Multi-omic characterization of mechanisms contributing to rapid phenotypic plasticity in the coral Acropora cervicornis under divergent environments
Phenotypic plasticity is defined as a property of individual genotypes to produce different phenotypes when exposed to different environmental conditions. This ability may be expressed at behavioral, biochemical, physiological, and/or developmental levels, exerting direct influence over species'...
Saved in:
Published in | Coral reefs Vol. 43; no. 1; pp. 53 - 66 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phenotypic plasticity is defined as a property of individual genotypes to produce different phenotypes when exposed to different environmental conditions. This ability may be expressed at behavioral, biochemical, physiological, and/or developmental levels, exerting direct influence over species' demographic performance. In reef-building corals, a group critically threatened by global change in the Anthropocene, non-genetic mechanisms (i.e., epigenetic and microbiome variation) have been shown to participate in plastic physiological responses to environmental change. Yet, the precise way in which these mechanisms interact, contribute to such responses, and their adaptive potential is still obscure. The present work aims to fill this gap by using a multi-omics approach to elucidate the contribution and interconnection of the mechanisms modulating phenotypic plasticity in staghorn coral (
Acropora cervicornis
) clones subject to different depth conditions. Results show changes in lipidome, epigenome and transcriptome, but not in symbiotic and microbial communities. In addition, a potential shift toward a more heterotrophic feeding behavior was evidenced in corals at the deeper site. These observations are consistent with a multi-mechanism modulation of rapid acclimation in corals, underscoring the complexity of this process and the importance of a multifactorial approach to inform potential intervention to enhance coral adaptive capacity. |
---|---|
AbstractList | Phenotypic plasticity is defined as a property of individual genotypes to produce different phenotypes when exposed to different environmental conditions. This ability may be expressed at behavioral, biochemical, physiological, and/or developmental levels, exerting direct influence over species' demographic performance. In reef-building corals, a group critically threatened by global change in the Anthropocene, non-genetic mechanisms (i.e., epigenetic and microbiome variation) have been shown to participate in plastic physiological responses to environmental change. Yet, the precise way in which these mechanisms interact, contribute to such responses, and their adaptive potential is still obscure. The present work aims to fill this gap by using a multi-omics approach to elucidate the contribution and interconnection of the mechanisms modulating phenotypic plasticity in staghorn coral (Acropora cervicornis) clones subject to different depth conditions. Results show changes in lipidome, epigenome and transcriptome, but not in symbiotic and microbial communities. In addition, a potential shift toward a more heterotrophic feeding behavior was evidenced in corals at the deeper site. These observations are consistent with a multi-mechanism modulation of rapid acclimation in corals, underscoring the complexity of this process and the importance of a multifactorial approach to inform potential intervention to enhance coral adaptive capacity. Phenotypic plasticity is defined as a property of individual genotypes to produce different phenotypes when exposed to different environmental conditions. This ability may be expressed at behavioral, biochemical, physiological, and/or developmental levels, exerting direct influence over species' demographic performance. In reef-building corals, a group critically threatened by global change in the Anthropocene, non-genetic mechanisms (i.e., epigenetic and microbiome variation) have been shown to participate in plastic physiological responses to environmental change. Yet, the precise way in which these mechanisms interact, contribute to such responses, and their adaptive potential is still obscure. The present work aims to fill this gap by using a multi-omics approach to elucidate the contribution and interconnection of the mechanisms modulating phenotypic plasticity in staghorn coral ( Acropora cervicornis ) clones subject to different depth conditions. Results show changes in lipidome, epigenome and transcriptome, but not in symbiotic and microbial communities. In addition, a potential shift toward a more heterotrophic feeding behavior was evidenced in corals at the deeper site. These observations are consistent with a multi-mechanism modulation of rapid acclimation in corals, underscoring the complexity of this process and the importance of a multifactorial approach to inform potential intervention to enhance coral adaptive capacity. |
Author | Rodriguez-Casariego, Javier A. Eirin-Lopez, Jose M. Rodriguez-Lanetty, Mauricio Lemos, Leila Soledade Quinete, Natalia Soares Bellantuono, Anthony Mercado-Molina, Alex Sabat, Alberto |
Author_xml | – sequence: 1 givenname: Javier A. surname: Rodriguez-Casariego fullname: Rodriguez-Casariego, Javier A. organization: Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Department of Biology, University of Puerto Rico, Río Piedras – sequence: 2 givenname: Alex surname: Mercado-Molina fullname: Mercado-Molina, Alex organization: Sociedad Ambiente Marino – sequence: 3 givenname: Leila Soledade surname: Lemos fullname: Lemos, Leila Soledade organization: Department of Chemistry and Biochemistry, Institute of Environment, Florida International University – sequence: 4 givenname: Natalia Soares surname: Quinete fullname: Quinete, Natalia Soares organization: Department of Chemistry and Biochemistry, Institute of Environment, Florida International University – sequence: 5 givenname: Anthony surname: Bellantuono fullname: Bellantuono, Anthony organization: Department of Biological Sciences, Florida International University – sequence: 6 givenname: Mauricio surname: Rodriguez-Lanetty fullname: Rodriguez-Lanetty, Mauricio organization: Department of Biological Sciences, Florida International University – sequence: 7 givenname: Alberto surname: Sabat fullname: Sabat, Alberto organization: Department of Biology, University of Puerto Rico, Río Piedras – sequence: 8 givenname: Jose M. orcidid: 0000-0002-8041-9770 surname: Eirin-Lopez fullname: Eirin-Lopez, Jose M. email: jeirinlo@fiu.edu organization: Environmental Epigenetics Laboratory, Institute of Environment, Florida International University |
BookMark | eNp9kMtKBDEQRYMoOD5-wFXAdWsl6XRPliK-QHGj65BO18xEppM2SQ-M3-EHGx3BnYuiiuKeW9Q9Ivs-eCTkjMEFA2gvE4AQ8wq4KFXXTaX2yIzVglegWrlPZtByXtXA54fkKKU3AJBSiRn5fJrW2VVhcJbalYnGZozuw2QXPA0LOmDZepeGRG3wObpuys4vaQ40mtH1dFyhD3k7Fn5cm5SddXlLnad5hQWJZk2vbAxjmajFuHFlV_zo5HuMtHcbjEv0maLfuBj8UOZ0Qg4WZp3w9Lcfk9fbm5fr--rx-e7h-uqxsryFXGHX1L0t30qsu6arG1gw07C2Z9J0TCpmOSAw2TNle4agpJwbNA0vYfVtB-KYnO98xxjeJ0xZv4Up-nJScyWEaIErWVR8pypvpBRxocfoBhO3moH-Tl_v0tclff2TvlYFEjsoFbFfYvyz_of6AvEPjcM |
