biochemistry. In: Kainz M, Brett MT, Arts MT (eds) Lipids in aquatic ecosystems, 1–24. Springer, New York
– reference: Li Y, Liew YJ, Cui G, Cziesielski MJ, Zahran N, Michell CT, Voolstra CR, Aranda M (2018) DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia. Sci Adv 4(8):eaat2142
– reference: LibermanRShlesingerTLoyaYBenayahuYSoft coral reproductive phenology along a depth gradient: can ‘going deeper’ provide a viable refuge?Ecology20221039e37603558292710.1002/ecy.3760
– reference: RosenzweigCKarolyDVicarelliMNeofotisPQigangWuCasassaGMenzelAAttributing physical and biological impacts to anthropogenic climate changeNature200845371933533572008Natur.453..353R1:CAS:528:DC%2BD1cXlvV2qtLc%3D1848081710.1038/nature06937
– reference: OgawaDBobeszkoTAinsworthTLeggatWThe combined effects of temperature and CO2 lead to altered gene expression in acropora asperaCoral Reefs20133248959072013CorRe..32..895O10.1007/s00338-013-1046-9
– reference: HumeBCCSmithEGZieglerMWarringtonHJMBurtJALaJeunesseTCWiedenmannJVoolstraCRSymPortal: a novel analytical framework and platform for coral algal symbiont next-ge and perhaps more importantly, on host regulated mechanisms to rapidly acclimatneration sequencing ITS2 profilingMol Ecol Resour2019194106310801:CAS:528:DC%2BC1MXhtFyks7rP30740899661810910.1111/1755-0998.13004
– reference: LangmeadBSalzbergSLFast gapped-read alignment with bowtie 2Nat Methods2012943573591:CAS:528:DC%2BC38Xjt1Oqt7c%3D22388286332238110.1038/nmeth.1923
– reference: HerreraMLiewYJVennATambuttéEZoccolaDTambuttéSCuiGArandaMNew insights from transcriptomic data reveal differential effects of CO2 acidification stress on photosynthesis of an endosymbiotic dinoflagellate in hospiteFront Microbiol202112July66651034349734832656310.3389/fmicb.2021.666510
– reference: Rivera-CasasCGonzalez-RomeroRGarduñoRACheemaMSAusioJEirin-LopezJMMolecular and biochemical methods useful for the epigenetic characterization of chromatin-associated proteins in bivalve molluscsFront Physiol20178August49028848447555067310.3389/fphys.2017.00490
– reference: TremblayPGroverRMaguerJFHoogenboomMFerrier-PagèsCCarbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral stylophora pistillataCoral Reefs20143311132014CorRe..33....1T10.1007/s00338-013-1100-7
– reference: BellantuonoAJGranados-CifuentesCMillerDJHoegh-GuldbergORodriguez-LanettyMCoral thermal tolerance: tuning gene expression to resist thermal stressPLoS ONE201210.1371/journal.pone.0050685232263553511300
– reference: EdmundsPJZooplanktivory ameliorates the effects of ocean acidification on the reef coralPoritessppLimnol Oceanogr2011566240224102011LimOc..56.2402E1:CAS:528:DC%2BC3MXhs1yntLrM10.4319/lo.2011.56.6.2402
– reference: AinsworthTDHurdCLGatesRDBoydPWHow do we overcome abrupt degradation of marine ecosystems and meet the challenge of heat waves and climate extremes?Glob Change Biol20202623433542020GCBio..26..343A10.1111/gcb.14901
– reference: Ghalambor CK, Hoke KL, Ruell EW, Fischer EK, Reznick DN, Hughes KA (2015) Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525(7569):372–375. https://doi.org/10.1146/10.1038/nature15256
– reference: Eirin-LopezJMPutnamHMMarine environmental epigeneticsAnn Rev Mar Sci201910.1146/annurev-marine-010318-09511429958066
– reference: KenkelCDMoyaAStrahlJHumphreyCBayLKFunctional genomic analysis of corals from natural CO2-seeps reveals core molecular responses involved in acclimatization to ocean acidificationGlob Change Biol20182411581712018GCBio..24..158K10.1111/gcb.13833
– reference: SinghTSakaiKIshida-CastañedaJIguchiAShort-term improvement of heat tolerance in naturally growing acropora corals in okinawaPeerJ202311Januarye1462936627918982661310.7717/peerj.14629
– reference: PutnamHMDavidsonJMGatesRDOcean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible coralsEvol Appl201610.1111/eva.12408276955245039329
– reference: RStudio Team (2020) RStudio: integrated development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/.
– reference: Adrian-Kalchhauser I, Sultan SE, Shama LN, Spence-Jones H, Tiso S, Valsecchi CI, Weissing FJ (2020) Understanding non-genetic inheritance: insights from molecular-evolutionary crosstalk. Trends Ecol Evol. https://www.sciencedirect.com/science/article/pii/S0169534720302263.
