Extraction of entity relationships serving the field of agriculture food safety regulation

Agriculture food (agri-food) safety is closely related to all aspects of people's lives. In recent years, with the emergence of deep learning technology based on big data, the extraction of information relations in the field of agri-food safety supervision has become a research hotspot. However...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 15; no. 12; pp. 6077 - 6092
Main Authors Zhao, Zhihua, Liu, Yiming, Lv, Dongdong, Li, Ruixuan, Yu, Xudong, Mao, Dianhui
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-8071
1868-808X
DOI10.1007/s13042-024-02304-2

Cover

Abstract Agriculture food (agri-food) safety is closely related to all aspects of people's lives. In recent years, with the emergence of deep learning technology based on big data, the extraction of information relations in the field of agri-food safety supervision has become a research hotspot. However, most of the current work only expands the relationship recognition based on the traditional named entity recognition task, which makes it difficult to establish a true 'connection' between entities and relationships. The pipelined and federated extraction architectures that have emerged in this area are problematic in practice. In addition, the contextual information of the text corpus in the agri-food safety regulatory domain has not been fully utilized. To address the above issues, this paper proposes a semi-joint entity relationship extraction model (EB-SJRE) based on contextual entity boundary features. Firstly, a Token pair subject-object correspondence matrix label is designed to intuitively model the subject-object boundary, which is more friendly to complex entities in the field of agri-food safety regulation. Secondly, the dynamic fine-tuning of Bert makes the text embedding more relevant to the textual context of the agri-food safety regulation domain. Finally, we introduce an attention mechanism in the Token pair tagging framework to capture deep semantic subject-object boundary association information, which cleverly solves the problem of bias exposure due to the pipeline structure and the dimensional explosion due to the joint extraction structure. The experimental results show that our model achieves the best F1-score of 88.71% on agri-food safety regulation domain data and F1-scores of 92.36%, 92.80%, 88.91%, and 92.21% on NYT, NYT-star, WebNLG, and WebNLG-star, respectively. This indicates that EB-SJRE has excellent generalization ability in both the agri-food safety regulatory and public sectors.
AbstractList Agriculture food (agri-food) safety is closely related to all aspects of people's lives. In recent years, with the emergence of deep learning technology based on big data, the extraction of information relations in the field of agri-food safety supervision has become a research hotspot. However, most of the current work only expands the relationship recognition based on the traditional named entity recognition task, which makes it difficult to establish a true 'connection' between entities and relationships. The pipelined and federated extraction architectures that have emerged in this area are problematic in practice. In addition, the contextual information of the text corpus in the agri-food safety regulatory domain has not been fully utilized. To address the above issues, this paper proposes a semi-joint entity relationship extraction model (EB-SJRE) based on contextual entity boundary features. Firstly, a Token pair subject-object correspondence matrix label is designed to intuitively model the subject-object boundary, which is more friendly to complex entities in the field of agri-food safety regulation. Secondly, the dynamic fine-tuning of Bert makes the text embedding more relevant to the textual context of the agri-food safety regulation domain. Finally, we introduce an attention mechanism in the Token pair tagging framework to capture deep semantic subject-object boundary association information, which cleverly solves the problem of bias exposure due to the pipeline structure and the dimensional explosion due to the joint extraction structure. The experimental results show that our model achieves the best F1-score of 88.71% on agri-food safety regulation domain data and F1-scores of 92.36%, 92.80%, 88.91%, and 92.21% on NYT, NYT-star, WebNLG, and WebNLG-star, respectively. This indicates that EB-SJRE has excellent generalization ability in both the agri-food safety regulatory and public sectors.