Cites_doi | 10.1111/gcb.16192 10.1038/nature06937 10.1007/s00227-019-3616-z 10.1038/ismej.2016.101 10.1371/journal.pone.0123394 10.1111/gcb.14901 10.1007/s00128-020-03078-3 10.1126/sciadv.aat2142 10.1111/mec.14517 10.1007/s002270100674 10.1016/S0022-0981(00)00237-9 10.1371/journal.pgen.1005445 10.1371/journal.pone.0050685 10.1007/BF00302104 10.1186/s12864-022-08474-z 10.32942/OSF.IO/GY5PR 10.1186/1471-2164-14-228 10.3354/meps14192 10.1371/journal.pone.0058652 10.3389/fmars.2020.00225 10.1146/annurev-marine-041911-111611 10.3389/fmars.2019.00792 10.1007/s00227-004-1337-3 10.1007/s00227-005-0114-2 10.1371/journal.pone.0081821 10.1146/10.1038/nature15256 10.1016/j.cell.2008.04.026 10.1038/ncomms1954 10.3389/fmars.2019.00005 10.1007/978-0-387-89366-2_1 10.1111/gcb.13833 10.1038/srep27688 10.1007/s00338-018-01743-y 10.1038/s41559-018-0715-z 10.1073/pnas.1813749115 10.1002/jcp.24054 10.4319/lo.2011.56.6.2402 10.1007/s00338-013-1100-7 10.1146/annurev-marine-010318-095114 10.3389/fmicb.2021.666510 10.1126/sciadv.aar8028 10.1111/1755-0998.12529 10.1101/2022.05.10.491282 10.1111/1755-0998.13004 10.1093/bioinformatics/btr167 10.1038/s41559-016-0014 10.5670/oceanog.2009.95 10.3389/fphys.2017.00490 10.3389/fmars.2016.00112 10.4319/lo.2007.52.2.0716 10.3389/fmars.2020.560424 10.1016/S0022-0981(01)00333-1 10.1098/rspb.2012.1454 10.1038/s41579-019-0223-4 10.1111/mec.14452 10.7717/peerj.14629 10.1038/nclimate1958 10.1007/s00338-021-02094-x 10.1111/mec.15526 10.1007/s00338-019-01865-x 10.1038/s41558-019-0687-2 10.14806/ej.17.1.200 10.1038/s41576-018-0069-z 10.1016/j.tree.2021.06.014 10.1038/nrg2398 10.1111/eva.12408 10.3354/meps288115 10.1038/srep38112 10.1038/s42003-019-0543-y 10.1098/rstb.2018.0178 10.1038/ngeo1830 10.1111/mec.16246 10.1038/nmeth.1923 10.1038/s41586-019-1411-0 10.1186/s12983-020-0350-9 10.1002/ecy.3760 10.1111/mec.15820 10.4319/lo.2011.56.4.1429 10.1093/gbe/evv085 10.24072/pcjournal.79 10.1007/s00338-013-1046-9 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to International Coral Reef Society (ICRS) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to International Coral Reef Society (ICRS) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7T7 7TN 7XB 88I 8FD 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H95 HCIFZ L.G M2P M7N P64 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY Q9U |
DOI | 10.1007/s00338-023-02446-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Science Database (ProQuest) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Oceanic Abstracts Natural Science Collection ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Oceanography |
EISSN | 1432-0975 |
EndPage | 66 |
ExternalDocumentID | 10_1007_s00338_023_02446_9 |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1810981; 1921402; 2112265 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | -4W -5A -5G -BR -DZ -EM -Y2 -~C -~X .86 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4R4 5GY 5QI 5VS 67M 67Z 6NX 6TJ 78A 7XC 88I 8CJ 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABPPZ ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L8X LAS LK5 LLZTM M2P M4Y M7R MA- MQGED N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW VQA W23 W48 WJK WK6 WK8 XJT YLTOR Z45 Z5O Z7Y Z7Z Z86 Z8S Z8T ZCA ZMTXR ZOVNA ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7T7 7TN 7XB 8FD 8FK ABRTQ C1K F1W FR3 H95 L.G M7N P64 PKEHL PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c270t-eb64dc4465e4b6b460f1a617d15ab1591c20e015d19cd1e09558aea62003d7b03 |
IEDL.DBID | U2A |
ISSN | 0722-4028 |
IngestDate | Sat Aug 23 14:44:09 EDT 2025 Tue Jul 01 01:52:46 EDT 2025 Fri Feb 21 02:41:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Lipidome Transcriptome Epigenetics Phenotypic plasticity Symbiodiniaceae Staghorn coral WGBS Microbiome |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-eb64dc4465e4b6b460f1a617d15ab1591c20e015d19cd1e09558aea62003d7b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8041-9770 |
PQID | 2933370295 |
PQPubID | 54060 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2933370295 crossref_primary_10_1007_s00338_023_02446_9 springer_journals_10_1007_s00338_023_02446_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240200 2024-02-00 20240201 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 2 year: 2024 text: 20240200 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Journal of the International Coral Reef Society |
PublicationTitle | Coral reefs |
PublicationTitleAbbrev | Coral Reefs |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | PayneJLWagnerAThe causes of evolvability and their evolutionNat Rev Genet2018201243810.1038/s41576-018-0069-z VenkataramanYRDowney-WallAMRiesJWestfieldIWhiteSJRobertsSBLotterhosKEGeneral DNA methylation patterns and environmentally-induced differential methylation in the eastern oyster (Crassostrea Virginica)Front Mar Sci2020722510.3389/fmars.2020.00225 RiveraHEAichelmanHEFiferJEKriefallNGWuitchikDMWuitchikSJSDaviesSWA framework for understanding gene expression plasticity and its influence on stress toleranceMol Ecol2021306138113971:CAS:528:DC%2BB3MXosFKjur8%3D3350329810.1111/mec.15820 CharriezLKathleenLSLemosYCRodríguez-CasariegoJAEirin-LopezJMHauser-DavisRAGardinaliPQuineteNApplication of an improved chloroform-free lipid extraction method to staghorn coral (Acropora Cervicornis) lipidomics assessmentsBull Environ Contam Toxicol202110.1007/s00128-020-03078-3 DaviesSWMarchettiARiesJBCastilloKDThermal and pCO2 stress elicit divergent transcriptomic responses in a resilient coralFront Mar Sci2016311210.3389/fmars.2016.00112 WeizmanELevyOThe role of chromatin dynamics under global warming response in the symbiotic coral model aiptasiaCommun Biol20192August28231396562667775010.1038/s42003-019-0543-y HackerottSMartellHAEirin-LopezJMCoral environmental memory: causes, mechanisms, and consequences for future reefsTrends Ecol Evol20213611101110233436617010.1016/j.tree.2021.06.014 DonohoeDRBultmanSJMetaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expressionJ Cell Physiol20122279316931771:CAS:528:DC%2BC38Xnt1Knt7c%3D22261928333888210.1002/jcp.24054 RossetSKosterGBrandsmaJHuntANPostleADD’AngeloCLipidome analysis of symbiodiniaceae reveals possible mechanisms of heat stress tolerance in reef coral symbiontsCoral Reefs2019386124112532019CorRe..38.1241R10.1007/s00338-019-01865-x O’DonnellKELohrKEBartelsEBaumsIBPattersonJTAcropora cervicornis genet performance and symbiont identity throughout the restoration processCoral Reefs2018374110911182018CorRe..37.1109O10.1007/s00338-018-01743-y Eirin-LopezJMPutnamHMMarine environmental epigeneticsAnn Rev Mar Sci201910.1146/annurev-marine-010318-09511429958066 BellantuonoAJGranados-CifuentesCMillerDJHoegh-GuldbergORodriguez-LanettyMCoral thermal tolerance: tuning gene expression to resist thermal stressPLoS ONE201210.1371/journal.pone.0050685232263553511300 van WoesikRShlesingerTGrottoliAGToonenRJThurberRVWarnerMEHulverAMCoral-bleaching