– reference: IndergardMOBellantuonoARodriguez-LanettyMHengFGilgMRAcclimation to elevated temperatures in acropora cervicornis: effects of host genotype and symbiont shufflingMar Ecol Prog Ser202270141652022MEPS..701...41I1:CAS:528:DC%2BB3sXnt1ylsw%3D%3D10.3354/meps14192
– reference: Andrews S, et al (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham Institute, Cambridge, UK
– reference: JungEMUStatMThomasLKoziolASchoepfVCoral host physiology and symbiont dynamics associated with differential recovery from mass bleaching in an extreme, macro-tidal reef environment in Northwest AustraliaCoral Reefs202140389390510.1007/s00338-021-02094-x
– reference: DonohoeDRBultmanSJMetaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expressionJ Cell Physiol20122279316931771:CAS:528:DC%2BC38Xnt1Knt7c%3D22261928333888210.1002/jcp.24054
– reference: Traylor-KnowlesNRoseNHPalumbiSRThe cell specificity of gene expression in the response to heat stress in coralsJ Exp Biol2017220Pt 101837184528254881
– reference: AnthonyKRFabriciusKEShifting roles of heterotrophy and autotrophy in coral energetics under varying turbidityJ Exp Mar Biol Ecol200025222212531:STN:280:DC%2BC2sbivVGmug%3D%3D1096733510.1016/S0022-0981(00)00237-9
– reference: CharriezLKathleenLSLemosYCRodríguez-CasariegoJAEirin-LopezJMHauser-DavisRAGardinaliPQuineteNApplication of an improved chloroform-free lipid extraction method to staghorn coral (Acropora Cervicornis) lipidomics assessmentsBull Environ Contam Toxicol202110.1007/s00128-020-03078-3
– reference: PoloczanskaESBrownCJSydemanWJKiesslingWSchoemanDSMoorePJBranderKGlobal imprint of climate change on marine lifeNat Clim Chang20133109199252013NatCC...3..919P10.1038/nclimate1958
– reference: YanagidaHGispanAKadouriNRozenSSharonMBarkaiNTawfikDSThe evolutionary potential of phenotypic mutationsPLoS Genet2015118e100544526244544452657210.1371/journal.pgen.1005445
– reference: Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.J 17(1):10–12
– reference: Brener-Raffalli K, Vidal-Dupiol J, Adjeroud M, Olivier R, Romans P, Bonhomme F, Pratlong M, et al (2022) Gene expression plasticity and frontloading promote thermotolerance in pocillopora corals. Peer Community J 2(e13). https://doi.org/10.24072/pcjournal.79
– reference: Rodriguez-CasariegoJACunningRBakerACEirin-LopezJMSymbiont shuffling induces differential DNA methylation responses to thermal stress in the coral montastraea cavernosaMol Ecol20223125886021:CAS:528:DC%2BB38XkvValsrc%3D3468936310.1111/mec.16246
– reference: van OppenMJHBlackallLLCoral microbiome dynamics, functions and design in a changing worldNat Rev Microbiol20191795575673126324610.1038/s41579-019-0223-4
– reference: R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
– reference: RiveraHEAichelmanHEFiferJEKriefallNGWuitchikDMWuitchikSJSDaviesSWA framework for understanding gene expression plasticity and its influence on stress toleranceMol Ecol2021306138113971:CAS:528:DC%2BB3MXosFKjur8%3D3350329810.1111/mec.15820
– reference: KruegerFAndrewsSRBismark: a flexible aligner and methylation caller for bisulfite-seq applicationsBioinformatics20112711157115721:CAS:528:DC%2BC3MXmvVWqurw%3D21493656310222110.1093/bioinformatics/btr167
– reference: RobinsonJPWWilsonSKRobinsonJGerryCLucasJAssanCGovindenRJenningsSGrahamNAJProductive instability of coral reef fisheries after climate-driven regime shiftsNat Ecol Evol2019321831903042074310.1038/s41559-018-0715-z
– reference: LiewYJHowellsEJWangXMichellCTBurtJAIdaghdourYArandaMIntergenerational epigenetic inheritance in reef-building coralsNat Clim Change20201032542592020NatCC..10..254L10.1038/s41558-019-0687-2
– reference: BaumsIBHughesCRHellbergMEMendelian microsatellite loci for the caribbean coral acropora palmataMar Ecol Prog Ser20052881151272005MEPS..288..115B1:CAS:528:DC%2BD2MXlsFahs7Y%3D10.3354/meps288115
– reference: López-MauryLMargueratSBählerJTuning gene expression to changing environments: from rapid responses to evolutionary adaptationNat Rev Genet200810.1038/nrg239818591982
– reference: RegnierPFriedlingsteinPCiaisPMackenzieFTGruberNJanssensIALaruelleGGAnthropogenic perturbation of the carbon fluxes from land to oceanNat Geosci2013685976072013NatGe...6..597R1:CAS:528:DC%2BC3sXptVagsr0%3D10.1038/ngeo1830
– reference: CampoDJavierJ-FŠlapetaJLarkumAKeelingPJThe ‘other’ coral symbiont: ostreobium diversity and distributionISME J20171112962992742002910.1038/ismej.2016.101
– reference: PayneJLWagnerAThe causes of evolvability and their evolutionNat Rev Genet2018201243810.1038/s41576-018-0069-z
– reference: PutnamHMStatMPochonXGatesRDEndosymbiotic flexibility associates with environmental sensitivity in scleractinian coralsProc Biol Sci R Soc201227917464352436110.1098/rspb.2012.1454
– reference: DixonGMatzMChanges in gene body methylation do not correlate with changes in gene expression in anthozoa or hexapodaBMC Genomics20222312341:CAS:528:DC%2BB38XpsVyjsbc%3D35337260895712110.1186/s12864-022-08474-z
– reference: HackerottSMartellHAEirin-LopezJMCoral environmental memory: causes, mechanisms, and consequences for future reefsTrends Ecol Evol20213611101110233436617010.1016/j.tree.2021.06.014
– reference: VenkataramanYRDowney-WallAMRiesJWestfieldIWhiteSJRobertsSBLotterhosKEGeneral DNA methylation patterns and environmentally-induced differential methylation in the eastern oyster (Crassostrea Virginica)Front Mar Sci2020722510.3389/fmars.2020.00225
– reference: LibroSKaluziakSTVollmerSVRNA-seq profiles of immune related genes in the staghorn coral acropora cervicornis infected with white band diseasePLoS ONE2013811e818212013PLoSO...881821L24278460383674910.1371/journal.pone.0081821
– reference: AraiIKatoMHeywardAIkedaYIizukaTMaruyamaTLipid composition of positively buoyant eggs of reef building coralsCoral Reefs199312271751993CorRe..12...71A10.1007/BF00302104
– reference: Hoegh-GuldbergOPoloczanskaESSkirvingWDoveSCoral reef ecosystems under climate change and ocean acidificationFront Mar Sci20174May321
– reference: LöfgrenLForsbergG-BStåhlmanMThe BUME method: a new rapid and simple chloroform-free method for total lipid extraction of animal tissueSci Rep20166June276882016NatSR...627688L27282822490132410.1038/srep27688
– reference: TremblayPGoriAMaguerJFHoogenboomMFerrier-PagèsCHeterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stressSci Rep201610.1038/srep38112279221155138838
– reference: BaumgartenSCziesielskiMJThomasLMichellCTEsherickLYPringleJRArandaMVoolstraCREvidence for Mi RNA-mediated modulation of the host transcriptome in cnidarian-dinoflagellate symbiosisMol Ecol20182724034181:CAS:528:DC%2BC1cXlt1KktLk%3D2921874910.1111/mec.14452
– reference: ShiXNgD-KZhangCComaiLYeWJeffrey ChenZCis- and trans-regulatory divergence between progenitor species determines gene-expression novelty in arabidopsis allopolyploidsNat Commun20123July9502012NatCo...3..950S2280555710.1038/ncomms1954
– reference: DoneySCMary RuckelshausJDuffyEBarryJPChanFEnglishCAGalindoHMClimate change impacts on marine ecosystemsAnn Rev Mar Sci2012411372245796710.1146/annurev-marine-041911-111611
– reference: ParkinsonJEBartelsEDevlin-DuranteMKLusticCNedimyerKSchopmeyerSLirmanDLaJeunesseTCBaumsIBExtensive transcriptional variation poses a challenge to thermal stress biomarker development for endangered coralsMol Ecol2018275110311191:CAS:528:DC%2BC1cXnt1agurc%3D2941249010.1111/mec.14517
– reference: Bonamour S, Chevin L-M, Charmantier A, Teplitsky C (2019) Phenotypic plasticity in response to climate change: the importance of cue variation. Philos Trans R Soc Lond Ser B Biol Sci 374(1768):20180178
– reference: O’DonnellKELohrKEBartelsEBaumsIBPattersonJTAcropora cervicornis genet performance and symbiont identity throughout the restoration processCoral Reefs2018374110911182018CorRe..37.1109O10.1007/s00338-018-01743-y