Author Liu, Yiming
Li, Ruixuan
Yu, Xudong
Mao, Dianhui
Lv, Dongdong
Zhao, Zhihua
Author_xml – sequence: 1
  givenname: Zhihua
  surname: Zhao
  fullname: Zhao, Zhihua
  organization: School of Law, China University of Political Science and Law
– sequence: 2
  givenname: Yiming
  orcidid: 0000-0003-1204-9453
  surname: Liu
  fullname: Liu, Yiming
  organization: National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University
– sequence: 3
  givenname: Dongdong
  surname: Lv
  fullname: Lv, Dongdong
  organization: National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University
– sequence: 4
  givenname: Ruixuan
  surname: Li
  fullname: Li, Ruixuan
  organization: National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University
– sequence: 5
  givenname: Xudong
  surname: Yu
  fullname: Yu, Xudong
  organization: National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University
– sequence: 6
  givenname: Dianhui
  surname: Mao
  fullname: Mao, Dianhui
  email: maodh@th.btbu.edu.cn
  organization: National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University
BookMark eNp9kE1LAzEQhoNUsNb-AU8LnlfzsZtsj1LqBxS8KIiXkGYn25R1U5Os2H9vtit6c2CYYXifGeY9R5POdYDQJcHXBGNxEwjDBc0xLVKmNqcnaEoqXuUVrl4nv70gZ2gewg6n4JgxTKfobfUVvdLRui5zJoMu2njIPLRqGIWt3YcsgP-0XZPFLWTGQlsPStV4q_s29j4NnauzoAwc0aYf4Qt0alQbYP5TZ-jlbvW8fMjXT_ePy9t1rqnAMQchsDKqhpJwKGtjSFWVbLNRoFXBaF2bhdCCLHihAAsj6goM5wI0aCw4BTZDV-PevXcfPYQod673XTopGaHpd1YWZVLRUaW9C8GDkXtv35U_SILlYKMcbZTJRnm0UdIEsREKSdw14P9W_0N9A2kLeUw
Cites_doi 10.3390/su12114383
10.1016/j.bspc.2018.08.035
10.1111/1541-4337.12540
10.11975/j.issn.1002-6819.2021.14.023
10.1109/ACCESS.2020.2980859
10.1016/j.jnca.2021.103076
10.1109/JIOT.2020.2998584
10.1016/j.compag.2022.106776
10.1016/j.physd.2019.132306
10.1016/j.ipm.2020.102373
10.1007/s12145-020-00527-9
10.1016/j.engappai.2023.105899
10.1093/jamia/ocz166
10.1007/s11431-020-1673-6
10.1016/j.aei.2023.102004
10.1108/RAMJ-05-2020-0022
10.1080/10408398.2020.1830262
10.1016/j.compag.2022.107517
10.1016/j.tifs.2021.08.032
10.1155/2022/1879483
10.15918/j.jbit1004-0579.2023.004
10.1007/s42235-023-00386-2
10.2196/publichealth.9361
10.1016/j.asoc.2020.106205
10.1093/bioinformatics/btz682
10.1371/journal.pone.0220976
10.1016/j.compag.2019.05.019
10.1016/j.jbi.2022.104135
10.1016/j.knosys.2021.106888
10.24963/ijcai.2020/524
10.18653/v1/P17-1017
10.48550/arXiv.2010.13415
10.48550/arXiv.1905.05526
10.18653/v1/P18-1047
10.1007/978-981-99-3315-0_51
10.1007/978-3-642-15939-8_10
10.48550/arXiv.1810.04805
10.1109/MWSCAS.2017.8053243
10.1007/978-3-030-58558-7_29
10.48550/arXiv.2106.09895
10.1609/aaai.v36i10.21379
10.1609/aaai.v29i1.9513
10.48550/arXiv.1909.03227
10.1145/3488560.3498409
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s13042-024-02304-2
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Agriculture
EISSN 1868-808X
EndPage 6092
ExternalDocumentID 10_1007_s13042_024_02304_2
GrantInformation_xml – fundername: Beijing Science Foundation
  grantid: 9232005
– fundername: Social Science and Humanity on Fund of the ministry of Education
  grantid: 23YJAZH216
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
JQ2
ID FETCH-LOGICAL-c270t-e770afade516e5dff18853bbaeca432ddf97c71964ae07f7d8ef667ecec0762e3
IEDL.DBID U2A
ISSN 1868-8071
IngestDate Fri Jul 25 11:08:54 EDT 2025
Tue Jul 01 03:51:06 EDT 2025
Fri Feb 21 02:36:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Relation extraction
Attention mechanisms
Bert
Agriculture food safety regulation
RCNN