responses to climate change across biological scalesGlob Change Biol202228144229425010.1111/gcb.16192 HerreraMLiewYJVennATambuttéEZoccolaDTambuttéSCuiGArandaMNew insights from transcriptomic data reveal differential effects of CO2 acidification stress on photosynthesis of an endosymbiotic dinoflagellate in hospiteFront Microbiol202112July66651034349734832656310.3389/fmicb.2021.666510 FeelyRADoneySCCooleySROcean acidification: present conditions and future changes in a high-CO2 WorldOceanography2009224364710.5670/oceanog.2009.95 R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org DoneySCMary RuckelshausJDuffyEBarryJPChanFEnglishCAGalindoHMClimate change impacts on marine ecosystemsAnn Rev Mar Sci2012411372245796710.1146/annurev-marine-041911-111611 PochonXPawlowskiJZaninettiLRowanRHigh genetic diversity and relative specificity among symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferansMar Biol200113961069107810.1007/s002270100674 LewisCNeelyKRodriguez-LanettyMRecurring episodes of thermal stress shift the balance from a dominant host-specialist to a background host-generalist zooxanthella in the threatened pillar coral, Dendrogyra cylindrusFront Mar Sci201910.3389/fmars.2019.00005 SolomonSLGrottoliAGWarnerMELevasSSchoepfVMuñoz-GarciaALipid class composition of annually bleached caribbean coralsMar Biol20191671710.1007/s00227-019-3616-z LangmeadBSalzbergSLFast gapped-read alignment with bowtie 2Nat Methods2012943573591:CAS:528:DC%2BC38Xjt1Oqt7c%3D22388286332238110.1038/nmeth.1923 AnthonyKRNConnollySRHoegh-GuldbergOBleaching, energetics, and coral mortality risk: effects of temperature, light, and sediment regimeLimnol Oceanogr20075227167262007LimOc..52..716A10.4319/lo.2007.52.2.0716 Bonamour S, Chevin L-M, Charmantier A, Teplitsky C (2019) Phenotypic plasticity in response to climate change: the importance of cue variation. Philos Trans R Soc Lond Ser B Biol Sci 374(1768):20180178 CavalliGHeardEAdvances in epigenetics link genetics to the environment and diseaseNature201957177664894992019Natur.571..489C1:CAS:528:DC%2BC1MXhsVeqs7rO3134130210.1038/s41586-019-1411-0 Traylor-KnowlesNRoseNHPalumbiSRThe cell specificity of gene expression in the response to heat stress in coralsJ Exp Biol2017220Pt 101837184528254881 Guschina IA, Harwood JL (2009) Algal lipids and effect of the environment on their biochemistry. In: Kainz M, Brett MT, Arts MT (eds) Lipids in aquatic ecosystems, 1–24. Springer, New York LöfgrenLForsbergG-BStåhlmanMThe BUME method: a new rapid and simple chloroform-free method for total lipid extraction of animal tissueSci Rep20166June276882016NatSR...627688L27282822490132410.1038/srep27688 DixonGMatzMChanges in gene body methylation do not correlate with changes in gene expression in anthozoa or hexapodaBMC Genomics20222312341:CAS:528:DC%2BB38XpsVyjsbc%3D35337260895712110.1186/s12864-022-08474-z EdmundsPJZooplanktivory ameliorates the effects of ocean acidification on the reef coralPoritessppLimnol Oceanogr2011566240224102011LimOc..56.2402E1:CAS:528:DC%2BC3MXhs1yntLrM10.4319/lo.2011.56.6.2402 López-MauryLMargueratSBählerJTuning gene expression to changing environments: from rapid responses to evolutionary adaptationNat Rev Genet200810.1038/nrg239818591982 SinghTSakaiKIshida-CastañedaJIguchiAShort-term improvement of heat tolerance in naturally growing acropora corals in okinawaPeerJ202311Januarye1462936627918982661310.7717/peerj.14629 ShiXNgD-KZhangCComaiLYeWJeffrey ChenZCis- and trans-regulatory divergence between progenitor species determines gene-expression novelty in arabidopsis allopolyploidsNat Commun20123July9502012NatCo...3..950S2280555710.1038/ncomms1954 Vidal-DupiolJZoccolaDTambuttéEGrunauCCosseauCSmithKMFreitagMDheillyNMAllemandDTambuttéSGenes related to ion-transport and energy production are upregulated in response to CO2-driven pH decrease in corals: new insights from transcriptome analysisPLoS ONE201383e586522013PLoSO...858652V1:CAS:528:DC%2BC3sXlvVOqu7w%3D23544045360976110.1371/journal.pone.0058652 DimondJLRobertsSBConvergence of DNA methylation profiles of the reef coral porites astreoides in a novel environmentFront Mar Sci2020679210.3389/fmars.2019.00792 AinsworthTDHurdCLGatesRDBoydPWHow do we overcome abrupt degradation of marine ecosystems and meet the challenge of heat waves and climate extremes?Glob Change Biol20202623433542020GCBio..26..343A10.1111/gcb.14901 Ferrier-PagèsCPeiranoAAbbateMCocitoSNegriARottierCRieraPRodolfo-MetalpaRReynaudSSummer autotrophy and winter heterotrophy in the temperate symbiotic coralcladocora caespitosaLimnol Oceanogr2011564142914382011LimOc..56.1429F10.4319/lo.2011.56.4.1429 TremblayPGoriAMaguerJFHoogenboomMFerrier-PagèsCHeterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stressSci Rep201610.1038/srep38112279221155138838 YamashiroHOkuHOnagaKIwasakiHTakaraKCoral tumors store reduced level of lipidsJ Exp Mar Biol Ecol200126521711791:CAS:528:DC%2BD3MXos1Orsb8%3D10.1016/S0022-0981(01)00333-1 RobinsonJPWWilsonSKRobinsonJGerryCLucasJAssanCGovindenRJenningsSGrahamNAJProductive instability of coral reef fisheries after climate-driven regime shiftsNat Ecol Evol2019321831903042074310.1038/s41559-018-0715-z PutnamHMStatMPochonXGatesRDEndosymbiotic flexibility associates with environmental sensitivity in scleractinian coralsProc Biol Sci R Soc201227917464352436110.1098/rspb.2012.1454 Andrews S, et al (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham Institute, Cambridge, UK Ghalambor CK, Hoke KL, Ruell EW, Fischer EK, Reznick DN, Hughes KA (2015) Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525(7569):372–375. https://doi.org/10.1146/10.1038/nature15256 GrottoliAGRodriguesLJJuarezCLipids and stable carbon isotopes in two species of hawaiian corals, porites compressa and montipora verrucosa, following a bleaching eventMar Biol200414536216311:CAS:528:DC%2BD2cXnt1Glur0%3D10.1007/s00227-004-1337-3 HumeBCCSmithEGZieglerMWarringtonHJMBurtJALaJeunesseTCWiedenmannJVoolstraCRSymPortal: a novel analytical framework and platform for coral algal symbiont next-ge and perhaps more importantly, on host regulated mechanisms to rapidly acclimatneration sequencing ITS2 profilingMol Ecol Resour2019194106310801:CAS:528:DC%2BC1MXhtFyks7rP30740899661810910.1111/1755-0998.13004 BayRAPalumbiSRRapid acclimation ability mediated by transcriptome changes in reef-building coralsGenome Biol Evol201576160216121:CAS:528:DC%2BC2MXhs1WhsrvK25979751449407310.1093/gbe/evv085 Rodriguez-CasariegoJACunningRBakerACEirin-LopezJMSymbiont shuffling induces differential DNA methylation responses to thermal stress in the coral montastraea cavernosaMol Ecol20223125886021:CAS:528:DC%2BB38XkvValsrc%3D3468936310.1111/mec.16246 BaumsIBHughesCRHellbergMEMendelian microsatellite loci for the caribbean coral acropora palmataMar Ecol Prog Ser20052881151272005MEPS..288..115B1:CAS:528:DC%2BD2MXlsFahs7Y%3D10.3354/meps288115 LibermanRShlesingerTLoyaYBenayahuYSoft coral reproductive phenology along a depth gradient: can ‘going deeper’ provide a viable refuge?Ecology20221039e37603558292710.1002/ecy.3760 Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.J 17(1):10–12 Li Y, Liew YJ, Cui G, Cziesielski MJ, Zahran N, Michell CT, Voolstra CR, Aranda M (2018) DNA methylation regulates transcriptional homeostasis of algal endosymbiosis i X Pochon (2446_CR57) 2001; 139 JPW Robinson (2446_CR66) 2019; 3 I Arai (2446_CR7) 1993; 12 JM Eirin-Lopez (2446_CR25) 2019 JA Rodríguez-Casariego (2446_CR67) 2020; 7 SW Davies (2446_CR18) 2016; 3 KRN Anthony (2446_CR6) 2007; 52 IB Baums (2446_CR9) 2005; 288 C Rosenzweig (2446_CR69) 2008; 453 ME Strader (2446_CR75) 2020; 17 HM Putnam (2446_CR60) 2016 F Krueger (2446_CR40) 2011; 27 D Campo (2446_CR14) 2017; 11 2446_CR47 2446_CR88 G Dixon (2446_CR20) 2022; 23 2446_CR45 BCC Hume (2446_CR35) 2019; 19 L Charriez (2446_CR16) 2021 P Tremblay (2446_CR79) 2014; 33 S Baumgarten (2446_CR8) 2018; 27 R Cunning (2446_CR17) 2020 YJ Liew (2446_CR46) 2020; 10 RA Bay (2446_CR10) 2015; 7 G Dixon (2446_CR21) 2018; 115 C Ferrier-Pagès (2446_CR27) 2011; 56 B Langmead (2446_CR41) 2012; 9 JE Parkinson (2446_CR55) 2018; 27 C Rivera-Casas (2446_CR64) 2017; 8 2446_CR13 P Tremblay (2446_CR80) 2016 2446_CR4 2446_CR12 TD Ainsworth (2446_CR3) 2020; 26 YR Venkataraman (2446_CR83) 2020; 7 2446_CR2 2446_CR1 R Liberman (2446_CR43) 2022; 103 2446_CR51 2446_CR52 S Rosset (2446_CR70) 2019; 38 H Yanagida (2446_CR87) 2015; 11 RA Feely (2446_CR26) 2009; 22 S Libro (2446_CR44) 2013; 8 JL Payne (2446_CR56) 2018; 20 PJ Edmunds (2446_CR24) 2011; 56 KE O’Donnell (2446_CR53) 2018; 37 R van Woesik (2446_CR82) 2022; 28 HM Putnam (2446_CR59) 2012; 279 KR Anthony (2446_CR5) 2000; 252 CD Kenkel (2446_CR39) 2018; 24 N Traylor-Knowles (2446_CR78) 2017; 220 T Singh (2446_CR73) 2023; 11 C Lewis (2446_CR42) 2019 BK Lohman (2446_CR49) 2016; 16 G Cavalli (2446_CR15) 2019; 571 SC Doney (2446_CR22) 2012; 4 DR Donohoe (2446_CR23) 2012; 227 EMU Jung (2446_CR37) 2021; 40 H Yamashiro (2446_CR86) 2001; 265 X Shi (2446_CR72) 2012; 3 SL Solomon (2446_CR74) 2019; 167 MO Indergard (2446_CR36) 2022; 701 HE Rivera (2446_CR65) 2021; 30 E Weizman (2446_CR85) 2019; 2 2446_CR61 S Hackerott (2446_CR32) 2021; 36 JA Rodriguez-Casariego (2446_CR68) 2022; 31 P Regnier (2446_CR63) 2013; 6 J Vidal-Dupiol (2446_CR84) 2013; 8 L López-Maury (2446_CR50) 2008 JL Dimond (2446_CR19) 2020; 6 AG Grottoli (2446_CR29) 2004; 145 AJ Bellantuono (2446_CR11) 2012 CD Kenkel (2446_CR38) 2016; 1 C Granados-Cifuentes (2446_CR28) 2013; 14 L Löfgren (2446_CR48) 2016; 6 DJ Thornhill (2446_CR76) 2006; 148 M Herrera (2446_CR33) 2021; 12 2446_CR31 ES Poloczanska (2446_CR58) 2013; 3 MJH van Oppen (2446_CR81) 2019; 17 EK Towle (2446_CR77) 2015 2446_CR71 I Grummt (2446_CR30) 2008; 133 O Hoegh-Guldberg (2446_CR34) 2017; 4 D Ogawa (2446_CR54) 2013; 32 |
References_xml | – reference: CunningRBakerACThermotolerant coral symbionts modulate heat stress-responsive genes in their hostsMol Ecol202010.1111/mec.1552632585772 – reference: DixonGLiaoYiBayLKMatzMVRole of gene body methylation in acclimatization and adaptation in a basal metazoanProc Natl Acad Sci USA20181155213342133462018PNAS..11513342D1:CAS:528:DC%2BC1cXisF2rsrnM30530646631085210.1073/pnas.1813749115 – reference: DaviesSWMarchettiARiesJBCastilloKDThermal and pCO2 stress elicit divergent transcriptomic responses in a resilient coralFront Mar Sci2016311210.3389/fmars.2016.00112 – reference: Nawaz K, Cziesielski MJ, Mariappan KG, Cui G, Aranda M (2022) Histone modifications and DNA methylation act cooperatively in regulating symbiosis genes in the sea anemone Aiptasia. bioRxiv. https://doi.org/10.1101/2022.05.10.491282 – reference: Rodríguez-CasariegoJAMercado-MolinaAEGarcia-SoutoDOrtiz-RiveraIMLopesCBaumsIBSabatAMEirin-LopezJMGenome-wide DNA methylation analysis reveals a conserved epigenetic response to seasonal environmental variation in the staghorn coral acropora cervicornisFront Mar Sci2020782210.3389/fmars.2020.560424 – reference: Ferrier-PagèsCPeiranoAAbbateMCocitoSNegriARottierCRieraPRodolfo-MetalpaRReynaudSSummer autotrophy and winter heterotrophy in the temperate symbiotic coralcladocora caespitosaLimnol Oceanogr2011564142914382011LimOc..56.1429F10.4319/lo.2011.56.4.1429 – reference: Guschina IA, Harwood JL (2009) Algal lipids and effect of the environment on their biochemistry. In: Kainz M, Brett MT, Arts MT (eds) Lipids in aquatic ecosystems, 1–24. Springer, New York – reference: Li Y, Liew YJ, Cui G, Cziesielski MJ, Zahran N, Michell CT, Voolstra CR, Aranda M (2018) DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia. Sci Adv 4(8):eaat2142 – reference: LibermanRShlesingerTLoyaYBenayahuYSoft coral reproductive phenology along a depth gradient: can ‘going deeper’ provide a viable refuge?Ecology20221039e37603558292710.1002/ecy.3760 – reference: RosenzweigCKarolyDVicarelliMNeofotisPQigangWuCasassaGMenzelAAttributing physical and biological impacts to anthropogenic climate changeNature200845371933533572008Natur.453..353R1:CAS:528:DC%2BD1cXlvV2qtLc%3D1848081710.1038/nature06937 – reference: OgawaDBobeszkoTAinsworthTLeggatWThe combined effects of temperature and CO2 lead to altered gene expression in acropora asperaCoral Reefs20133248959072013CorRe..32..895O10.1007/s00338-013-1046-9 – reference: HumeBCCSmithEGZieglerMWarringtonHJMBurtJALaJeunesseTCWiedenmannJVoolstraCRSymPortal: a novel analytical framework and platform for coral algal symbiont next-ge and perhaps more importantly, on host regulated mechanisms to rapidly acclimatneration sequencing ITS2 profilingMol Ecol Resour2019194106310801:CAS:528:DC%2BC1MXhtFyks7rP30740899661810910.1111/1755-0998.13004 – reference: LangmeadBSalzbergSLFast gapped-read alignment with bowtie 2Nat Methods2012943573591:CAS:528:DC%2BC38Xjt1Oqt7c%3D22388286332238110.1038/nmeth.1923 – reference: HerreraMLiewYJVennATambuttéEZoccolaDTambuttéSCuiGArandaMNew insights from transcriptomic data reveal differential effects of CO2 acidification stress on photosynthesis of an endosymbiotic dinoflagellate in hospiteFront Microbiol202112July66651034349734832656310.3389/fmicb.2021.666510 – reference: Rivera-CasasCGonzalez-RomeroRGarduñoRACheemaMSAusioJEirin-LopezJMMolecular and biochemical methods useful for the epigenetic characterization of chromatin-associated proteins in bivalve molluscsFront Physiol20178August49028848447555067310.3389/fphys.2017.00490 – reference: TremblayPGroverRMaguerJFHoogenboomMFerrier-PagèsCCarbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral stylophora pistillataCoral Reefs20143311132014CorRe..33....1T10.1007/s00338-013-1100-7 – reference: BellantuonoAJGranados-CifuentesCMillerDJHoegh-GuldbergORodriguez-LanettyMCoral thermal tolerance: tuning gene expression to resist thermal stressPLoS ONE201210.1371/journal.pone.0050685232263553511300 – reference: EdmundsPJZooplanktivory ameliorates the effects of ocean acidification on the reef coralPoritessppLimnol Oceanogr2011566240224102011LimOc..56.2402E1:CAS:528:DC%2BC3MXhs1yntLrM10.4319/lo.2011.56.6.2402 – reference: AinsworthTDHurdCLGatesRDBoydPWHow do we overcome abrupt degradation of marine ecosystems and meet the challenge of heat waves and climate extremes?Glob Change Biol20202623433542020GCBio..26..343A10.1111/gcb.14901 – reference: Ghalambor CK, Hoke KL, Ruell EW, Fischer EK, Reznick DN, Hughes KA (2015) Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525(7569):372–375. https://doi.org/10.1146/10.1038/nature15256 – reference: Eirin-LopezJMPutnamHMMarine environmental epigeneticsAnn Rev Mar Sci201910.1146/annurev-marine-010318-09511429958066 – reference: KenkelCDMoyaAStrahlJHumphreyCBayLKFunctional genomic analysis of corals from natural CO2-seeps reveals core molecular responses involved in acclimatization to ocean acidificationGlob Change Biol20182411581712018GCBio..24..158K10.1111/gcb.13833 – reference: SinghTSakaiKIshida-CastañedaJIguchiAShort-term improvement of heat tolerance in naturally growing acropora corals in okinawaPeerJ202311Januarye1462936627918982661310.7717/peerj.14629 – reference: PutnamHMDavidsonJMGatesRDOcean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible coralsEvol Appl201610.1111/eva.12408276955245039329 – reference: RStudio Team (2020) RStudio: integrated development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/. – reference: Adrian-Kalchhauser I, Sultan SE, Shama LN, Spence-Jones H, Tiso S, Valsecchi CI, Weissing FJ (2020) Understanding non-genetic inheritance: insights from molecular-evolutionary crosstalk. Trends Ecol Evol. https://www.sciencedirect.com/science/article/pii/S0169534720302263. – reference: IndergardMOBellantuonoARodriguez-LanettyMHengFGilgMRAcclimation to elevated temperatures in acropora cervicornis: effects of host genotype and symbiont shufflingMar Ecol Prog Ser202270141652022MEPS..701...41I1:CAS:528:DC%2BB3sXnt1ylsw%3D%3D10.3354/meps14192 – reference: Andrews S, et al (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham Institute, Cambridge, UK – reference: JungEMUStatMThomasLKoziolASchoepfVCoral host physiology and symbiont dynamics associated with differential recovery from mass bleaching in an extreme, macro-tidal reef environment in Northwest AustraliaCoral Reefs202140389390510.1007/s00338-021-02094-x – reference: DonohoeDRBultmanSJMetaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expressionJ Cell Physiol20122279316931771:CAS:528:DC%2BC38Xnt1Knt7c%3D22261928333888210.1002/jcp.24054 – reference: Traylor-KnowlesNRoseNHPalumbiSRThe cell specificity of gene expression in the response to heat stress in coralsJ Exp Biol2017220Pt 101837184528254881 – reference: AnthonyKRFabriciusKEShifting roles of heterotrophy and autotrophy in coral energetics under varying turbidityJ Exp Mar Biol Ecol200025222212531:STN:280:DC%2BC2sbivVGmug%3D%3D1096733510.1016/S0022-0981(00)00237-9 – reference: CharriezLKathleenLSLemosYCRodríguez-CasariegoJAEirin-LopezJMHauser-DavisRAGardinaliPQuineteNApplication of an improved chloroform-free lipid extraction method to staghorn coral (Acropora Cervicornis) lipidomics assessmentsBull Environ Contam Toxicol202110.1007/s00128-020-03078-3 – reference: PoloczanskaESBrownCJSydemanWJKiesslingWSchoemanDSMoorePJBranderKGlobal imprint of climate change on marine lifeNat Clim Chang20133109199252013NatCC...3..919P10.1038/nclimate1958 – reference: YanagidaHGispanAKadouriNRozenSSharonMBarkaiNTawfikDSThe evolutionary potential of phenotypic mutationsPLoS Genet2015118e100544526244544452657210.1371/journal.pgen.1005445 – reference: Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.J 17(1):10–12 – reference: Brener-Raffalli K, Vidal-Dupiol J, Adjeroud M, Olivier R, Romans P, Bonhomme F, Pratlong M, et al (2022) Gene expression plasticity and frontloading promote thermotolerance in pocillopora corals. Peer Community J 2(e13). https://doi.org/10.24072/pcjournal.79 – reference: Rodriguez-CasariegoJACunningRBakerACEirin-LopezJMSymbiont shuffling induces differential DNA methylation responses to thermal stress in the coral montastraea cavernosaMol Ecol20223125886021:CAS:528:DC%2BB38XkvValsrc%3D3468936310.1111/mec.16246 – reference: van OppenMJHBlackallLLCoral microbiome dynamics, functions and design in a changing worldNat Rev Microbiol20191795575673126324610.1038/s41579-019-0223-4 – reference: R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ – reference: RiveraHEAichelmanHEFiferJEKriefallNGWuitchikDMWuitchikSJSDaviesSWA framework for understanding gene expression plasticity and its influence on stress toleranceMol Ecol2021306138113971:CAS:528:DC%2BB3MXosFKjur8%3D3350329810.1111/mec.15820 – reference: KruegerFAndrewsSRBismark: a flexible aligner and methylation caller for bisulfite-seq applicationsBioinformatics20112711157115721:CAS:528:DC%2BC3MXmvVWqurw%3D21493656310222110.1093/bioinformatics/btr167 – reference: RobinsonJPWWilsonSKRobinsonJGerryCLucasJAssanCGovindenRJenningsSGrahamNAJProductive instability of coral reef fisheries after climate-driven regime shiftsNat Ecol Evol2019321831903042074310.1038/s41559-018-0715-z – reference: LiewYJHowellsEJWangXMichellCTBurtJAIdaghdourYArandaMIntergenerational epigenetic inheritance in reef-building coralsNat Clim Change20201032542592020NatCC..10..254L10.1038/s41558-019-0687-2 – reference: BaumsIBHughesCRHellbergMEMendelian microsatellite loci for the caribbean coral acropora palmataMar Ecol Prog Ser20052881151272005MEPS..288..115B1:CAS:528:DC%2BD2MXlsFahs7Y%3D10.3354/meps288115 – reference: López-MauryLMargueratSBählerJTuning gene expression to changing environments: from rapid responses to evolutionary adaptationNat Rev Genet200810.1038/nrg239818591982 – reference: RegnierPFriedlingsteinPCiaisPMackenzieFTGruberNJanssensIALaruelleGGAnthropogenic perturbation of the carbon fluxes from land to oceanNat Geosci2013685976072013NatGe...6..597R1:CAS:528:DC%2BC3sXptVagsr0%3D10.1038/ngeo1830 – reference: CampoDJavierJ-FŠlapetaJLarkumAKeelingPJThe ‘other’ coral symbiont: ostreobium diversity and distributionISME J20171112962992742002910.1038/ismej.2016.101 – reference: PayneJLWagnerAThe causes of evolvability and their evolutionNat Rev Genet2018201243810.1038/s41576-018-0069-z – reference: PutnamHMStatMPochonXGatesRDEndosymbiotic flexibility associates with environmental sensitivity in scleractinian coralsProc Biol Sci R Soc201227917464352436110.1098/rspb.2012.1454 – reference: DixonGMatzMChanges in gene body methylation do not correlate with changes in gene expression in anthozoa or hexapodaBMC Genomics20222312341:CAS:528:DC%2BB38XpsVyjsbc%3D35337260895712110.1186/s12864-022-08474-z – reference: HackerottSMartellHAEirin-LopezJMCoral environmental memory: causes, mechanisms, and consequences for future reefsTrends Ecol Evol20213611101110233436617010.1016/j.tree.2021.06.014 – reference: VenkataramanYRDowney-WallAMRiesJWestfieldIWhiteSJRobertsSBLotterhosKEGeneral DNA methylation patterns and environmentally-induced differential methylation in the eastern oyster (Crassostrea Virginica)Front Mar Sci2020722510.3389/fmars.2020.00225 – reference: LibroSKaluziakSTVollmerSVRNA-seq profiles of immune related genes in the staghorn coral acropora cervicornis infected with white band diseasePLoS ONE2013811e818212013PLoSO...881821L24278460383674910.1371/journal.pone.0081821 – reference: AraiIKatoMHeywardAIkedaYIizukaTMaruyamaTLipid composition of positively buoyant eggs of reef building coralsCoral Reefs199312271751993CorRe..12...71A10.1007/BF00302104 – reference: Hoegh-GuldbergOPoloczanskaESSkirvingWDoveSCoral reef ecosystems under climate change and ocean acidificationFront Mar Sci20174May321 – reference: LöfgrenLForsbergG-BStåhlmanMThe BUME method: a new rapid and simple chloroform-free method for total lipid extraction of animal tissueSci Rep20166June276882016NatSR...627688L27282822490132410.1038/srep27688 – reference: TremblayPGoriAMaguerJFHoogenboomMFerrier-PagèsCHeterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stressSci Rep201610.1038/srep38112279221155138838 – reference: BaumgartenSCziesielskiMJThomasLMichellCTEsherickLYPringleJRArandaMVoolstraCREvidence for Mi RNA-mediated modulation of the host transcriptome in cnidarian-dinoflagellate symbiosisMol Ecol20182724034181:CAS:528:DC%2BC1cXlt1KktLk%3D2921874910.1111/mec.14452 – reference: ShiXNgD-KZhangCComaiLYeWJeffrey ChenZCis- and trans-regulatory divergence between progenitor species determines gene-expression novelty in arabidopsis allopolyploidsNat Commun20123July9502012NatCo...3..950S2280555710.1038/ncomms1954 – reference: DoneySCMary RuckelshausJDuffyEBarryJPChanFEnglishCAGalindoHMClimate change impacts on marine ecosystemsAnn Rev Mar Sci2012411372245796710.1146/annurev-marine-041911-111611 – reference: ParkinsonJEBartelsEDevlin-DuranteMKLusticCNedimyerKSchopmeyerSLirmanDLaJeunesseTCBaumsIBExtensive transcriptional variation poses a challenge to thermal stress biomarker development for endangered coralsMol Ecol2018275110311191:CAS:528:DC%2BC1cXnt1agurc%3D2941249010.1111/mec.14517 – reference: Bonamour S, Chevin L-M, Charmantier A, Teplitsky C (2019) Phenotypic plasticity in response to climate change: the importance of cue variation. Philos Trans R Soc Lond Ser B Biol Sci 374(1768):20180178 – reference: O’DonnellKELohrKEBartelsEBaumsIBPattersonJTAcropora cervicornis genet performance and symbiont identity throughout the restoration processCoral Reefs2018374110911182018CorRe..37.1109O10.1007/s00338-018-01743-y – reference: RossetSKosterGBrandsmaJHuntANPostleADD’AngeloCLipidome analysis of symbiodiniaceae reveals possible mechanisms of heat stress tolerance in reef coral symbiontsCoral Reefs2019386124112532019CorRe..38.1241R10.1007/s00338-019-01865-x – reference: KenkelCDMatzMVGene expression plasticity as a mechanism of coral adaptation to a variable environmentNat Ecol Evol201611142881256810.1038/s41559-016-0014 – reference: SolomonSLGrottoliAGWarnerMELevasSSchoepfVMuñoz-GarciaALipid class composition of annually bleached caribbean coralsMar Biol20191671710.1007/s00227-019-3616-z – reference: StraderMEWongJMHofmannGEOcean acidification promotes broad transcriptomic responses in marine metazoans: a literature surveyFront Zool202017February732095155702711210.1186/s12983-020-0350-9 – reference: Vidal-DupiolJZoccolaDTambuttéEGrunauCCosseauCSmithKMFreitagMDheillyNMAllemandDTambuttéSGenes related to ion-transport and energy production are upregulated in response to CO2-driven pH decrease in corals: new insights from transcriptome analysisPLoS ONE201383e586522013PLoSO...858652V1:CAS:528:DC%2BC3sXlvVOqu7w%3D23544045360976110.1371/journal.pone.0058652 – reference: WeizmanELevyOThe role of chromatin dynamics under global warming response in the symbiotic coral model aiptasiaCommun Biol20192August28231396562667775010.1038/s42003-019-0543-y – reference: FeelyRADoneySCCooleySROcean acidification: present conditions and future changes in a high-CO2 WorldOceanography2009224364710.5670/oceanog.2009.95 – reference: AnthonyKRNConnollySRHoegh-GuldbergOBleaching, energetics, and coral mortality risk: effects of temperature, light, and sediment regimeLimnol Oceanogr20075227167262007LimOc..52..716A10.4319/lo.2007.52.2.0716 – reference: DimondJLRobertsSBConvergence of DNA methylation profiles of the reef coral porites astreoides in a novel environmentFront Mar Sci2020679210.3389/fmars.2019.00792 – reference: YamashiroHOkuHOnagaKIwasakiHTakaraKCoral tumors store reduced level of lipidsJ Exp Mar Biol Ecol200126521711791:CAS:528:DC%2BD3MXos1Orsb8%3D10.1016/S0022-0981(01)00333-1 – reference: The Royal Society, and National Academy of Sciences (2014) Climate change: evidence and causes. National Academies Press – reference: LohmanBKWeberJNBolnickDIEvaluation of TagSeq, a reliable low-cost alternative for RNA seqMol Ecol Resour2016166131513211:CAS:528:DC%2BC28Xhs1Krs7bN2703750110.1111/1755-0998.12529 – reference: LewisCNeelyKRodriguez-LanettyMRecurring episodes of thermal stress shift the balance from a dominant host-specialist to a background host-generalist zooxanthella in the threatened pillar coral, Dendrogyra cylindrusFront Mar Sci201910.3389/fmars.2019.00005 – reference: van WoesikRShlesingerTGrottoliAGToonenRJThurberRVWarnerMEHulverAMCoral-bleaching responses to climate change across biological scalesGlob Change Biol202228144229425010.1111/gcb.16192 – reference: GrottoliAGRodriguesLJJuarezCLipids and stable carbon isotopes in two species of hawaiian corals, porites compressa and montipora verrucosa, following a bleaching eventMar Biol200414536216311:CAS:528:DC%2BD2cXnt1Glur0%3D10.1007/s00227-004-1337-3 – reference: GrummtILadurnerAGA metabolic throttle regulates the epigenetic state of rDNACell200813345775801:CAS:528:DC%2BD1cXmsVOrur8%3D1848586610.1016/j.cell.2008.04.026 – reference: PochonXPawlowskiJZaninettiLRowanRHigh genetic diversity and relative specificity among symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferansMar Biol200113961069107810.1007/s002270100674 – reference: Granados-CifuentesCBellantuonoAJRidgwayTHoegh-GuldbergORodriguez-LanettyMHigh natural gene expression variation in the reef-building coral acropora millepora: potential for acclimative and adaptive plasticityBMC Genomics201314April2281:CAS:528:DC%2BC3sXot1yhsLw%3D23565725363005710.1186/1471-2164-14-228 – reference: Liew YJ, Zoccola D, Li Y, Tambutté E, Venn AA, Michell CT, Cui G, et al (2018) Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Sci Adv 4(6):eaar8028 – reference: ThornhillDJLaJeunesseTCKempDWFittWKSchmidtGWMulti-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversionMar Biol2006148471172210.1007/s00227-005-0114-2 – reference: BayRAPalumbiSRRapid acclimation ability mediated by transcriptome changes in reef-building coralsGenome Biol Evol201576160216121:CAS:528:DC%2BC2MXhs1WhsrvK25979751449407310.1093/gbe/evv085 – reference: CavalliGHeardEAdvances in epigenetics link genetics to the environment and diseaseNature201957177664894992019Natur.571..489C1:CAS:528:DC%2BC1MXhsVeqs7rO3134130210.1038/s41586-019-1411-0 – reference: TowleEKEnochsICLangdonCThreatened caribbean coral is able to mitigate the adverse effects of ocean acidification on calcification by increasing feeding ratePLoS ONE201510.1371/journal.pone.0123394264016594581856 – volume: 28 start-page: 4229 issue: 14 year: 2022 ident: 2446_CR82 publication-title: Glob Change Biol doi: 10.1111/gcb.16192 – volume: 453 start-page: 353 issue: 7193 year: 2008 ident: 2446_CR69 publication-title: Nature doi: 10.1038/nature06937 – ident: 2446_CR1 – volume: 167 start-page: 7 issue: 1 year: 2019 ident: 2446_CR74 publication-title: Mar Biol doi: 10.1007/s00227-019-3616-z – ident: 2446_CR61 – volume: 11 start-page: 296 issue: 1 year: 2017 ident: 2446_CR14 publication-title: ISME J doi: 10.1038/ismej.2016.101 – year: 2015 ident: 2446_CR77 publication-title: PLoS ONE doi: 10.1371/journal.pone.0123394 – volume: 26 start-page: 343 issue: 2 year: 2020 ident: 2446_CR3 publication-title: Glob Change Biol doi: 10.1111/gcb.14901 – year: 2021 ident: 2446_CR16 publication-title: Bull Environ Contam Toxicol doi: 10.1007/s00128-020-03078-3 – ident: 2446_CR47 doi: 10.1126/sciadv.aat2142 – volume: 220 start-page: 1837 issue: Pt 10 year: 2017 ident: 2446_CR78 publication-title: J Exp Biol – volume: 27 start-page: 1103 issue: 5 year: 2018 ident: 2446_CR55 publication-title: Mol Ecol doi: 10.1111/mec.14517 – volume: 139 start-page: 1069 issue: 6 year: 2001 ident: 2446_CR57 publication-title: Mar Biol doi: 10.1007/s002270100674 – volume: 252 start-page: 221 issue: 2 year: 2000 ident: 2446_CR5 publication-title: J Exp Mar Biol Ecol doi: 10.1016/S0022-0981(00)00237-9 – volume: 11 start-page: e1005445 issue: 8 year: 2015 ident: 2446_CR87 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1005445 – year: 2012 ident: 2446_CR11 publication-title: PLoS ONE doi: 10.1371/journal.pone.0050685 – volume: 4 start-page: 321 issue: May year: 2017 ident: 2446_CR34 publication-title: Front Mar Sci – volume: 12 start-page: 71 issue: 2 year: 1993 ident: 2446_CR7 publication-title: Coral Reefs doi: 10.1007/BF00302104 – volume: 23 start-page: 234 issue: 1 year: 2022 ident: 2446_CR20 publication-title: BMC Genomics doi: 10.1186/s12864-022-08474-z – ident: 2446_CR2 doi: 10.32942/OSF.IO/GY5PR – volume: 14 start-page: 228 issue: April year: 2013 ident: 2446_CR28 publication-title: BMC Genomics doi: 10.1186/1471-2164-14-228 – volume: 701 start-page: 41 year: 2022 ident: 2446_CR36 publication-title: Mar Ecol Prog Ser doi: 10.3354/meps14192 – volume: 8 start-page: e58652 issue: 3 year: 2013 ident: 2446_CR84 publication-title: PLoS ONE doi: 10.1371/journal.pone.0058652 – volume: 7 start-page: 225 year: 2020 ident: 2446_CR83 publication-title: Front Mar Sci doi: 10.3389/fmars.2020.00225 – volume: 4 start-page: 11 year: 2012 ident: 2446_CR22 publication-title: Ann Rev Mar Sci doi: 10.1146/annurev-marine-041911-111611 – volume: 6 start-page: 792 year: 2020 ident: 2446_CR19 publication-title: Front Mar Sci doi: 10.3389/fmars.2019.00792 – volume: 145 start-page: 621 issue: 3 year: 2004 ident: 2446_CR29 publication-title: Mar Biol doi: 10.1007/s00227-004-1337-3 – volume: 148 start-page: 711 issue: 4 year: 2006 ident: 2446_CR76 publication-title: Mar Biol doi: 10.1007/s00227-005-0114-2 – volume: 8 start-page: e81821 issue: 11 year: 2013 ident: 2446_CR44 publication-title: PLoS ONE doi: 10.1371/journal.pone.0081821 – ident: 2446_CR88 doi: 10.1146/10.1038/nature15256 – volume: 133 start-page: 577 issue: 4 year: 2008 ident: 2446_CR30 publication-title: Cell doi: 10.1016/j.cell.2008.04.026 – ident: 2446_CR71 – volume: 3 start-page: 950 issue: July year: 2012 ident: 2446_CR72 publication-title: Nat Commun doi: 10.1038/ncomms1954 – year: 2019 ident: 2446_CR42 publication-title: Front Mar Sci doi: 10.3389/fmars.2019.00005 – ident: 2446_CR31 doi: 10.1007/978-0-387-89366-2_1 – volume: 24 start-page: 158 issue: 1 year: 2018 ident: 2446_CR39 publication-title: Glob Change Biol doi: 10.1111/gcb.13833 – volume: 6 start-page: 27688 issue: June year: 2016 ident: 2446_CR48 publication-title: Sci Rep doi: 10.1038/srep27688 – volume: 37 start-page: 1109 issue: 4 year: 2018 ident: 2446_CR53 publication-title: Coral Reefs doi: 10.1007/s00338-018-01743-y – volume: 3 start-page: 183 issue: 2 year: 2019 ident: 2446_CR66 publication-title: Nat Ecol Evol doi: 10.1038/s41559-018-0715-z – volume: 115 start-page: 13342 issue: 52 year: 2018 ident: 2446_CR21 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1813749115 – volume: 227 start-page: 3169 issue: 9 year: 2012 ident: 2446_CR23 publication-title: J Cell Physiol doi: 10.1002/jcp.24054 – volume: 56 start-page: 2402 issue: 6 year: 2011 ident: 2446_CR24 publication-title: Limnol Oceanogr doi: 10.4319/lo.2011.56.6.2402 – volume: 33 start-page: 1 issue: 1 year: 2014 ident: 2446_CR79 publication-title: Coral Reefs doi: 10.1007/s00338-013-1100-7 – year: 2019 ident: 2446_CR25 publication-title: Ann Rev Mar Sci doi: 10.1146/annurev-marine-010318-095114 – volume: 12 start-page: 666510 issue: July year: 2021 ident: 2446_CR33 publication-title: Front Microbiol doi: 10.3389/fmicb.2021.666510 – ident: 2446_CR45 doi: 10.1126/sciadv.aar8028 – volume: 16 start-page: 1315 issue: 6 year: 2016 ident: 2446_CR49 publication-title: Mol Ecol Resour doi: 10.1111/1755-0998.12529 – ident: 2446_CR52 doi: 10.1101/2022.05.10.491282 – volume: 19 start-page: 1063 issue: 4 year: 2019 ident: 2446_CR35 publication-title: Mol Ecol Resour doi: 10.1111/1755-0998.13004 – volume: 27 start-page: 1571 issue: 11 year: 2011 ident: 2446_CR40 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr167 – volume: 1 start-page: 14 issue: 1 year: 2016 ident: 2446_CR38 publication-title: Nat Ecol Evol doi: 10.1038/s41559-016-0014 – volume: 22 start-page: 36 issue: 4 year: 2009 ident: 2446_CR26 publication-title: Oceanography doi: 10.5670/oceanog.2009.95 – volume: 8 start-page: 490 issue: August year: 2017 ident: 2446_CR64 publication-title: Front Physiol doi: 10.3389/fphys.2017.00490 – volume: 3 start-page: 112 year: 2016 ident: 2446_CR18 publication-title: Front Mar Sci doi: 10.3389/fmars.2016.00112 – volume: 52 start-page: 716 issue: 2 year: 2007 ident: 2446_CR6 publication-title: Limnol Oceanogr doi: 10.4319/lo.2007.52.2.0716 – volume: 7 start-page: 822 year: 2020 ident: 2446_CR67 publication-title: Front Mar Sci doi: 10.3389/fmars.2020.560424 – volume: 265 start-page: 171 issue: 2 year: 2001 ident: 2446_CR86 publication-title: J Exp Mar Biol Ecol doi: 10.1016/S0022-0981(01)00333-1 – volume: 279 start-page: 4352 issue: 1746 year: 2012 ident: 2446_CR59 publication-title: Proc Biol Sci R Soc doi: 10.1098/rspb.2012.1454 – volume: 17 start-page: 557 issue: 9 year: 2019 ident: 2446_CR81 publication-title: Nat Rev Microbiol doi: 10.1038/s41579-019-0223-4 – volume: 27 start-page: 403 issue: 2 year: 2018 ident: 2446_CR8 publication-title: Mol Ecol doi: 10.1111/mec.14452 – volume: 11 start-page: e14629 issue: January year: 2023 ident: 2446_CR73 publication-title: PeerJ doi: 10.7717/peerj.14629 – volume: 3 start-page: 919 issue: 10 year: 2013 ident: 2446_CR58 publication-title: Nat Clim Chang doi: 10.1038/nclimate1958 – volume: 40 start-page: 893 issue: 3 year: 2021 ident: 2446_CR37 publication-title: Coral Reefs doi: 10.1007/s00338-021-02094-x – year: 2020 ident: 2446_CR17 publication-title: Mol Ecol doi: 10.1111/mec.15526 – volume: 38 start-page: 1241 issue: 6 year: 2019 ident: 2446_CR70 publication-title: Coral Reefs doi: 10.1007/s00338-019-01865-x – volume: 10 start-page: 254 issue: 3 year: 2020 ident: 2446_CR46 publication-title: Nat Clim Change doi: 10.1038/s41558-019-0687-2 – ident: 2446_CR51 doi: 10.14806/ej.17.1.200 – volume: 20 start-page: 24 issue: 1 year: 2018 ident: 2446_CR56 publication-title: Nat Rev Genet doi: 10.1038/s41576-018-0069-z – volume: 36 start-page: 1011 issue: 11 year: 2021 ident: 2446_CR32 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2021.06.014 – year: 2008 ident: 2446_CR50 publication-title: Nat Rev Genet doi: 10.1038/nrg2398 – year: 2016 ident: 2446_CR60 publication-title: Evol Appl doi: 10.1111/eva.12408 – volume: 288 start-page: 115 year: 2005 ident: 2446_CR9 publication-title: Mar Ecol Prog Ser doi: 10.3354/meps288115 – ident: 2446_CR4 – year: 2016 ident: 2446_CR80 publication-title: Sci Rep doi: 10.1038/srep38112 – volume: 2 start-page: 282 issue: August year: 2019 ident: 2446_CR85 publication-title: Commun Biol doi: 10.1038/s42003-019-0543-y – ident: 2446_CR12 doi: 10.1098/rstb.2018.0178 – volume: 6 start-page: 597 issue: 8 year: 2013 ident: 2446_CR63 publication-title: Nat Geosci doi: 10.1038/ngeo1830 – volume: 31 start-page: 588 issue: 2 year: 2022 ident: 2446_CR68 publication-title: Mol Ecol doi: 10.1111/mec.16246 – volume: 9 start-page: 357 issue: 4 year: 2012 ident: 2446_CR41 publication-title: Nat Methods doi: 10.1038/nmeth.1923 – volume: 571 start-page: 489 issue: 7766 year: 2019 ident: 2446_CR15 publication-title: Nature doi: 10.1038/s41586-019-1411-0 – volume: 17 start-page: 7 issue: February year: 2020 ident: 2446_CR75 publication-title: Front Zool doi: 10.1186/s12983-020-0350-9 – volume: 103 start-page: e3760 issue: 9 year: 2022 ident: 2446_CR43 publication-title: Ecology doi: 10.1002/ecy.3760 – volume: 30 start-page: 1381 issue: 6 year: 2021 ident: 2446_CR65 publication-title: Mol Ecol doi: 10.1111/mec.15820 – volume: 56 start-page: 1429 issue: 4 year: 2011 ident: 2446_CR27 publication-title: Limnol Oceanogr doi: 10.4319/lo.2011.56.4.1429 – volume: 7 start-page: 1602 issue: 6 year: 2015 ident: 2446_CR10 publication-title: Genome Biol Evol doi: 10.1093/gbe/evv085 – ident: 2446_CR13 doi: 10.24072/pcjournal.79 – volume: 32 start-page: 895 issue: 4 year: 2013 ident: 2446_CR54 publication-title: Coral Reefs doi: 10.1007/s00338-013-1046-9 |
SSID | ssj0005593 |
Score | 2.4219227 |
Snippet | Phenotypic plasticity is defined as a property of individual genotypes to produce different phenotypes when exposed to different environmental conditions. This... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 53 |
SubjectTerms | Acclimation Acclimatization Acropora cervicornis Anthropocene Biomedical and Life Sciences Clones Coral reefs Corals Environmental changes Environmental conditions Epigenetics Feeding behavior Feeding habits Freshwater & Marine Ecology Genotypes Life Sciences Microbial activity Microbiomes Microorganisms Oceanography Phenotypes Phenotypic plasticity Physiological responses Physiology Plastic properties Plasticity Symbionts Transcriptomes |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-EEQQXRXXFzl402Dapt32JCorIvhAXPBWmkdlD9vWbT3s__AHO5NNrQp6KBTahNBJZ74k831DyLHmWsfaeCziecyE5DmLE2EYj5IsEIkKZYJE4bv76GYkbl_CF7fhVru0ytYnWketS4V75GcQloJgwP0kPK_eGFaNwtNVV0JjkSyDC45h8bV8Obx_fOqSPJzs7gCWXLBSih1txpLnsIxZzCBmwQWLIpb8DE0d3vx1RGojz_UGWXeQkV7MbbxJFkzRIytDKzc965G1B2WywilPb5EPS6llSDam6kuNeU62pGVOJwa5vuN6UlObpm7rXRWvtCkp9DDWFJO-ymZWQfsKoDVmXTczOi4oQEVoMsWhYN0vuKPKehqkdtUU2WhTqjHPA-la9DuFbpuMrofPVzfMlV5gyh_whhkZCa1QTM0IGUkBlvQyADvaCzMJCMhTPjeAJLSXKO0Z1LGLM5NFmOqmB5IHO2SpKAuzS2Akucl5IEPALsL4IjNhJoSGS8L8yUWfnLRfPa3mChvpl5aytVEKNkqtjdKkTw5aw6Tub6vTbm70yWlrrO7x373t_d_bPln14c15kvYBWWqm7-YQMEgjj9xE-wT-0N0W priority: 102 providerName: ProQuest |
Title | Multi-omic characterization of mechanisms contributing to rapid phenotypic plasticity in the coral Acropora cervicornis under divergent environments |
URI | https://link.springer.com/article/10.1007/s00338-023-02446-9 https://www.proquest.com/docview/2933370295 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS8MwFH7ohiCC6FSczpGDNw2kbdq1xymdojhFHMxTaZpUdlg31nrY__AH-5K2m4oePIQW2oTQ95p8j7zvewDnkknpS2VRj6U-5YKl1A-4oswLYocHiSsCTRR-GHq3I343dscVKSyvs93rI0mzUq_IbrrsmE9xj8GGQQwNNqHp6tgdvXhk99eJHZXUbg_DLIyO_Ioq8_sY37ejNcb8cSxqdpvBHuxWMJH0S7vuw4bKWrAVGonpZQt2HhMVZ5Xa9AF8GBot1QRjkqwUmEuCJZmlZKo0v3eST3NiUtNNjavsjRQzgiNMJNGJXrNiOcf-c4TTOtO6WJJJRhAeYpeFnoqu9YV3JDGri6Zz5UQz0BZE6twOTdEiX2lzhzAahC_Xt7Qqt0ATu8cKqoTHZaIF1BQXnuBoPStGgCMtNxaIeqzEZgrRg7SCRFpKa9f5sYo9nd4me4I5R9DIZpk6BpxJqlLmCBfxClc2j5Ubcy6xCfSZlLfhov7q0bxU1YhW-snGRhHaKDI2ioI2dGrDRNUflkcIUxynx-zAbcNlbaz1479HO_nf66ewjT7Gy0TtDjSKxbs6QxxSiC40-zev9yFer8Lh03PXuOEnHIPbxQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9RAEB_OK6IUim0Vr7Z2H_RJFzfJJpc8SNF65WrbU6SFvqXZP5F7aHK9pMh9Dz-Hn9GZTXKnQn3rw0Ig7GTJTHZmsvP7DcArI4yJjfV4JPKYSyVyHifSchElWSATHaqEgMJnk2h8IT9fhpc9-NVhYaisstsT3UZtSk3_yN-hWwqCofCT8GB2w6lrFJ2udi00GrM4sYsfmLJV748_oX5f-_7R6PxwzNuuAlz7Q1FzqyJpNPGEWakiJXGRXoZ-3HhhptC5e9oXFp2k8RJtPEsUbXFms4iquMxQiQDlPoA1GWAq04e1j6PJ12-ropKW5neIKR5mZnEL03FgPWqbFnP0kTjw8Tz52xWu4tt_jmSdpzt6AhttiMo-NDa1CT1bbMHDkaO3XmzB-hdts6Jlut6Gnw7CywnczPSS_bkBd7IyZ9eWsMXT6rpirize9dcqvrO6ZChhahgVmZX1YobzZxjKU5V3vWDTgmFoilPmtBTqM4ZXTLudjaBkFSP025wZqisheBj7E7L3FC7uRSnPoF-UhX0OuJLc5iJQIcZK0voys2EmpcGh0F5zOYA33VtPZw2jR7rkbnY6SlFHqdNRmgxgt1NM2n7dVbqyxQG87ZS1un23tJ3_S9uHR-Pzs9P09Hhy8gIe-zirKRDfhX49v7V7GP_U6mVrdAyu7tvOfwPNpBkY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFUWEotXiaVv3QZ906SbZfD2U0o87WqtnEQt9S7MfKffQ5LxE5P4P_xr_us5skl4V9K0PC4GwkyUz2ZnJ_n4zAG-NMCYx1uORKBIulSh4kkrLRZTmgUx1qFIiCn-eRMfn8uNFeLECv3suDMEq-z3RbdSm0vSPfAfdUhDEwk_DnaKDRZwdjfdm3zl1kKKT1r6dRmsip3bxE9O3evfkCHX9zvfHo2-Hx7zrMMC1H4uGWxVJo6lmmJUqUhIX7OXo040X5godvad9YdFhGi_VxrNUri3JbR4RosvESgQo9wGsxpgViQGsHowmZ1-XAJOu5G-M6R5maUlH2XHEPWqhlnD0lzjw8Tz90y0uY92_jmed1xs_hbUuXGX7rX09gxVbrsPDkSt1vViHJ1-0zcuu6vVz-OXovJyIzkzfVoJuiZ6sKti1JZ7xtL6umYPIu15b5RVrKoYSpoYR4KxqFjOcP8OwnhDfzYJNS4ZhKk6Z01Ko5xheMe12OaKV1YyYcHNmCGNCVDF2l773As7vRSkbMCir0r4EXElhCxGoEOMmaX2Z2zCX0uBQaLuFHML7_q1ns7a6R3Zbx9npKEMdZU5HWTqEzV4xWfel19nSLofwoVfW8va_pb36v7Q38AjtO_t0Mjl9DY99nNRixTdh0Mx_2C0MhRq13dkcg8v7NvMbq78dTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-omic+characterization+of+mechanisms+contributing+to+rapid+phenotypic+plasticity+in+the+coral+Acropora+cervicornis+under+divergent+environments&rft.jtitle=Coral+reefs&rft.au=Rodriguez-Casariego%2C+Javier+A.&rft.au=Mercado-Molina%2C+Alex&rft.au=Lemos%2C+Leila+Soledade&rft.au=Quinete%2C+Natalia+Soares&rft.date=2024-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0722-4028&rft.eissn=1432-0975&rft.volume=43&rft.issue=1&rft.spage=53&rft.epage=66&rft_id=info:doi/10.1007%2Fs00338-023-02446-9&rft.externalDocID=10_1007_s00338_023_02446_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0722-4028&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0722-4028&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0722-4028&client=summon |