– reference: RossetSKosterGBrandsmaJHuntANPostleADD’AngeloCLipidome analysis of symbiodiniaceae reveals possible mechanisms of heat stress tolerance in reef coral symbiontsCoral Reefs2019386124112532019CorRe..38.1241R10.1007/s00338-019-01865-x
– reference: KenkelCDMatzMVGene expression plasticity as a mechanism of coral adaptation to a variable environmentNat Ecol Evol201611142881256810.1038/s41559-016-0014
– reference: SolomonSLGrottoliAGWarnerMELevasSSchoepfVMuñoz-GarciaALipid class composition of annually bleached caribbean coralsMar Biol20191671710.1007/s00227-019-3616-z
– reference: StraderMEWongJMHofmannGEOcean acidification promotes broad transcriptomic responses in marine metazoans: a literature surveyFront Zool202017February732095155702711210.1186/s12983-020-0350-9
– reference: Vidal-DupiolJZoccolaDTambuttéEGrunauCCosseauCSmithKMFreitagMDheillyNMAllemandDTambuttéSGenes related to ion-transport and energy production are upregulated in response to CO2-driven pH decrease in corals: new insights from transcriptome analysisPLoS ONE201383e586522013PLoSO...858652V1:CAS:528:DC%2BC3sXlvVOqu7w%3D23544045360976110.1371/journal.pone.0058652
– reference: WeizmanELevyOThe role of chromatin dynamics under global warming response in the symbiotic coral model aiptasiaCommun Biol20192August28231396562667775010.1038/s42003-019-0543-y
– reference: FeelyRADoneySCCooleySROcean acidification: present conditions and future changes in a high-CO2 WorldOceanography2009224364710.5670/oceanog.2009.95
– reference: AnthonyKRNConnollySRHoegh-GuldbergOBleaching, energetics, and coral mortality risk: effects of temperature, light, and sediment regimeLimnol Oceanogr20075227167262007LimOc..52..716A10.4319/lo.2007.52.2.0716
– reference: DimondJLRobertsSBConvergence of DNA methylation profiles of the reef coral porites astreoides in a novel environmentFront Mar Sci2020679210.3389/fmars.2019.00792
– reference: YamashiroHOkuHOnagaKIwasakiHTakaraKCoral tumors store reduced level of lipidsJ Exp Mar Biol Ecol200126521711791:CAS:528:DC%2BD3MXos1Orsb8%3D10.1016/S0022-0981(01)00333-1
– reference: The Royal Society, and National Academy of Sciences (2014) Climate change: evidence and causes. National Academies Press
– reference: LohmanBKWeberJNBolnickDIEvaluation of TagSeq, a reliable low-cost alternative for RNA seqMol Ecol Resour2016166131513211:CAS:528:DC%2BC28Xhs1Krs7bN2703750110.1111/1755-0998.12529
– reference: LewisCNeelyKRodriguez-LanettyMRecurring episodes of thermal stress shift the balance from a dominant host-specialist to a background host-generalist zooxanthella in the threatened pillar coral, Dendrogyra cylindrusFront Mar Sci201910.3389/fmars.2019.00005
– reference: van WoesikRShlesingerTGrottoliAGToonenRJThurberRVWarnerMEHulverAMCoral-bleaching responses to climate change across biological scalesGlob Change Biol202228144229425010.1111/gcb.16192
– reference: GrottoliAGRodriguesLJJuarezCLipids and stable carbon isotopes in two species of hawaiian corals, porites compressa and montipora verrucosa, following a bleaching eventMar Biol200414536216311:CAS:528:DC%2BD2cXnt1Glur0%3D10.1007/s00227-004-1337-3
– reference: GrummtILadurnerAGA metabolic throttle regulates the epigenetic state of rDNACell200813345775801:CAS:528:DC%2BD1cXmsVOrur8%3D1848586610.1016/j.cell.2008.04.026
– reference: PochonXPawlowskiJZaninettiLRowanRHigh genetic diversity and relative specificity among symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferansMar Biol200113961069107810.1007/s002270100674
– reference: Granados-CifuentesCBellantuonoAJRidgwayTHoegh-GuldbergORodriguez-LanettyMHigh natural gene expression variation in the reef-building coral acropora millepora: potential for acclimative and adaptive plasticityBMC Genomics201314April2281:CAS:528:DC%2BC3sXot1yhsLw%3D23565725363005710.1186/1471-2164-14-228
– reference: Liew YJ, Zoccola D, Li Y, Tambutté E, Venn AA, Michell CT, Cui G, et al (2018) Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Sci Adv 4(6):eaar8028