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-e770afade516e5dff18853bbaeca432ddf97c71964ae07f7d8ef667ecec0762e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1204-9453
PQID 3121863545
PQPubID 2043904
PageCount 16
ParticipantIDs proquest_journals_3121863545
crossref_primary_10_1007_s13042_024_02304_2
springer_journals_10_1007_s13042_024_02304_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Tao, Yang, Feng (CR3) 2020; 19
Lee, Yoon, Kim, Kim, Kim, So, Kang (CR15) 2020; 36
Zuo, Zhang, Zhang, Yan, Ai (CR21) 2022
CR18
CR39
Qiu, Xie, Wu, Tao (CR13) 2020; 13
CR38
Henry, Buchan, Filannino, Stubbs, Uzuner (CR12) 2020; 27
CR37
CR36
CR32
CR31
Sherstinsky (CR41) 2020; 404
Yang, Yu, Sun (CR10) 2021; 37
CR30
Talari, Cummins, McNamara, O'Brien (CR11) 2022; 126
Liu, Tan, Fan, Tan, Hu, Dong (CR27) 2022; 132
Zhao, Xu, Cheng, Li, Gao (CR40) 2021; 219
Munkhdalai, Liu, Yu (CR19) 2018; 4
Lyu, Choi (CR9) 2020; 12
Akkem, Biswas, Varanasi (CR25) 2023; 120
Hong, Liu, Yang, Zhang, Wen, Hu (CR28) 2020; 8
Jang, Kim, Kim (CR17) 2019; 14
Rajeswari, Madhavan, Venkatesakumar, Riasudeen (CR8) 2020; 14
Mao, Wang, Liu, Zhang, Wu, Chen (CR6) 2023; 32
CR26
CR24
CR46
CR23
CR45
Yu, Jung, Park, Hu, Huang, Rasco, Chen (CR4) 2022; 62
Mao, Sun, Li, Yu, Wu, Zhang (CR7) 2023; 204
CR22
Hu, Zheng, Abualigah, Hussien (CR33) 2023; 57
CR44
Abu-Salih (CR2) 2021; 185
Rong, Xie, Ying (CR5) 2019; 162
Guo, Lu, Tang, Bai, Diao, Zhou, Li (CR16) 2022; 194
CR42
Misra, Dixit, Al-Mallahi, Bhullar, Upadhyay, Martynenko (CR1) 2020; 9
Long, Chen, He, Wu, Ren (CR14) 2020; 91
Liu (CR29) 2020; 63
Yang, Yu, Sun (CR35) 2021; 37
Zare, Ghasemi, Zahedi, Golalipour, Mohammadi, Mirjalili, Abualigah (CR34) 2023; 20
Wen, Zhu, Zhang, Li (CR20) 2020; 57
Zhao, Mao, Chen (CR43) 2019; 47
M Zuo (2304_CR21) 2022
K Zhao (2304_CR40) 2021; 219
K Liu (2304_CR29) 2020; 63
G Talari (2304_CR11) 2022; 126
X Guo (2304_CR16) 2022; 194
Q Qiu (2304_CR13) 2020; 13
X Liu (2304_CR27) 2022; 132
J Zhao (2304_CR43) 2019; 47
H Wen (2304_CR20) 2020; 57
D Mao (2304_CR7) 2023; 204
2304_CR24
2304_CR46
2304_CR23
2304_CR45
2304_CR22
Y Hong (2304_CR28) 2020; 8
H Yang (2304_CR35) 2021; 37
2304_CR44
Z Yu (2304_CR4) 2022; 62
2304_CR26
J Lee (2304_CR15) 2020; 36
2304_CR42
NN Misra (2304_CR1) 2020; 9
J Long (2304_CR14) 2020; 91
T Munkhdalai (2304_CR19) 2018; 4
G Hu (2304_CR33) 2023; 57
B Jang (2304_CR17) 2019; 14
B Rajeswari (2304_CR8) 2020; 14
M Zare (2304_CR34) 2023; 20
B Abu-Salih (2304_CR2) 2021; 185
D Tao (2304_CR3) 2020; 19
2304_CR18
F Lyu (2304_CR9) 2020; 12
2304_CR32
D Rong (2304_CR5) 2019; 162
D Mao (2304_CR6) 2023; 32
2304_CR39
2304_CR38
2304_CR37
2304_CR36
Y Akkem (2304_CR25) 2023; 120
2304_CR31
A Sherstinsky (2304_CR41) 2020; 404
2304_CR30
H Yang (2304_CR10) 2021; 37
S Henry (2304_CR12) 2020; 27
References_xml – ident: CR45
– volume: 12
  start-page: 4383
  issue: 11
  year: 2020
  ident: CR9
  article-title: The forecasting sales volume and satisfaction of organic products through text mining on web customer reviews
  publication-title: Sustainability
  doi: 10.3390/su12114383
– ident: CR22
– volume: 47
  start-page: 312
  year: 2019
  end-page: 323
  ident: CR43
  article-title: Speech emotion recognition using deep 1D & 2D CNN LSTM networks
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2018.08.035
– ident: CR18
– volume: 19
  start-page: 875
  issue: 2
  year: 2020
  end-page: 894
  ident: CR3
  article-title: Utilization of text mining as a big data analysis tool for food science and nutrition
  publication-title: Compr Rev Food Sci Food Saf
  doi: 10.1111/1541-4337.12540
– volume: 37
  start-page: 204
  issue: 14
  year: 2021
  end-page: 212
  ident: CR10
  article-title: Fishery standard entity relation extraction using dual attention mechanism
  publication-title: Trans Chin Soc Agric Eng
  doi: 10.11975/j.issn.1002-6819.2021.14.023
– volume: 8
  start-page: 51315
  year: 2020
  end-page: 51323
  ident: CR28
  article-title: Improving graph convolutional networks based on relation-aware attention for end-to-end relation extraction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980859
– volume: 185
  year: 2021
  ident: CR2
  article-title: Domain-specific knowledge graphs: a survey
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2021.103076
– ident: CR39
– ident: CR37
– ident: CR30
– volume: 9
  start-page: 6305
  issue: 9
  year: 2020
  end-page: 6324
  ident: CR1
  article-title: IoT, big data, and artificial intelligence in agriculture and food industry
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.2998584
– volume: 194
  year: 2022
  ident: CR16
  article-title: CG-ANER: enhanced contextual embeddings and glyph features-based agricultural named entity recognition
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2022.106776
– volume: 404
  year: 2020
  ident: CR41
  article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network
  publication-title: Phys D
  doi: 10.1016/j.physd.2019.132306
– ident: CR42
– ident: CR23
– volume: 57
  issue: 6
  year: 2020
  ident: CR20
  article-title: A gated piecewise CNN with entity-aware enhancement for distantly supervised relation extraction
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2020.102373
– volume: 13
  start-page: 1393
  year: 2020
  end-page: 1410
  ident: CR13
  article-title: Automatic spatiotemporal and semantic information extraction from unstructured geoscience reports using text mining techniques
  publication-title: Earth Sci Inf
  doi: 10.1007/s12145-020-00527-9
– volume: 120
  year: 2023
  ident: CR25
  article-title: Smart farming using artificial intelligence: a review
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.105899
– volume: 27
  start-page: 3
  issue: 1
  year: 2020
  end-page: 12
  ident: CR12
  article-title: 2018 n2c2 shared task on adverse drug events and medication extraction in electronic health records
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocz166
– ident: CR46
– ident: CR44
– volume: 63
  start-page: 1971
  issue: 10
  year: 2020
  end-page: 1989
  ident: CR29
  article-title: A survey on neural relation extraction
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-020-1673-6
– volume: 57
  year: 2023
  ident: CR33
  article-title: DETDO: an adaptive hybrid dandelion optimizer for engineering optimization
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2023.102004
– volume: 14
  start-page: 155
  issue: 2
  year: 2020
  end-page: 167
  ident: CR8
  article-title: Sentiment analysis of consumer reviews–a comparison of organic and regular food products usage
  publication-title: Rajagiri Manag J
  doi: 10.1108/RAMJ-05-2020-0022
– volume: 62
  start-page: 905
  issue: 4
  year: 2022
  end-page: 916
  ident: CR4
  article-title: Smart traceability for food safety
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408398.2020.1830262
– ident: CR38
– volume: 204
  year: 2023
  ident: CR7
  article-title: Real-time fruit detection using deep neural networks on CPU (RTFD): an edge AI application
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2022.107517
– volume: 126
  start-page: 192
  year: 2022
  end-page: 204
  ident: CR11
  article-title: State of the art review of big data and web-based decision support systems (DSS) for food safety risk assessment with respect to climate change
  publication-title: Trends Food Sci Technol
  doi: 10.1016/j.tifs.2021.08.032
– year: 2022
  ident: CR21
  article-title: An entity relation extraction method for few-shot learning on the food health and safety domain
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/1879483
– ident: CR31
– volume: 32
  start-page: 363
  issue: 3
  year: 2023
  end-page: 373
  ident: CR6
  article-title: YOLO-banana: an effective grading method for banana appearance quality
  publication-title: J Beijing Inst Technol
  doi: 10.15918/j.jbit1004-0579.2023.004
– volume: 20
  start-page: 2359
  issue: 5
  year: 2023
  end-page: 2388
  ident: CR34
  article-title: A global best-guided firefly algorithm for engineering problems
  publication-title: J Bionic Eng
  doi: 10.1007/s42235-023-00386-2
– volume: 4
  issue: 2
  year: 2018
  ident: CR19
  article-title: Clinical relation extraction toward drug safety surveillance using electronic health record narratives: classical learning versus deep learning
  publication-title: JMIR Public Health Surveill
  doi: 10.2196/publichealth.9361
– ident: CR32
– volume: 91
  year: 2020
  ident: CR14
  article-title: An integrated framework of deep learning and knowledge graph for prediction of stock price trend: an application in Chinese stock exchange market
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106205
– ident: CR36
– volume: 36
  start-page: 1234
  issue: 4
  year: 2020
  end-page: 1240
  ident: CR15
  article-title: BioBERT: a pre-trained biomedical language representation model for biomedical text mining
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz682
– volume: 14
  issue: 8
  year: 2019
  ident: CR17
  article-title: Word2vec convolutional neural networks for classification of news articles and tweets
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0220976
– ident: CR26
– ident: CR24
– volume: 37
  start-page: 204
  issue: 14
  year: 2021
  end-page: 212
  ident: CR35
  article-title: Fishery standard entity relation extraction using dual attention mechanism
  publication-title: Trans Chin Soc Agric Eng
– volume: 162
  start-page: 1001
  year: 2019
  end-page: 1010
  ident: CR5
  article-title: Computer vision detection of foreign objects in walnuts using deep learning
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.05.019
– volume: 132
  year: 2022
  ident: CR27
  article-title: A Syntax-enhanced model based on category keywords for biomedical relation extraction
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2022.104135
– volume: 219
  year: 2021
  ident: CR40
  article-title: Representation iterative fusion based on heterogeneous graph neural network for joint entity and relation extraction
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.106888
– volume: 19
  start-page: 875
  issue: 2
  year: 2020
  ident: 2304_CR3
  publication-title: Compr Rev Food Sci Food Saf
  doi: 10.1111/1541-4337.12540
– ident: 2304_CR38
  doi: 10.24963/ijcai.2020/524
– volume: 14
  start-page: 155
  issue: 2
  year: 2020
  ident: 2304_CR8
  publication-title: Rajagiri Manag J
  doi: 10.1108/RAMJ-05-2020-0022
– volume: 194
  year: 2022
  ident: 2304_CR16
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2022.106776
– volume: 27
  start-page: 3
  issue: 1
  year: 2020
  ident: 2304_CR12
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocz166
– volume: 132
  year: 2022
  ident: 2304_CR27
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2022.104135
– year: 2022
  ident: 2304_CR21
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/1879483
– volume: 62
  start-page: 905
  issue: 4
  year: 2022
  ident: 2304_CR4
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408398.2020.1830262
– volume: 162
  start-page: 1001
  year: 2019
  ident: 2304_CR5
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.05.019
– ident: 2304_CR45
  doi: 10.18653/v1/P17-1017
– volume: 9
  start-page: 6305
  issue: 9
  year: 2020
  ident: 2304_CR1
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.2998584
– volume: 91
  year: 2020
  ident: 2304_CR14
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106205
– ident: 2304_CR31
  doi: 10.48550/arXiv.2010.13415
– ident: 2304_CR36
  doi: 10.48550/arXiv.1905.05526
– volume: 57
  issue: 6
  year: 2020
  ident: 2304_CR20
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2020.102373
– volume: 57
  year: 2023
  ident: 2304_CR33
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2023.102004
– ident: 2304_CR37
  doi: 10.18653/v1/P18-1047
– ident: 2304_CR46
  doi: 10.1007/978-981-99-3315-0_51
– volume: 36
  start-page: 1234
  issue: 4
  year: 2020
  ident: 2304_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz682
– ident: 2304_CR44
  doi: 10.1007/978-3-642-15939-8_10
– volume: 126
  start-page: 192
  year: 2022
  ident: 2304_CR11
  publication-title: Trends Food Sci Technol
  doi: 10.1016/j.tifs.2021.08.032
– volume: 12
  start-page: 4383
  issue: 11
  year: 2020
  ident: 2304_CR9
  publication-title: Sustainability
  doi: 10.3390/su12114383
– ident: 2304_CR18
  doi: 10.48550/arXiv.1810.04805
– volume: 185
  year: 2021
  ident: 2304_CR2
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2021.103076
– ident: 2304_CR26
– ident: 2304_CR42
  doi: 10.1109/MWSCAS.2017.8053243
– volume: 120
  year: 2023
  ident: 2304_CR25
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.105899
– volume: 32
  start-page: 363
  issue: 3
  year: 2023
  ident: 2304_CR6
  publication-title: J Beijing Inst Technol
  doi: 10.15918/j.jbit1004-0579.2023.004
– ident: 2304_CR32
  doi: 10.1007/978-3-030-58558-7_29
– ident: 2304_CR39
  doi: 10.48550/arXiv.2106.09895
– volume: 47
  start-page: 312
  year: 2019
  ident: 2304_CR43
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2018.08.035
– volume: 37
  start-page: 204
  issue: 14
  year: 2021
  ident: 2304_CR10
  publication-title: Trans Chin Soc Agric Eng
  doi: 10.11975/j.issn.1002-6819.2021.14.023
– volume: 63
  start-page: 1971
  issue: 10
  year: 2020
  ident: 2304_CR29
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-020-1673-6
– volume: 204
  year: 2023
  ident: 2304_CR7
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2022.107517
– volume: 404
  year: 2020
  ident: 2304_CR41
  publication-title: Phys D
  doi: 10.1016/j.physd.2019.132306
– volume: 14
  issue: 8
  year: 2019
  ident: 2304_CR17
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0220976
– ident: 2304_CR30
  doi: 10.1609/aaai.v36i10.21379
– volume: 37
  start-page: 204
  issue: 14
  year: 2021
  ident: 2304_CR35
  publication-title: Trans Chin Soc Agric Eng
– volume: 8
  start-page: 51315
  year: 2020
  ident: 2304_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980859
– volume: 4
  issue: 2
  year: 2018
  ident: 2304_CR19
  publication-title: JMIR Public Health Surveill
  doi: 10.2196/publichealth.9361
– volume: 13
  start-page: 1393
  year: 2020
  ident: 2304_CR13
  publication-title: Earth Sci Inf
  doi: 10.1007/s12145-020-00527-9
– ident: 2304_CR24
  doi: 10.1609/aaai.v29i1.9513
– ident: 2304_CR22
  doi: 10.48550/arXiv.1909.03227
– volume: 219
  year: 2021
  ident: 2304_CR40
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.106888
– ident: 2304_CR23
  doi: 10.1145/3488560.3498409
– volume: 20
  start-page: 2359
  issue: 5
  year: 2023
  ident: 2304_CR34
  publication-title: J Bionic Eng
  doi: 10.1007/s42235-023-00386-2
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.3328133
Snippet Agriculture food (agri-food) safety is closely related to all aspects of people's lives. In recent years, with the emergence of deep learning technology based...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 6077
SubjectTerms Agriculture
Algorithms
Artificial Intelligence
Big Data
Complex Systems
Computational Intelligence
Control
Deep learning
Engineering
Food safety
Mechatronics
Original Article
Pattern Recognition
Recognition
Regulation
Robotics
Safety standards
Semantics
Sparsity
Systems Biology
Title Extraction of entity relationships serving the field of agriculture food safety regulation
URI https://link.springer.com/article/10.1007/s13042-024-02304-2
https://www.proquest.com/docview/3121863545
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6yXfQgbipO58jBg6KBtumS7rjJ5lDcycH0UtImmV7W0U7Q_96XNLUqevBUSPMD3kve-5K89wWhM19oKhSTxI8Sj4CHZiRimpMgBWekB5GvbH7F_YxN5-Htor9wSWFFFe1eXUlaS10nu5mdNwGfQgxuDgkY3mYf9u5mOc6DYTWLqG_4VWonS2loeaY-T148BmVlMGLEIsPG67tsmt-H-e6xahj64-bUOqTJHtp1SBIPS9W30JZatdHOF37BNmq5lVvgc0cvfbGPnsZvm7xMZ8CZxjZP9x3nVVDc88u6wOaoFnrAgA6xjXEzNcUyd0QdUJhlEhdCK9t06d4AO0DzyfjhekrcCwskDbi3IYpzT2ghVd9nqi-19iNw30kiVCpCGkipBzzlhrNLKI9rLiOlGeMqVakHVlTRQ9RYZSt1hDADUwBYSg4GgQ4FkxHXmnIvDKlWCbTroMtKivG6JNKIa8pkI_MYZB5bmcdBB3UrQcduURUxaBY0RgHzddBVJfz699-9Hf-v-gnaDoz-bdBKFzU2-as6BeixSXqoOZyMRjPzvXm8G_fszPsAFNHPgQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4MHtSDEdSIovbgQaNNtnW05UgMBhU4QUK8LN3aohdGGCb63_taOqdGD177a8lr-75v7XtfEboIpaFSM0VCkQYEEJoRwQwnUQZgZDoi1C6_Yjhi_Un8MG1PfVJYUUa7l1eSzlNXyW72z5sAphDLm2MCjncTyICw7xZMom65imho9VUqkKU0djpTnycvAYOydTCiYMKq8YY-m-b3z3xHrIqG_rg5dYB0t4d2PZPE3fXU19GGnjfQzhd9wQaq-51b4EsvL321j556b6vlOp0B5wa7PN13vCyD4p5fFgW2R7UwAgZ2iF2Mm20pZ0sv1AGFea5wIY12XWf-DbADNLnrjW_7xL-wQLKIByuiOQ-kkUq3Q6bbyphQAHynqdSZjGmklOnwjFvNLqkDbrgS2jDGdaazALyopoeoNs_n-ghhBq4AuJTqdCITS6YEN4byII6p0Sn0a6Lr0orJYi2kkVSSydbmCdg8cTZPoiZqlYZO_KYqEphZmDEKnK-JbkrjV9V_j3b8v-bnaKs_Hg6Swf3o8QRtR3YtuACWFqqtlq_6FGjIKj1zq-4DATfPZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6iIHoQNxWnU3PwoGhY23RJexy6MX8NDw6Gl5I2yfTSjbWC_ve-pK2dogevaZLCy8v7XpP3fUXo1BWaCsUkcYPYIYDQjARMc-IlAEY6DFxl-RUPIzYc-7eT7mSJxW-r3asryYLTYFSa0rwzl7pTE9_MVzgBfCEmh_YJBOE1CMeu8fSx16s8irpGa6UGXEp9qzn1dQrjMGgrChMDFhhlXrdk1vz-mu_oVaekP25RLTgNttFWmVXiXuEGDbSi0ibaXNIabKJGuYszfFZKTZ_voOf-e74oqA14prHl7H7gRVUg9_I6z7A5toUZMGSK2Na7mZ5iuihFO6BxNpM4E1rZodPyf2C7aDzoP10NSfm3BZJ43MmJ4twRWkjVdZnqSq3dAKA8joVKhE89KXXIE270u4RyuOYyUJoxrhKVOBBRFd1Dq-ksVfsIMwgLkFfJMPS0L5gMuNaUO75PtYphXAtdVFaM5oWoRlTLJxubR2DzyNo88lqoXRk6KjdYFsHKwopRyP9a6LIyfv3479kO_tf9BK0_Xg-i-5vR3SHa8Iwr2FqWNlrNF2_qCDKSPD62TvcJWBLToA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extraction+of+entity+relationships+serving+the+field+of+agriculture+food+safety+regulation&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Zhao%2C+Zhihua&rft.au=Liu%2C+Yiming&rft.au=Lv%2C+Dongdong&rft.au=Li%2C+Ruixuan&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=15&rft.issue=12&rft.spage=6077&rft.epage=6092&rft_id=info:doi/10.1007%2Fs13042-024-02304-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon