Extraction of entity relationships serving the field of agriculture food safety regulation
Agriculture food (agri-food) safety is closely related to all aspects of people's lives. In recent years, with the emergence of deep learning technology based on big data, the extraction of information relations in the field of agri-food safety supervision has become a research hotspot. However...
Saved in:
Published in | International journal of machine learning and cybernetics Vol. 15; no. 12; pp. 6077 - 6092 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1868-8071 1868-808X |
DOI | 10.1007/s13042-024-02304-2 |
Cover
Abstract | Agriculture food (agri-food) safety is closely related to all aspects of people's lives. In recent years, with the emergence of deep learning technology based on big data, the extraction of information relations in the field of agri-food safety supervision has become a research hotspot. However, most of the current work only expands the relationship recognition based on the traditional named entity recognition task, which makes it difficult to establish a true 'connection' between entities and relationships. The pipelined and federated extraction architectures that have emerged in this area are problematic in practice. In addition, the contextual information of the text corpus in the agri-food safety regulatory domain has not been fully utilized. To address the above issues, this paper proposes a semi-joint entity relationship extraction model (EB-SJRE) based on contextual entity boundary features. Firstly, a Token pair subject-object correspondence matrix label is designed to intuitively model the subject-object boundary, which is more friendly to complex entities in the field of agri-food safety regulation. Secondly, the dynamic fine-tuning of Bert makes the text embedding more relevant to the textual context of the agri-food safety regulation domain. Finally, we introduce an attention mechanism in the Token pair tagging framework to capture deep semantic subject-object boundary association information, which cleverly solves the problem of bias exposure due to the pipeline structure and the dimensional explosion due to the joint extraction structure. The experimental results show that our model achieves the best F1-score of 88.71% on agri-food safety regulation domain data and F1-scores of 92.36%, 92.80%, 88.91%, and 92.21% on NYT, NYT-star, WebNLG, and WebNLG-star, respectively. This indicates that EB-SJRE has excellent generalization ability in both the agri-food safety regulatory and public sectors. |
---|---|
AbstractList | Agriculture food (agri-food) safety is closely related to all aspects of people's lives. In recent years, with the emergence of deep learning technology based on big data, the extraction of information relations in the field of agri-food safety supervision has become a research hotspot. However, most of the current work only expands the relationship recognition based on the traditional named entity recognition task, which makes it difficult to establish a true 'connection' between entities and relationships. The pipelined and federated extraction architectures that have emerged in this area are problematic in practice. In addition, the contextual information of the text corpus in the agri-food safety regulatory domain has not been fully utilized. To address the above issues, this paper proposes a semi-joint entity relationship extraction model (EB-SJRE) based on contextual entity boundary features. Firstly, a Token pair subject-object correspondence matrix label is designed to intuitively model the subject-object boundary, which is more friendly to complex entities