– reference: ThornhillDJLaJeunesseTCKempDWFittWKSchmidtGWMulti-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversionMar Biol2006148471172210.1007/s00227-005-0114-2
– reference: BayRAPalumbiSRRapid acclimation ability mediated by transcriptome changes in reef-building coralsGenome Biol Evol201576160216121:CAS:528:DC%2BC2MXhs1WhsrvK25979751449407310.1093/gbe/evv085
– reference: CavalliGHeardEAdvances in epigenetics link genetics to the environment and diseaseNature201957177664894992019Natur.571..489C1:CAS:528:DC%2BC1MXhsVeqs7rO3134130210.1038/s41586-019-1411-0
– reference: TowleEKEnochsICLangdonCThreatened caribbean coral is able to mitigate the adverse effects of ocean acidification on calcification by increasing feeding ratePLoS ONE201510.1371/journal.pone.0123394264016594581856
– volume: 28
  start-page: 4229
  issue: 14
  year: 2022
  ident: 2446_CR82
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.16192
– volume: 453
  start-page: 353
  issue: 7193
  year: 2008
  ident: 2446_CR69
  publication-title: Nature
  doi: 10.1038/nature06937
– ident: 2446_CR1
– volume: 167
  start-page: 7
  issue: 1
  year: 2019
  ident: 2446_CR74
  publication-title: Mar Biol
  doi: 10.1007/s00227-019-3616-z
– ident: 2446_CR61
– volume: 11
  start-page: 296
  issue: 1
  year: 2017
  ident: 2446_CR14
  publication-title: ISME J
  doi: 10.1038/ismej.2016.101
– year: 2015
  ident: 2446_CR77
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0123394
– volume: 26
  start-page: 343
  issue: 2
  year: 2020
  ident: 2446_CR3
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.14901
– year: 2021
  ident: 2446_CR16
  publication-title: Bull Environ Contam Toxicol
  doi: 10.1007/s00128-020-03078-3
– ident: 2446_CR47
  doi: 10.1126/sciadv.aat2142
– volume: 220
  start-page: 1837
  issue: Pt 10
  year: 2017
  ident: 2446_CR78
  publication-title: J Exp Biol
– volume: 27
  start-page: 1103
  issue: 5
  year: 2018
  ident: 2446_CR55
  publication-title: Mol Ecol
  doi: 10.1111/mec.14517
– volume: 139
  start-page: 1069
  issue: 6
  year: 2001
  ident: 2446_CR57
  publication-title: Mar Biol
  doi: 10.1007/s002270100674
– volume: 252
  start-page: 221
  issue: 2
  year: 2000
  ident: 2446_CR5
  publication-title: J Exp Mar Biol Ecol
  doi: 10.1016/S0022-0981(00)00237-9
– volume: 11
  start-page: e1005445
  issue: 8
  year: 2015
  ident: 2446_CR87
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1005445
– year: 2012
  ident: 2446_CR11
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0050685
– volume: 4
  start-page: 321
  issue: May
  year: 2017
  ident: 2446_CR34
  publication-title: Front Mar Sci
– volume: 12
  start-page: 71
  issue: 2
  year: 1993
  ident: 2446_CR7
  publication-title: Coral Reefs
  doi: 10.1007/BF00302104
– volume: 23
  start-page: 234
  issue: 1
  year: 2022
  ident: 2446_CR20
  publication-title: BMC Genomics
  doi: 10.1186/s12864-022-08474-z
– ident: 2446_CR2
  doi: 10.32942/OSF.IO/GY5PR
– volume: 14
  start-page: 228
  issue: April
  year: 2013
  ident: 2446_CR28
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-228
– volume: 701
  start-page: 41
  year: 2022
  ident: 2446_CR36
  publication-title: Mar Ecol Prog Ser
  doi: 10.3354/meps14192
– volume: 8
  start-page: e58652
  issue: 3
  year: 2013
  ident: 2446_CR84
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0058652
– volume: 7
  start-page: 225
  year: 2020
  ident: 2446_CR83
  publication-title: Front Mar Sci
  doi: 10.3389/fmars.2020.00225
– volume: 4
  start-page: 11
  year: 2012
  ident: 2446_CR22
  publication-title: Ann Rev Mar Sci
  doi: 10.1146/annurev-marine-041911-111611
– volume: 6
  start-page: 792
  year: 2020
  ident: 2446_CR19
  publication-title: Front Mar Sci
  doi: 10.3389/fmars.2019.00792
– volume: 145
  start-page: 621
  issue: 3
  year: 2004
  ident: 2446_CR29
  publication-title: Mar Biol
  doi: 10.1007/s00227-004-1337-3
– volume: 148
  start-page: 711
  issue: 4
  year: 2006
  ident: 2446_CR76
  publication-title: Mar Biol
  doi: 10.1007/s00227-005-0114-2
– volume: 8
  start-page: e81821
  issue: 11
  year: 2013
  ident: 2446_CR44
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0081821
– ident: 2446_CR88
  doi: 10.1146/10.1038/nature15256
– volume: 133
  start-page: 577
  issue: 4
  year: 2008
  ident: 2446_CR30
  publication-title: Cell
  doi: 10.1016/j.cell.2008.04.026
– ident: 2446_CR71
– volume: 3
  start-page: 950
  issue: July
  year: 2012
  ident: 2446_CR72
  publication-title: Nat Commun
  doi: 10.1038/ncomms1954
– year: 2019
  ident: 2446_CR42
  publication-title: Front Mar Sci
  doi: 10.3389/fmars.2019.00005
– ident: 2446_CR31
  doi: 10.1007/978-0-387-89366-2_1
– volume: 24
  start-page: 158
  issue: 1
  year: 2018
  ident: 2446_CR39
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.13833
– volume: 6
  start-page: 27688
  issue: June
  year: 2016
  ident: 2446_CR48
  publication-title: Sci Rep
  doi: 10.1038/srep27688
– volume: 37
  start-page: 1109
  issue: 4
  year: 2018
  ident: 2446_CR53
  publication-title: Coral Reefs
  doi: 10.1007/s00338-018-01743-y
– volume: 3
  start-page: 183
  issue: 2
  year: 2019
  ident: 2446_CR66
  publication-title: Nat Ecol Evol
  doi: 10.1038/s41559-018-0715-z
– volume: 115
  start-page: 13342
  issue: 52
  year: 2018
  ident: 2446_CR21
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1813749115
– volume: 227
  start-page: 3169
  issue: 9
  year: 2012
  ident: 2446_CR23
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.24054
– volume: 56
  start-page: 2402
  issue: 6
  year: 2011
  ident: 2446_CR24
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.2011.56.6.2402
– volume: 33
  start-page: 1
  issue: 1
  year: 2014
  ident: 2446_CR79
  publication-title: Coral Reefs
  doi: 10.1007/s00338-013-1100-7
– year: 2019
  ident: 2446_CR25
  publication-title: Ann Rev Mar Sci
  doi: 10.1146/annurev-marine-010318-095114
– volume: 12
  start-page: 666510
  issue: July
  year: 2021
  ident: 2446_CR33
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2021.666510
– ident: 2446_CR45
  doi: 10.1126/sciadv.aar8028
– volume: 16
  start-page: 1315
  issue: 6
  year: 2016
  ident: 2446_CR49
  publication-title: Mol Ecol Resour
  doi: 10.1111/1755-0998.12529
– ident: 2446_CR52
  doi: 10.1101/2022.05.10.491282
– volume: 19
  start-page: 1063
  issue: 4
  year: 2019
  ident: 2446_CR35
  publication-title: Mol Ecol Resour
  doi: 10.1111/1755-0998.13004
– volume: 27
  start-page: 1571
  issue: 11
  year: 2011
  ident: 2446_CR40
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr167
– volume: 1
  start-page: 14
  issue: 1
  year: 2016
  ident: 2446_CR38
  publication-title: Nat Ecol Evol
  doi: 10.1038/s41559-016-0014
– volume: 22
  start-page: 36
  issue: 4
  year: 2009
  ident: 2446_CR26
  publication-title: Oceanography
  doi: 10.5670/oceanog.2009.95
– volume: 8
  start-page: 490
  issue: August
  year: 2017
  ident: 2446_CR64
  publication-title: Front Physiol
  doi: 10.3389/fphys.2017.00490
– volume: 3
  start-page: 112
  year: 2016
  ident: 2446_CR18
  publication-title: Front Mar Sci
  doi: 10.3389/fmars.2016.00112
– volume: 52
  start-page: 716
  issue: 2
  year: 2007
  ident: 2446_CR6
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.2007.52.2.0716
– volume: 7
  start-page: 822
  year: 2020
  ident: 2446_CR67
  publication-title: Front Mar Sci
  doi: 10.3389/fmars.2020.560424
– volume: 265
  start-page: 171
  issue: 2
  year: 2001
  ident: 2446_CR86
  publication-title: J Exp Mar Biol Ecol
  doi: 10.1016/S0022-0981(01)00333-1
– volume: 279
  start-page: 4352
  issue: 1746
  year: 2012
  ident: 2446_CR59
  publication-title: Proc Biol Sci R Soc
  doi: 10.1098/rspb.2012.1454
– volume: 17
  start-page: 557
  issue: 9
  year: 2019
  ident: 2446_CR81
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-019-0223-4
– volume: 27
  start-page: 403
  issue: 2
  year: 2018
  ident: 2446_CR8
  publication-title: Mol Ecol
  doi: 10.1111/mec.14452
– volume: 11
  start-page: e14629
  issue: January
  year: 2023
  ident: 2446_CR73
  publication-title: PeerJ
  doi: 10.7717/peerj.14629
– volume: 3
  start-page: 919
  issue: 10
  year: 2013
  ident: 2446_CR58
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate1958
– volume: 40
  start-page: 893
  issue: 3
  year: 2021
  ident: 2446_CR37
  publication-title: Coral Reefs
  doi: 10.1007/s00338-021-02094-x
– year: 2020
  ident: 2446_CR17
  publication-title: Mol Ecol
  doi: 10.1111/mec.15526
– volume: 38
  start-page: 1241
  issue: 6
  year: 2019
  ident: 2446_CR70
  publication-title: Coral Reefs
  doi: 10.1007/s00338-019-01865-x
– volume: 10
  start-page: 254
  issue: 3
  year: 2020
  ident: 2446_CR46
  publication-title: Nat Clim Change
  doi: 10.1038/s41558-019-0687-2
– ident: 2446_CR51
  doi: 10.14806/ej.17.1.200
– volume: 20
  start-page: 24
  issue: 1
  year: 2018
  ident: 2446_CR56
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-018-0069-z
– volume: 36
  start-page: 1011
  issue: 11
  year: 2021
  ident: 2446_CR32
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2021.06.014
– year: 2008
  ident: 2446_CR50
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2398
– year: 2016
  ident: 2446_CR60
  publication-title: Evol Appl
  doi: 10.1111/eva.12408
– volume: 288
  start-page: 115
  year: 2005
  ident: 2446_CR9
  publication-title: Mar Ecol Prog Ser
  doi: 10.3354/meps288115
– ident: 2446_CR4
– year: 2016
  ident: 2446_CR80
  publication-title: Sci Rep
  doi: 10.1038/srep38112
– volume: 2
  start-page: 282
  issue: August
  year: 2019
  ident: 2446_CR85
  publication-title: Commun Biol
  doi: 10.1038/s42003-019-0543-y
– ident: 2446_CR12
  doi: 10.1098/rstb.2018.0178
– volume: 6
  start-page: 597
  issue: 8
  year: 2013
  ident: 2446_CR63
  publication-title: Nat Geosci
  doi: 10.1038/ngeo1830
– volume: 31
  start-page: 588
  issue: 2
  year: 2022
  ident: 2446_CR68
  publication-title: Mol Ecol
  doi: 10.1111/mec.16246
– volume: 9
  start-page: 357
  issue: 4
  year: 2012
  ident: 2446_CR41
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1923
– volume: 571
  start-page: 489
  issue: 7766
  year: 2019
  ident: 2446_CR15
  publication-title: Nature
  doi: 10.1038/s41586-019-1411-0
– volume: 17
  start-page: 7
  issue: February
  year: 2020
  ident: 2446_CR75
  publication-title: Front Zool
  doi: 10.1186/s12983-020-0350-9
– volume: 103
  start-page: e3760
  issue: 9
  year: 2022
  ident: 2446_CR43
  publication-title: Ecology
  doi: 10.1002/ecy.3760
– volume: 30
  start-page: 1381
  issue: 6
  year: 2021
  ident: 2446_CR65
  publication-title: Mol Ecol
  doi: 10.1111/mec.15820
– volume: 56
  start-page: 1429
  issue: 4
  year: 2011
  ident: 2446_CR27
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.2011.56.4.1429
– volume: 7
  start-page: 1602
  issue: 6
  year: 2015
  ident: 2446_CR10
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evv085
– ident: 2446_CR13
  doi: 10.24072/pcjournal.79
– volume: 32
  start-page: 895
  issue: 4
  year: 2013
  ident: 2446_CR54
  publication-title: Coral Reefs
  doi: 10.1007/s00338-013-1046-9
SSID ssj0005593
Score 2.4219227
Snippet Phenotypic plasticity is defined as a property of individual genotypes to produce different phenotypes when exposed to different environmental conditions. This...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 53
SubjectTerms Acclimation
Acclimatization
Acropora cervicornis
Anthropocene
Biomedical and Life Sciences
Clones
Coral reefs
Corals
Environmental changes
Environmental conditions
Epigenetics
Feeding behavior
Feeding habits
Freshwater & Marine Ecology
Genotypes
Life Sciences
Microbial activity
Microbiomes
Microorganisms
Oceanography
Phenotypes
Phenotypic plasticity
Physiological responses
Physiology
Plastic properties
Plasticity
Symbionts
Transcriptomes
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-EEQQXRXXFzl402Dapt32JCorIvhAXPBWmkdlD9vWbT3s__AHO5NNrQp6KBTahNBJZ74k831DyLHmWsfaeCziecyE5DmLE2EYj5IsEIkKZYJE4bv76GYkbl_CF7fhVru0ytYnWketS4V75GcQloJgwP0kPK_eGFaNwtNVV0JjkSyDC45h8bV8Obx_fOqSPJzs7gCWXLBSih1txpLnsIxZzCBmwQWLIpb8DE0d3vx1RGojz_UGWXeQkV7MbbxJFkzRIytDKzc965G1B2WywilPb5EPS6llSDam6kuNeU62pGVOJwa5vuN6UlObpm7rXRWvtCkp9DDWFJO-ymZWQfsKoDVmXTczOi4oQEVoMsWhYN0vuKPKehqkdtUU2WhTqjHPA-la9DuFbpuMrofPVzfMlV5gyh_whhkZCa1QTM0IGUkBlvQyADvaCzMJCMhTPjeAJLSXKO0Z1LGLM5NFmOqmB5IHO2SpKAuzS2Akucl5IEPALsL4IjNhJoSGS8L8yUWfnLRfPa3mChvpl5aytVEKNkqtjdKkTw5aw6Tub6vTbm70yWlrrO7x373t_d_bPln14c15kvYBWWqm7-YQMEgjj9xE-wT-0N0W
  priority: 102
  providerName: ProQuest
Title Multi-omic characterization of mechanisms contributing to rapid phenotypic plasticity in the coral Acropora cervicornis under divergent environments
URI https://link.springer.com/article/10.1007/s00338-023-02446-9
https://www.proquest.com/docview/2933370295
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS8MwFH7ohiCC6FSczpGDNw2kbdq1xymdojhFHMxTaZpUdlg31nrY__AH-5K2m4oePIQW2oTQ95p8j7zvewDnkknpS2VRj6U-5YKl1A-4oswLYocHiSsCTRR-GHq3I343dscVKSyvs93rI0mzUq_IbrrsmE9xj8GGQQwNNqHp6tgdvXhk99eJHZXUbg_DLIyO_Ioq8_sY37ejNcb8cSxqdpvBHuxWMJH0S7vuw4bKWrAVGonpZQt2HhMVZ5Xa9AF8GBot1QRjkqwUmEuCJZmlZKo0v3eST3NiUtNNjavsjRQzgiNMJNGJXrNiOcf-c4TTOtO6WJJJRhAeYpeFnoqu9YV3JDGri6Zz5UQz0BZE6twOTdEiX2lzhzAahC_Xt7Qqt0ATu8cKqoTHZaIF1BQXnuBoPStGgCMtNxaIeqzEZgrRg7SCRFpKa9f5sYo9nd4me4I5R9DIZpk6BpxJqlLmCBfxClc2j5Ubcy6xCfSZlLfhov7q0bxU1YhW-snGRhHaKDI2ioI2dGrDRNUflkcIUxynx-zAbcNlbaz1479HO_nf66ewjT7Gy0TtDjSKxbs6QxxSiC40-zev9yFer8Lh03PXuOEnHIPbxQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9RAEB_OK6IUim0Vr7Z2H_RJFzfJJpc8SNF65WrbU6SFvqXZP5F7aHK9pMh9Dz-Hn9GZTXKnQn3rw0Ig7GTJTHZmsvP7DcArI4yJjfV4JPKYSyVyHifSchElWSATHaqEgMJnk2h8IT9fhpc9-NVhYaisstsT3UZtSk3_yN-hWwqCofCT8GB2w6lrFJ2udi00GrM4sYsfmLJV748_oX5f-_7R6PxwzNuuAlz7Q1FzqyJpNPGEWakiJXGRXoZ-3HhhptC5e9oXFp2k8RJtPEsUbXFms4iquMxQiQDlPoA1GWAq04e1j6PJ12-ropKW5neIKR5mZnEL03FgPWqbFnP0kTjw8Tz52xWu4tt_jmSdpzt6AhttiMo-NDa1CT1bbMHDkaO3XmzB-hdts6Jlut6Gnw7CywnczPSS_bkBd7IyZ9eWsMXT6rpirize9dcqvrO6ZChhahgVmZX1YobzZxjKU5V3vWDTgmFoilPmtBTqM4ZXTLudjaBkFSP025wZqisheBj7E7L3FC7uRSnPoF-UhX0OuJLc5iJQIcZK0voys2EmpcGh0F5zOYA33VtPZw2jR7rkbnY6SlFHqdNRmgxgt1NM2n7dVbqyxQG87ZS1un23tJ3_S9uHR-Pzs9P09Hhy8gIe-zirKRDfhX49v7V7GP_U6mVrdAyu7tvOfwPNpBkY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFUWEotXiaVv3QZ906SbZfD2U0o87WqtnEQt9S7MfKffQ5LxE5P4P_xr_us5skl4V9K0PC4GwkyUz2ZnJ_n4zAG-NMCYx1uORKBIulSh4kkrLRZTmgUx1qFIiCn-eRMfn8uNFeLECv3suDMEq-z3RbdSm0vSPfAfdUhDEwk_DnaKDRZwdjfdm3zl1kKKT1r6dRmsip3bxE9O3evfkCHX9zvfHo2-Hx7zrMMC1H4uGWxVJo6lmmJUqUhIX7OXo040X5godvad9YdFhGi_VxrNUri3JbR4RosvESgQo9wGsxpgViQGsHowmZ1-XAJOu5G-M6R5maUlH2XHEPWqhlnD0lzjw8Tz90y0uY92_jmed1xs_hbUuXGX7rX09gxVbrsPDkSt1vViHJ1-0zcuu6vVz-OXovJyIzkzfVoJuiZ6sKti1JZ7xtL6umYPIu15b5RVrKoYSpoYR4KxqFjOcP8OwnhDfzYJNS4ZhKk6Z01Ko5xheMe12OaKV1YyYcHNmCGNCVDF2l773As7vRSkbMCir0r4EXElhCxGoEOMmaX2Z2zCX0uBQaLuFHML7_q1ns7a6R3Zbx9npKEMdZU5HWTqEzV4xWfel19nSLofwoVfW8va_pb36v7Q38AjtO_t0Mjl9DY99nNRixTdh0Mx_2C0MhRq13dkcg8v7NvMbq78dTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-omic+characterization+of+mechanisms+contributing+to+rapid+phenotypic+plasticity+in+the+coral+Acropora+cervicornis+under+divergent+environments&rft.jtitle=Coral+reefs&rft.au=Rodriguez-Casariego%2C+Javier+A.&rft.au=Mercado-Molina%2C+Alex&rft.au=Lemos%2C+Leila+Soledade&rft.au=Quinete%2C+Natalia+Soares&rft.date=2024-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0722-4028&rft.eissn=1432-0975&rft.volume=43&rft.issue=1&rft.spage=53&rft.epage=66&rft_id=info:doi/10.1007%2Fs00338-023-02446-9&rft.externalDocID=10_1007_s00338_023_02446_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0722-4028&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0722-4028&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0722-4028&client=summon