in the field of agri-food safety regulation. Secondly, the dynamic fine-tuning of Bert makes the text embedding more relevant to the textual context of the agri-food safety regulation domain. Finally, we introduce an attention mechanism in the Token pair tagging framework to capture deep semantic subject-object boundary association information, which cleverly solves the problem of bias exposure due to the pipeline structure and the dimensional explosion due to the joint extraction structure. The experimental results show that our model achieves the best F1-score of 88.71% on agri-food safety regulation domain data and F1-scores of 92.36%, 92.80%, 88.91%, and 92.21% on NYT, NYT-star, WebNLG, and WebNLG-star, respectively. This indicates that EB-SJRE has excellent generalization ability in both the agri-food safety regulatory and public sectors. |
Author | Liu, Yiming Li, Ruixuan Yu, Xudong Mao, Dianhui Lv, Dongdong Zhao, Zhihua |
Author_xml | – sequence: 1 givenname: Zhihua surname: Zhao fullname: Zhao, Zhihua organization: School of Law, China University of Political Science and Law – sequence: 2 givenname: Yiming orcidid: 0000-0003-1204-9453 surname: Liu fullname: Liu, Yiming organization: National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University – sequence: 3 givenname: Dongdong surname: Lv fullname: Lv, Dongdong organization: National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University – sequence: 4 givenname: Ruixuan surname: Li fullname: Li, Ruixuan organization: National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University – sequence: 5 givenname: Xudong surname: Yu fullname: Yu, Xudong organization: National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University – sequence: 6 givenname: Dianhui surname: Mao fullname: Mao, Dianhui email: maodh@th.btbu.edu.cn organization: National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University |
BookMark | eNp9kE1LAzEQhoNUsNb-AU8LnlfzsZtsj1LqBxS8KIiXkGYn25R1U5Os2H9vtit6c2CYYXifGeY9R5POdYDQJcHXBGNxEwjDBc0xLVKmNqcnaEoqXuUVrl4nv70gZ2gewg6n4JgxTKfobfUVvdLRui5zJoMu2njIPLRqGIWt3YcsgP-0XZPFLWTGQlsPStV4q_s29j4NnauzoAwc0aYf4Qt0alQbYP5TZ-jlbvW8fMjXT_ePy9t1rqnAMQchsDKqhpJwKGtjSFWVbLNRoFXBaF2bhdCCLHihAAsj6goM5wI0aCw4BTZDV-PevXcfPYQod673XTopGaHpd1YWZVLRUaW9C8GDkXtv35U_SILlYKMcbZTJRnm0UdIEsREKSdw14P9W_0N9A2kLeUw |
Cites_doi | 10.3390/su12114383 10.1016/j.bspc.2018.08.035 10.1111/1541-4337.12540 10.11975/j.issn.1002-6819.2021.14.023 10.1109/ACCESS.2020.2980859 10.1016/j.jnca.2021.103076 10.1109/JIOT.2020.2998584 10.1016/j.compag.2022.106776 10.1016/j.physd.2019.132306 10.1016/j.ipm.2020.102373 10.1007/s12145-020-00527-9 10.1016/j.engappai.2023.105899 10.1093/jamia/ocz166 10.1007/s11431-020-1673-6 10.1016/j.aei.2023.102004 10.1108/RAMJ-05-2020-0022 10.1080/10408398.2020.1830262 10.1016/j.compag.2022.107517 10.1016/j.tifs.2021.08.032 10.1155/2022/1879483 10.15918/j.jbit1004-0579.2023.004 10.1007/s42235-023-00386-2 10.2196/publichealth.9361 10.1016/j.asoc.2020.106205 10.1093/bioinformatics/btz682 10.1371/journal.pone.0220976 10.1016/j.compag.2019.05.019 10.1016/j.jbi.2022.104135 10.1016/j.knosys.2021.106888 10.24963/ijcai.2020/524 10.18653/v1/P17-1017 10.48550/arXiv.2010.13415 10.48550/arXiv.1905.05526 10.18653/v1/P18-1047 10.1007/978-981-99-3315-0_51 10.1007/978-3-642-15939-8_10 10.48550/arXiv.1810.04805 10.1109/MWSCAS.2017.8053243 10.1007/978-3-030-58558-7_29 10.48550/arXiv.2106.09895 10.1609/aaai.v36i10.21379 10.1609/aaai.v29i1.9513 10.48550/arXiv.1909.03227 10.1145/3488560.3498409 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s13042-024-02304-2 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) Agriculture |
EISSN | 1868-808X |
EndPage | 6092 |
ExternalDocumentID | 10_1007_s13042_024_02304_2 |
GrantInformation_xml | – fundername: Beijing Science Foundation grantid: 9232005 – fundername: Social Science and Humanity on Fund of the ministry of Education grantid: 23YJAZH216 |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HCIFZ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 PTHSS QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ JQ2 |
ID | FETCH-LOGICAL-c270t-e770afade516e5dff18853bbaeca432ddf97c71964ae07f7d8ef667ecec0762e3 |
IEDL.DBID | U2A |
ISSN | 1868-8071 |
IngestDate | Fri Jul 25 11:08:54 EDT 2025 Tue Jul 01 03:51:06 EDT 2025 Fri Feb 21 02:36:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Relation extraction Attention mechanisms Bert Agriculture food safety regulation RCNN |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-e770afade516e5dff18853bbaeca432ddf97c71964ae07f7d8ef667ecec0762e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1204-9453 |
PQID | 3121863545 |
PQPubID | 2043904 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3121863545 crossref_primary_10_1007_s13042_024_02304_2 springer_journals_10_1007_s13042_024_02304_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241200 2024-12-00 20241201 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | International journal of machine learning and cybernetics |
PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Tao, Yang, Feng (CR3) 2020; 19 Lee, Yoon, Kim, Kim, Kim, So, Kang (CR15) 2020; 36 Zuo, Zhang, Zhang, Yan, Ai (CR21) 2022 CR18 CR39 Qiu, Xie, Wu, Tao (CR13) 2020; 13 CR38 Henry, Buchan, Filannino, Stubbs, Uzuner (CR12) 2020; 27 CR37 CR36 CR32 CR31 Sherstinsky (CR41) 2020; 404 Yang, Yu, Sun (CR10) 2021; 37 CR30 Talari, Cummins, McNamara, O'Brien (CR11) 2022; 126 Liu, Tan, Fan, Tan, Hu, Dong (CR27) 2022; 132 Zhao, Xu, Cheng, Li, Gao (CR40) 2021; 219 Munkhdalai, Liu, Yu (CR19) 2018; 4 Lyu, Choi (CR9) 2020; 12 Akkem, Biswas, Varanasi (CR25) 2023; 120 Hong, Liu, Yang, Zhang, Wen, Hu (CR28) 2020; 8 Jang, Kim, Kim (CR17) 2019; 14 Rajeswari, Madhavan, Venkatesakumar, Riasudeen (CR8) 2020; 14 Mao, Wang, Liu, Zhang, Wu, Chen (CR6) 2023; 32 CR26 CR24 CR46 CR23 CR45 Yu, Jung, Park, Hu, Huang, Rasco, Chen (CR4) 2022; 62 Mao, Sun, Li, Yu, Wu, Zhang (CR7) 2023; 204 CR22 Hu, Zheng, Abualigah, Hussien (CR33) 2023; 57 CR44 Abu-Salih (CR2) 2021; 185 Rong, Xie, Ying (CR5) 2019; 162 Guo, Lu, Tang, Bai, Diao, Zhou, Li (CR16) 2022; 194 CR42 Misra, Dixit, Al-Mallahi, Bhullar, Upadhyay, Martynenko (CR1) 2020; 9 Long, Chen, He, Wu, Ren (CR14) 2020; 91 Liu (CR29) 2020; 63 Yang, Yu, Sun (CR35) 2021; 37 Zare, Ghasemi, Zahedi, Golalipour, Mohammadi, Mirjalili, Abualigah (CR34) 2023; 20 Wen, Zhu, Zhang, Li (CR20) 2020; 57 Zhao, Mao, Chen (CR43) 2019; 47 M Zuo (2304_CR21) 2022 K Zhao (2304_CR40) 2021; 219 K Liu (2304_CR29) 2020; 63 G Talari (2304_CR11) 2022; 126 X Guo (2304_CR16) 2022; 194 Q Qiu (2304_CR13) 2020; 13 X Liu (2304_CR27) 2022; 132 J Zhao (2304_CR43) 2019; 47 H Wen (2304_CR20) 2020; 57 D Mao (2304_CR7) 2023; 204 2304_CR24 2304_CR46 2304_CR23 2304_CR45 2304_CR22 Y Hong (2304_CR28) 2020; 8 H Yang (2304_CR35) 2021; 37 2304_CR44 Z Yu (2304_CR4) 2022; 62 2304_CR26 J Lee (2304_CR15) 2020; 36 2304_CR42 NN Misra (2304_CR1) 2020; 9 J Long (2304_CR14) 2020; 91 T Munkhdalai (2304_CR19) 2018; 4 G Hu (2304_CR33) 2023; 57 B Jang (2304_CR17) 2019; 14 B Rajeswari (2304_CR8) 2020; 14 M Zare (2304_CR34) 2023; 20 B Abu-Salih (2304_CR2) 2021; 185 D Tao (2304_CR3) 2020; 19 2304_CR18 F Lyu (2304_CR9) 2020; 12 2304_CR32 D Rong (2304_CR5) 2019; 162 D Mao (2304_CR6) 2023; 32 2304_CR39 2304_CR38 2304_CR37 2304_CR36 Y Akkem (2304_CR25) 2023; 120 2304_CR31 A Sherstinsky (2304_CR41) 2020; 404 2304_CR30 H Yang (2304_CR10) 2021; 37 S Henry (2304_CR12) 2020; 27 |
References_xml | – ident: CR45 – volume: 12 start-page: 4383 issue: 11 year: 2020 ident: CR9 article-title: The forecasting sales volume and satisfaction of organic products through text mining on web customer reviews publication-title: Sustainability doi: 10.3390/su12114383 – ident: CR22 – volume: 47 start-page: 312 year: 2019 end-page: 323 ident: CR43 article-title: Speech emotion recognition using deep 1D & 2D CNN LSTM networks publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2018.08.035 – ident: CR18 – volume: 19 start-page: 875 issue: 2 year: 2020 end-page: 894 ident: CR3 article-title: Utilization of text mining as a big data analysis tool for food science and nutrition publication-title: Compr Rev Food Sci Food Saf doi: 10.1111/1541-4337.12540 – volume: 37 start-page: 204 issue: 14 year: 2021 end-page: 212 ident: CR10 article-title: Fishery standard entity relation extraction using dual attention mechanism publication-title: Trans Chin Soc Agric Eng doi: 10.11975/j.issn.1002-6819.2021.14.023 – volume: 8 start-page: 51315 year: 2020 end-page: 51323 ident: CR28 article-title: Improving graph convolutional networks based on relation-aware attention for end-to-end relation extraction publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980859 – volume: 185 year: 2021 ident: CR2 article-title: Domain-specific knowledge graphs: a survey publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2021.103076 – ident: CR39 – ident: CR37 – ident: CR30 – volume: 9 start-page: 6305 issue: 9 year: 2020 end-page: 6324 ident: CR1 article-title: IoT, big data, and artificial intelligence in agriculture and food industry publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2020.2998584 – volume: 194 year: 2022 ident: CR16 article-title: CG-ANER: enhanced contextual embeddings and glyph features-based agricultural named entity recognition publication-title: Comput Electron Agric doi: 10.1016/j.compag.2022.106776 – volume: 404 year: 2020 ident: CR41 article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network publication-title: Phys D doi: 10.1016/j.physd.2019.132306 – ident: CR42 – ident: CR23 – volume: 57 issue: 6 year: 2020 ident: CR20 article-title: A gated piecewise CNN with entity-aware enhancement for distantly supervised relation extraction publication-title: Inf Process Manag doi: 10.1016/j.ipm.2020.102373 – volume: 13 start-page: 1393 year: 2020 end-page: 1410 ident: CR13 article-title: Automatic spatiotemporal and semantic information extraction from unstructured geoscience reports using text mining techniques publication-title: Earth Sci Inf doi: 10.1007/s12145-020-00527-9 – volume: 120 year: 2023 ident: CR25 article-title: Smart farming using artificial intelligence: a review publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.105899 – volume: 27 start-page: 3 issue: 1 year: 2020 end-page: 12 ident: CR12 article-title: 2018 n2c2 shared task on adverse drug events and medication extraction in electronic health records publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocz166 – ident: CR46 – ident: CR44 – volume: 63 start-page: 1971 issue: 10 year: 2020 end-page: 1989 ident: CR29 article-title: A survey on neural relation extraction publication-title: Sci China Technol Sci doi: 10.1007/s11431-020-1673-6 – volume: 57 year: 2023 ident: CR33 article-title: DETDO: an adaptive hybrid dandelion optimizer for engineering optimization publication-title: Adv Eng Inform doi: 10.1016/j.aei.2023.102004 – volume: 14 start-page: 155 issue: 2 year: 2020 end-page: 167 ident: CR8 article-title: Sentiment analysis of consumer reviews–a comparison of organic and regular food products usage publication-title: Rajagiri Manag J doi: 10.1108/RAMJ-05-2020-0022 – volume: 62 start-page: 905 issue: 4 year: 2022 end-page: 916 ident: CR4 article-title: Smart traceability for food safety publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398.2020.1830262 – ident: CR38 – volume: 204 year: 2023 ident: CR7 article-title: Real-time fruit detection using deep neural networks on CPU (RTFD): an edge AI application publication-title: Comput Electron Agric doi: 10.1016/j.compag.2022.107517 – volume: 126 start-page: 192 year: 2022 end-page: 204 ident: CR11 article-title: State of the art review of big data and web-based decision support systems (DSS) for food safety risk assessment with respect to climate change publication-title: Trends Food Sci Technol doi: 10.1016/j.tifs.2021.08.032 – year: 2022 ident: CR21 article-title: An entity relation extraction method for few-shot learning on the food health and safety domain publication-title: Comput Intell Neurosci doi: 10.1155/2022/1879483 – ident: CR31 – volume: 32 start-page: 363 issue: 3 year: 2023 end-page: 373 ident: CR6 article-title: YOLO-banana: an effective grading method for banana appearance quality publication-title: J Beijing Inst Technol doi: 10.15918/j.jbit1004-0579.2023.004 – volume: 20 start-page: 2359 issue: 5 year: 2023 end-page: 2388 ident: CR34 article-title: A global best-guided firefly algorithm for engineering problems publication-title: J Bionic Eng doi: 10.1007/s42235-023-00386-2 – volume: 4 issue: 2 year: 2018 ident: CR19 article-title: Clinical relation extraction toward drug safety surveillance using electronic health record narratives: classical learning versus deep learning publication-title: JMIR Public Health Surveill doi: 10.2196/publichealth.9361 – ident: CR32 – volume: 91 year: 2020 ident: CR14 article-title: An integrated framework of deep learning and knowledge graph for prediction of stock price trend: an application in Chinese stock exchange market publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106205 – ident: CR36 – volume: 36 start-page: 1234 issue: 4 year: 2020 end-page: 1240 ident: CR15 article-title: BioBERT: a pre-trained biomedical language representation model for biomedical text mining publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz682 – volume: 14 issue: 8 year: 2019 ident: CR17 article-title: Word2vec convolutional neural networks for classification of news articles and tweets publication-title: PLoS ONE doi: 10.1371/journal.pone.0220976 – ident: CR26 – ident: CR24 – volume: 37 start-page: 204 issue: 14 year: 2021 end-page: 212 ident: CR35 article-title: Fishery standard entity relation extraction using dual attention mechanism publication-title: Trans Chin Soc Agric Eng – volume: 162 start-page: 1001 year: 2019 end-page: 1010 ident: CR5 article-title: Computer vision detection of foreign objects in walnuts using deep learning publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.05.019 – volume: 132 year: 2022 ident: CR27 article-title: A Syntax-enhanced model based on category keywords for biomedical relation extraction publication-title: J Biomed Inform doi: 10.1016/j.jbi.2022.104135 – volume: 219 year: 2021 ident: CR40 article-title: Representation iterative fusion based on heterogeneous graph neural network for joint entity and relation extraction publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.106888 – volume: 19 start-page: 875 issue: 2 year: 2020 ident: 2304_CR3 publication-title: Compr Rev Food Sci Food Saf doi: 10.1111/1541-4337.12540 – ident: 2304_CR38 doi: 10.24963/ijcai.2020/524 – volume: 14 start-page: 155 issue: 2 year: 2020 ident: 2304_CR8 publication-title: Rajagiri Manag J doi: 10.1108/RAMJ-05-2020-0022 – volume: 194 year: 2022 ident: 2304_CR16 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2022.106776 – volume: 27 start-page: 3 issue: 1 year: 2020 ident: 2304_CR12 publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocz166 – volume: 132 year: 2022 ident: 2304_CR27 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2022.104135 – year: 2022 ident: 2304_CR21 publication-title: Comput Intell Neurosci doi: 10.1155/2022/1879483 – volume: 62 start-page: 905 issue: 4 year: 2022 ident: 2304_CR4 publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398.2020.1830262 – volume: 162 start-page: 1001 year: 2019 ident: 2304_CR5 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.05.019 – ident: 2304_CR45 doi: 10.18653/v1/P17-1017 – volume: 9 start-page: 6305 issue: 9 year: 2020 ident: 2304_CR1 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2020.2998584 – volume: 91 year: 2020 ident: 2304_CR14 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106205 – ident: 2304_CR31 doi: 10.48550/arXiv.2010.13415 – ident: 2304_CR36 doi: 10.48550/arXiv.1905.05526 – volume: 57 issue: 6 year: 2020 ident: 2304_CR20 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2020.102373 – volume: 57 year: 2023 ident: 2304_CR33 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2023.102004 – ident: 2304_CR37 doi: 10.18653/v1/P18-1047 – ident: 2304_CR46 doi: 10.1007/978-981-99-3315-0_51 – volume: 36 start-page: 1234 issue: 4 year: 2020 ident: 2304_CR15 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz682 – ident: 2304_CR44 doi: 10.1007/978-3-642-15939-8_10 – volume: 126 start-page: 192 year: 2022 ident: 2304_CR11 publication-title: Trends Food Sci Technol doi: 10.1016/j.tifs.2021.08.032 – volume: 12 start-page: 4383 issue: 11 year: 2020 ident: 2304_CR9 publication-title: Sustainability doi: 10.3390/su12114383 – ident: 2304_CR18 doi: 10.48550/arXiv.1810.04805 – volume: 185 year: 2021 ident: 2304_CR2 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2021.103076 – ident: 2304_CR26 – ident: 2304_CR42 doi: 10.1109/MWSCAS.2017.8053243 – volume: 120 year: 2023 ident: 2304_CR25 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.105899 – volume: 32 start-page: 363 issue: 3 year: 2023 ident: 2304_CR6 publication-title: J Beijing Inst Technol doi: 10.15918/j.jbit1004-0579.2023.004 – ident: 2304_CR32 doi: 10.1007/978-3-030-58558-7_29 – ident: 2304_CR39 doi: 10.48550/arXiv.2106.09895 – volume: 47 start-page: 312 year: 2019 ident: 2304_CR43 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2018.08.035 – volume: 37 start-page: 204 issue: 14 year: 2021 ident: 2304_CR10 publication-title: Trans Chin Soc Agric Eng doi: 10.11975/j.issn.1002-6819.2021.14.023 – volume: 63 start-page: 1971 issue: 10 year: 2020 ident: 2304_CR29 publication-title: Sci China Technol Sci doi: 10.1007/s11431-020-1673-6 – volume: 204 year: 2023 ident: 2304_CR7 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2022.107517 – volume: 404 year: 2020 ident: 2304_CR41 publication-title: Phys D doi: 10.1016/j.physd.2019.132306 – volume: 14 issue: 8 year: 2019 ident: 2304_CR17 publication-title: PLoS ONE doi: 10.1371/journal.pone.0220976 – ident: 2304_CR30 doi: 10.1609/aaai.v36i10.21379 – volume: 37 start-page: 204 issue: 14 year: 2021 ident: 2304_CR35 publication-title: Trans Chin Soc Agric Eng – volume: 8 start-page: 51315 year: 2020 ident: 2304_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980859 – volume: 4 issue: 2 year: 2018 ident: 2304_CR19 publication-title: JMIR Public Health Surveill doi: 10.2196/publichealth.9361 – volume: 13 start-page: 1393 year: 2020 ident: 2304_CR13 publication-title: Earth Sci Inf doi: 10.1007/s12145-020-00527-9 – ident: 2304_CR24 doi: 10.1609/aaai.v29i1.9513 – ident: 2304_CR22 doi: 10.48550/arXiv.1909.03227 – volume: 219 year: 2021 ident: 2304_CR40 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.106888 – ident: 2304_CR23 doi: 10.1145/3488560.3498409 – volume: 20 start-page: 2359 issue: 5 year: 2023 ident: 2304_CR34 publication-title: J Bionic Eng doi: 10.1007/s42235-023-00386-2 |
SSID | ssj0000603302 ssib031263576 ssib033405570 |
Score | 2.3328133 |
Snippet | Agriculture food (agri-food) safety is closely related to all aspects of people's lives. In recent years, with the emergence of deep learning technology based... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 6077 |
SubjectTerms | Agriculture Algorithms Artificial Intelligence Big Data Complex Systems Computational Intelligence Control Deep learning Engineering Food safety Mechatronics Original Article Pattern Recognition Recognition Regulation Robotics Safety standards Semantics Sparsity Systems Biology |
Title | Extraction of entity relationships serving the field of agriculture food safety regulation |
URI | https://link.springer.com/article/10.1007/s13042-024-02304-2 https://www.proquest.com/docview/3121863545 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6yXfQgbipO58jBg6KBtumS7rjJ5lDcycH0UtImmV7W0U7Q_96XNLUqevBUSPMD3kve-5K89wWhM19oKhSTxI8Sj4CHZiRimpMgBWekB5GvbH7F_YxN5-Htor9wSWFFFe1eXUlaS10nu5mdNwGfQgxuDgkY3mYf9u5mOc6DYTWLqG_4VWonS2loeaY-T148BmVlMGLEIsPG67tsmt-H-e6xahj64-bUOqTJHtp1SBIPS9W30JZatdHOF37BNmq5lVvgc0cvfbGPnsZvm7xMZ8CZxjZP9x3nVVDc88u6wOaoFnrAgA6xjXEzNcUyd0QdUJhlEhdCK9t06d4AO0DzyfjhekrcCwskDbi3IYpzT2ghVd9nqi-19iNw30kiVCpCGkipBzzlhrNLKI9rLiOlGeMqVakHVlTRQ9RYZSt1hDADUwBYSg4GgQ4FkxHXmnIvDKlWCbTroMtKivG6JNKIa8pkI_MYZB5bmcdBB3UrQcduURUxaBY0RgHzddBVJfz699-9Hf-v-gnaDoz-bdBKFzU2-as6BeixSXqoOZyMRjPzvXm8G_fszPsAFNHPgQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4MHtSDEdSIovbgQaNNtnW05UgMBhU4QUK8LN3aohdGGCb63_taOqdGD177a8lr-75v7XtfEboIpaFSM0VCkQYEEJoRwQwnUQZgZDoi1C6_Yjhi_Un8MG1PfVJYUUa7l1eSzlNXyW72z5sAphDLm2MCjncTyICw7xZMom65imho9VUqkKU0djpTnycvAYOydTCiYMKq8YY-m-b3z3xHrIqG_rg5dYB0t4d2PZPE3fXU19GGnjfQzhd9wQaq-51b4EsvL321j556b6vlOp0B5wa7PN13vCyD4p5fFgW2R7UwAgZ2iF2Mm20pZ0sv1AGFea5wIY12XWf-DbADNLnrjW_7xL-wQLKIByuiOQ-kkUq3Q6bbyphQAHynqdSZjGmklOnwjFvNLqkDbrgS2jDGdaazALyopoeoNs_n-ghhBq4AuJTqdCITS6YEN4byII6p0Sn0a6Lr0orJYi2kkVSSydbmCdg8cTZPoiZqlYZO_KYqEphZmDEKnK-JbkrjV9V_j3b8v-bnaKs_Hg6Swf3o8QRtR3YtuACWFqqtlq_6FGjIKj1zq-4DATfPZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6iIHoQNxWnU3PwoGhY23RJexy6MX8NDw6Gl5I2yfTSjbWC_ve-pK2dogevaZLCy8v7XpP3fUXo1BWaCsUkcYPYIYDQjARMc-IlAEY6DFxl-RUPIzYc-7eT7mSJxW-r3asryYLTYFSa0rwzl7pTE9_MVzgBfCEmh_YJBOE1CMeu8fSx16s8irpGa6UGXEp9qzn1dQrjMGgrChMDFhhlXrdk1vz-mu_oVaekP25RLTgNttFWmVXiXuEGDbSi0ibaXNIabKJGuYszfFZKTZ_voOf-e74oqA14prHl7H7gRVUg9_I6z7A5toUZMGSK2Na7mZ5iuihFO6BxNpM4E1rZodPyf2C7aDzoP10NSfm3BZJ43MmJ4twRWkjVdZnqSq3dAKA8joVKhE89KXXIE270u4RyuOYyUJoxrhKVOBBRFd1Dq-ksVfsIMwgLkFfJMPS0L5gMuNaUO75PtYphXAtdVFaM5oWoRlTLJxubR2DzyNo88lqoXRk6KjdYFsHKwopRyP9a6LIyfv3479kO_tf9BK0_Xg-i-5vR3SHa8Iwr2FqWNlrNF2_qCDKSPD62TvcJWBLToA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extraction+of+entity+relationships+serving+the+field+of+agriculture+food+safety+regulation&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Zhao%2C+Zhihua&rft.au=Liu%2C+Yiming&rft.au=Lv%2C+Dongdong&rft.au=Li%2C+Ruixuan&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=15&rft.issue=12&rft.spage=6077&rft.epage=6092&rft_id=info:doi/10.1007%2Fs13042-024-02304-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |