Multifidelity aerodynamic shape optimization for mitigating dynamic stall using Cokriging regression-based infill

This work proposes a multifidelity modeling approach to mitigate adverse characteristics of airfoil dynamic stall through aerodynamic shape optimization (ASO). Cokriging regression (CKR) is used to efficiently determine an optimum airfoil shape by combining data from high-fidelity (HF) and low-fidel...

Full description

Saved in:
Bibliographic Details
Published inStructural and multidisciplinary optimization Vol. 66; no. 11; p. 237
Main Authors Raul, Vishal, Leifsson, Leifur
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work proposes a multifidelity modeling approach to mitigate adverse characteristics of airfoil dynamic stall through aerodynamic shape optimization (ASO). Cokriging regression (CKR) is used to efficiently determine an optimum airfoil shape by combining data from high-fidelity (HF) and low-fidelity (LF) computational fluid dynamics simulations. The HF dynamic stall response is modeled using the unsteady Reynolds-averaged Navier–Stokes equations and Menter’s SST turbulence model, whereas the LF model is developed by simplifying the HF model with a coarser discretization and relaxed convergence criteria. The CKR model, constructed using various infill criteria to model the objective and constraint functions with six PARSEC parameters, is utilized to find the optimal design. The results show that the optimal shape from CKR delays the dynamic stall angle over 3° while reducing the peak values of the aerodynamic coefficients compared to the baseline airfoil (NACA 0012). Comparing the optimized shapes from the CKR and a HF Kriging regression (HF-KR) shows a similar delay in dynamic stall angle; however, the CKR optimum provides a better design for the current problem formulation while requiring 39% less computational time than the HF-KR approach. This work presents a new multifidelity modeling approach to saving the computational burden of dynamic stall mitigation through ASO. The approach used in this work is general and can be applied for other unsteady aerodynamic applications and optimization.
AbstractList This work proposes a multifidelity modeling approach to mitigate adverse characteristics of airfoil dynamic stall through aerodynamic shape optimization (ASO). Cokriging regression (CKR) is used to efficiently determine an optimum airfoil shape by combining data from high-fidelity (HF) and low-fidelity (LF) computational fluid dynamics simulations. The HF dynamic stall response is modeled using the unsteady Reynolds-averaged Navier–Stokes equations and Menter’s SST turbulence model, whereas the LF model is developed by simplifying the HF model with a coarser discretization and relaxed convergence criteria. The CKR model, constructed using various infill criteria to model the objective and constraint functions with six PARSEC parameters, is utilized to find the optimal design. The results show that the optimal shape from CKR delays the dynamic stall angle over 3° while reducing the peak values of the aerodynamic coefficients compared to the baseline airfoil (NACA 0012). Comparing the optimized shapes from the CKR and a HF Kriging regression (HF-KR) shows a similar delay in dynamic stall angle; however, the CKR optimum provides a better design for the current problem formulation while requiring 39% less computational time than the HF-KR approach. This work presents a new multifidelity modeling approach to saving the computational burden of dynamic stall mitigation through ASO. The approach used in this work is general and can be applied for other unsteady aerodynamic applications and optimization.
ArticleNumber 237
Author Leifsson, Leifur
Raul, Vishal
Author_xml – sequence: 1
  givenname: Vishal
  surname: Raul
  fullname: Raul, Vishal
  organization: Department of Aerospace Engineering, Iowa State University
– sequence: 2
  givenname: Leifur
  surname: Leifsson
  fullname: Leifsson, Leifur
  email: leifur@purdue.edu
  organization: Department of Aerospace Engineering, Iowa State University, Purdue University
BookMark eNp9kM1OwzAQhC1UJNrCC3CKxDmwju0kPqKKP6mIC0jcLCexg0tip3YitTw9KUHlxmlnVzOz0rdAM-usQugSwzUGyG4CAGZ5DAmJgaQc4t0JmuMUsxjTPJ8ddfZ-hhYhbAAgB8rnaPs8NL3RplKN6feRVN5VeytbU0bhQ3Yqcl1vWvMle-NspJ2PWtObelxtHR2dvWyaaAiH28p9elMflFe1VyGMubiQQVWRsdo0zTk61bIJ6uJ3LtHb_d3r6jFevzw8rW7XcZlk0MeKcsoIaAaSFmlacFwkvGSaVjSpCpVpTEqeUQY4Aa41Y1SpvEwlJ0pWRUrIEl1NvZ1320GFXmzc4O34UiR5nlKWcUZHVzK5Su9C8EqLzptW-r3AIA5oxYRWjGjFD1qxG0NkCoXRbGvl_6r_SX0D0FSBdw
Cites_doi 10.2514/1.472
10.1016/j.ast.2019.105587
10.1080/00401706.2000.10485979
10.1007/s11081-007-9032-0
10.1017/jfm.2019.235
10.2514/6.2014-0243
10.1016/j.ast.2017.11.030
10.1016/j.paerosci.2008.11.001
10.5589/q10-002
10.2514/6.2008-1889
10.1007/PL00007198
10.2514/1.C033649
10.2514/2.2013
10.1016/j.ast.2017.11.033
10.1016/j.compfluid.2010.05.004
10.1016/j.compfluid.2016.02.004
10.2514/1.J050384
10.4050/JAHS.60.022001
10.1007/978-3-322-89952-1_4
10.1016/j.jfluidstructs.2020.103081
10.2514/6.2021-0340
10.1016/j.ast.2014.10.020
10.1137/16M1082469
10.2514/6.2013-632
10.1002/9780470770801
10.1098/rspa.2007.1900
10.1016/j.ast.2019.03.022
10.2514/1.20068
10.1016/j.energy.2015.07.102
10.2514/1.17263
10.1177/0954410019865700
10.2514/1.C035297
10.2514/1.J053813
10.1242/jeb.202.23.3439
10.2514/1.J059208
10.4050/JAHS.13.2.27
10.2514/3.61332
10.2514/3.12496
10.2514/1.J056513
10.1504/IJMPT.2006.008271
10.2514/6.2013-287
10.1007/s10409-020-00951-6
10.1016/j.ast.2021.106555
10.1142/p987
10.2514/1.24332
10.1109/MMM.2008.929554
10.2514/1.J057750
10.1007/978-0-387-21506-8
10.1016/j.cja.2014.12.033
10.1038/s41592-020-0772-5
10.2514/3.45534
10.1007/s00791-008-0096-y
10.1016/j.renene.2016.05.053
10.1007/s00158-012-0760-1
10.4050/JAHS.26.3.40
10.1016/j.compfluid.2017.02.021
10.1016/j.jweia.2015.09.001
10.2514/3.12149
10.1685/journal.caim.393
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s00158-023-03690-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1615-1488
ExternalDocumentID 10_1007_s00158_023_03690_x
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1739551
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
2.D
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAG
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADMVV
ADOXG
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEKVL
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
_50
~02
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c270t-e494530f50a4b66b91b29c5f4d42dbe7f13c974501209ff554ee8c6a93eadb633
IEDL.DBID U2A
ISSN 1615-147X
IngestDate Thu Oct 10 22:12:38 EDT 2024
Thu Sep 12 19:28:03 EDT 2024
Sat Dec 16 12:03:51 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Cokriging regression
Surrogate modeling
Dynamic stall
Unsteady CFD
Kriging regression
Multifidelity modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-e494530f50a4b66b91b29c5f4d42dbe7f13c974501209ff554ee8c6a93eadb633
PQID 2886457954
PQPubID 2043658
ParticipantIDs proquest_journals_2886457954
crossref_primary_10_1007_s00158_023_03690_x
springer_journals_10_1007_s00158_023_03690_x
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Structural and multidisciplinary optimization
PublicationTitleAbbrev Struct Multidisc Optim
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References NiuJLeiJLuTNumerical research on the effect of variable droop leading-edge on oscillating naca 0012 airfoil dynamic stallAerosp Sci Technol201872476485
ThelenALeifssonLBeranPAeroelastic flutter prediction using multifidelity modeling of the generalized aerodynamic influence coefficientsAIAA J2020581147644780
WangQZhaoQRotor airfoil profile optimization for alleviating dynamic stall characteristicsAerosp Sci Technol201872502515
EconomonTDPalaciosFCopelandSRLukaczykTWAlonsoJJSu2: an open-source suite for multiphysics simulation and designAIAA J2016543828846
EcheverríaDHemkerPManifold mapping: a two-level optimization techniqueComput Vis Sci2008114–6193206242549007753268
ForresterAIKeaneAJRecent advances in surrogate-based optimizationProg Aerosp Sci2009451–35079
KuyaYTakedaKZhangXForresterAIMultifidelity surrogate modeling of experimental and computational aerodynamic data setsAIAA J2011492289298
LeeTGerontakosPInvestigation of flow over an oscillating airfoilJ Fluid Mech20045123133411163.76307
BuchnerALohryMMartinelliLSoriaJSmitsADynamic stall in vertical axis wind turbines: comparing experiments and computationsJ Wind Eng Ind Aerodyn2015146163171
LeifssonLKozielSSimulation-driven aerodynamic design using variable-fidelity models2015London, UKImperial College Press1338.76041
Sjögren R, Svensson D (2021) pyDOE2: an experimental design package for python. Available at https://pypi.org/project/pyDOE2/ ((2021/09/27))
Palacios F, Alonso J, Duraisamy K, Colonno M, Hicken J, Aranake A, Campos A, Copeland S, Economon T, Lonkar A, et al (2013) Stanford university unstructured (su 2): an open-source integrated computational environment for multi-physics simulation and design. In: 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Grapevine (Dallas/Ft. Worth Region), Texas, p. 287 (7-10 January 2013)
McCroskeyWJCarrLWMcAlisterKWDynamic stall experiments on oscillating airfoilsAIAA J19761415763
ForresterAISóbesterAKeaneAJMulti-fidelity optimization via surrogate modellingProc R Soc A: Math, Phys Eng Sci200746320883251326923866611142.90489
Carr LW, McAlister KW, McCroskey WJ (1977) Analysis of the development of dynamic stall based on oscillating airfoil experiments. NASA Technical Note NASA TN D-8382
MenterFRTwo-equation eddy-viscosity turbulence models for engineering applicationsAIAA J199432815981605
TangJHuYSongBYangHUnsteady aerodynamic optimization of airfoil for cycloidal propellers based on surrogate modelJ Aircr201754412411256
VeerakumarRRaulVLiuYWangXLeifssonLHuHMetamodeling-based parametric optimization of dbd plasma actuation to suppress flow separation over a wind turbine airfoil modelActa Mech Sin2020362260274409585207679137
RogalskyTDerksenRBézier-parsec parameterization for airfoil optimizationCan Aeronaut Space J2009553163174
WongTMalleyOBrien DInvestigation of effect of dynamic stall and its alleviation on helicopter performance and loadsAnnu Forum Proc-Am Helicopter Soc200662–31749
PeriDTintiFA multistart gradient-based algorithm with surrogate model for global optimizationComm Appl Ind Math2012300117710.1685/journal.caim.3931329.90110
ForresterJKeaneAIBressloffAJDesign and analysis of "Noisy" computer experimentsAIAA J2006441023312339
ManiKLockwoodBAMavriplisDJAdjoint-based unsteady airfoil design optimization with application to dynamic stallAm Helicopter Soc201231940
JamesonAAerodynamic shape optimization using the adjoint method2003BrusselsLectures at the Von Karman Institute
WangQZhaoQWuQAerodynamic shape optimization for alleviating dynamic stall characteristics of helicopter rotor airfoilChin J Aeronaut2015282346356
KozielSBandlerJWMadsenKQuality assessment of coarse models and surrogates for space mapping optimizationOptim Eng20089437539124474181169.65054
ZhouZOngYSNguyenMHLimDA study on polynomial regression and gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithmIEEE Congress Evol Comput2005328322839
KozielSChengQSBandlerJWSpace mappingIEEE Microw Mag200896105122
Giselle Fernández-GodinoMParkCKimNHHaftkaRTIssues in deciding whether to use multifidelity surrogatesAIAA J201957520392054
GuLYangROn reliability-based optimisation methods for automotive structuresInt J Mater Prod Technol2006251–3326
YuYHLeeSMcAlisterKWTungCWangCMDynamic stall control for advanced rotorcraft applicationAIAA J1995332289295
Echeverría D, et al. (2007) Multi-level optimization. space mapping and manifold mapping. PhD thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands. Research conducted at: Centrum voor Wiskunde en Informatica. https://hdl.handle.net/11245/1.270966
Brandon JM (1991) Dynamic stall effects and applications to high performance aircraft. Technical Report AGARD-R-776, Special course on aircraft dynamics at high angles of attack: experiments and modelling, NASA Langley Research Center
AbbottSUnderstanding analysis2001New YorkSpringer0966.26001
Blatman G. (2009) Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis. PhD thesis, Université Blaise Pascal, Clermont-Ferrand (2009). Doctoral thesis supervised by Sudret, Bruno Mechanical engineering Clermont-Ferrand 2 2009. http://www.theses.fr/2009CLF21955
Laurenceau J, Meaux M (2008) Comparison of gradient and response surface based optimization frameworks using adjoint method. In: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Conference, 10th AIAA Non-Deterministic Approaches Conference, 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimization Specialists Conference, p. 1889 (Schaumburg, IL, 10th April 2008)
RoyCJGrid convergence error analysis for mixed-order numerical schemesAIAA J2003414595604
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, et al. (2019) Scipy 1.0–fundamental algorithms for scientific computing in python. arXiv preprint arXiv:1907.10121
WangSInghamDBMaLPourkashanianMTaoZNumerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoilsComput Fluids2010399152915411245.76041
KimYXieZ-TModelling the effect of freestream turbulence on dynamic stall of wind turbine bladesComput Fluids2016129536634754691390.76178
NadarajahSKJamesonAOptimum shape design for unsteady flows with time-accurate continuous and discrete adjoint methodAIAA J200745714781491
SharmaAVisbalMNumerical investigation of the effect of airfoil thickness on onset of dynamic stallJ Fluid Mech2019870870900395145010.1017/jfm.2019.2351419.76328
WangQZhaoQRotor blade aerodynamic shape optimization based on high-efficient optimization methodProc Inst Mech Eng, Part G: J Aerosp Eng20202342375387
DaróczyLJanigaGPetraschKWebnerMThéveninDComparative analysis of turbulence models for the aerodynamic simulation of h-darrieus rotorsEnergy201590680690
SobieczkyHParametric airfoils and wingsRecent development of aerodynamic design methodologies1999WiesbadenVieweg + Teubner Verlag7187
NagawkarJRenJDuXLeifssonLKozielSSingle-and multipoint aerodynamic shape optimization using multifidelity models and manifold mappingJ Aircr202158118
PeherstorferBWillcoxKGunzburgerMSurvey of multifidelity methods in uncertainty propagation, inference, and optimizationSIAM Rev201860355059138411571458.65003
De GiorgiMGMottaVSumaAInfluence of actuation parameters of multi-dbd plasma actuators on the static and dynamic behaviour of an airfoil in unsteady flowAerosp Sci Technol20209610.1016/j.ast.2019.105587
OpenFOAM - The open source computational fluid dynamics (CFD) Toolbox. http://openfoam.com ((2021/09/27))
ZhuHHaoWLiCDingQWuBApplication of flow control strategy of blowing, synthetic and plasma jet actuators in vertical axis wind turbinesAerosp Sci Technol20198846848010.1016/j.ast.2019.03.022
BaillyJBaillyDMultifidelity aerodynamic optimization of a helicopter rotor bladeAIAA J201957831323144
YamazakiWArakawaYNumerical/experimental investigation of airfoil shape for small vawt34th Wind energy symposium2016San DiegoAmerican Institute of Aeronautics and Astronautics, Inc.1733
McCroskeyWJMcAlisterKCarrLPucciSLambertOIndergrandRDynamic stall on advanced airfoil sectionsJ Am Helicopter Soc19812634050
HandBKellyGCashmanANumerical simulation of a vertical axis wind turbine airfoil experiencing dynamic stall at high Reynolds numbersComput Fluids2017149123036317251390.76161
ThelenASLeifssonLTBeranPSMultifidelity flutter prediction using regression cokriging with adaptive samplingJ Fluids Struct202097
KozielSYangXSStudies in computational intelligence2011Berlin HeidelbergSpringer
RaulVLeifssonLSurrogate-based aerodynamic shape optimization for delaying airfoil dynamic stall using kriging regression and infill criteriaAerosp Sci Technol202111110.1016/j.ast.2021.106555
ShiLYangRZhuPA method for selecting surrogate models in crashworthiness optimizationStruct Multidisc Optim2012462159170
Palacios F, Economon TD, Aranake A, Copeland SR, Lonkar AK, Lukaczyk TW, Manosalvas DE, Naik KR, Padron S, Tracey B, et al (2014) Stanford university unstructured (su2): Analysis and design technology for turbulent flows. In: 52nd aerospace sciences meeting, National Harbor, Maryland, p. 0243 (13–17 January)
LeeTGerontakosPDynamic stall flow control via a trailing-edge flapAIAA J2006443469480
Müller-VahlHFNayeriCNPaschereitCOGreenblattDDynamic stall control via adaptive blowingRenew Energy2016974764
ForresterAISobesterAKeaneAJMulti-fidelity optimization via surrogate modellingProc R Soc A: Math, Phys Eng Sci2007463208832513269238666110.1098/rspa.2007.19001142.90489
KumarDCesnikCEPerformance enhancement in dynamic stall condition using active camber deformationJ Am Helicopter Soc2015602112
Raul VV, Leifsson LT (2021) Aerodynamic shape optimization for delaying dynamic stall of airfoils using cokriging regression. In: AIAA Scitech 2021 Forum, p. 0340
HarrisFDPruynRRBlade stall half fact, half fictionJ Am Helicopter Soc19681322748
Economon T, Palacios F, Alonso J (2013)
T Rogalsky (3690_CR52) 2009; 55
WJ McCroskey (3690_CR38) 1981; 26
CP Ellington (3690_CR15) 1999; 202
Q Wang (3690_CR68) 2015; 28
3690_CR50
Y Kuya (3690_CR31) 2011; 49
YH Yu (3690_CR71) 1995; 33
3690_CR14
J Niu (3690_CR44) 2018; 72
3690_CR57
3690_CR12
H Sobieczky (3690_CR58) 1999
MD McKay (3690_CR39) 2000; 42
3690_CR3
3690_CR4
S Wang (3690_CR67) 2010; 39
3690_CR6
AI Forrester (3690_CR16) 2009; 45
B Hand (3690_CR23) 2017; 149
V Raul (3690_CR51) 2021; 111
J Bailly (3690_CR2) 2019; 57
D Echeverría (3690_CR11) 2008; 11
S Koziel (3690_CR29) 2008; 9
D Kumar (3690_CR30) 2015; 60
TD Economon (3690_CR13) 2016; 54
T Lee (3690_CR33) 2004; 512
3690_CR47
A Thelen (3690_CR61) 2020; 58
Z Zhou (3690_CR72) 2005; 3
HF Müller-Vahl (3690_CR41) 2016; 97
3690_CR46
3690_CR45
L Shi (3690_CR55) 2012; 46
W Yamazaki (3690_CR70) 2016
WJ McCroskey (3690_CR37) 1976; 14
J Nagawkar (3690_CR43) 2021; 58
Q Wang (3690_CR66) 2020; 234
K Mani (3690_CR36) 2012; 3
L Gu (3690_CR22) 2006; 25
A Jameson (3690_CR25) 2003
A Buchner (3690_CR5) 2015; 146
M Giselle Fernández-Godino (3690_CR21) 2019; 57
S Koziel (3690_CR28) 2008; 9
R Veerakumar (3690_CR62) 2020; 36
CJ Roy (3690_CR53) 2003; 41
T Lee (3690_CR34) 2006; 44
SK Nadarajah (3690_CR42) 2007; 45
Y Kim (3690_CR26) 2016; 129
AS Thelen (3690_CR60) 2020; 97
FD Harris (3690_CR24) 1968; 13
D Peri (3690_CR49) 2012
T Wong (3690_CR69) 2006; 62–3
B Peherstorfer (3690_CR48) 2018; 60
3690_CR32
J Forrester (3690_CR17) 2006; 44
Q Wang (3690_CR65) 2018; 72
MG De Giorgi (3690_CR10) 2020; 96
L Leifsson (3690_CR35) 2015
LW Carr (3690_CR7) 1988; 25
M Chandrasekhara (3690_CR8) 2004; 41
TW Simpson (3690_CR56) 2001; 17
S Abbott (3690_CR1) 2001
FR Menter (3690_CR40) 1994; 32
A Sharma (3690_CR54) 2019; 870
NA Vu (3690_CR64) 2015; 42
AI Forrester (3690_CR18) 2007; 463
A Forrester (3690_CR20) 2008
S Koziel (3690_CR27) 2011
3690_CR63
H Zhu (3690_CR73) 2019; 88
L Daróczy (3690_CR9) 2015; 90
AI Forrester (3690_CR19) 2007; 463
J Tang (3690_CR59) 2017; 54
References_xml – volume: 41
  start-page: 862
  issue: 4
  year: 2004
  ident: 3690_CR8
  publication-title: J Aircr
  doi: 10.2514/1.472
  contributor:
    fullname: M Chandrasekhara
– volume: 3
  start-page: 1940
  year: 2012
  ident: 3690_CR36
  publication-title: Am Helicopter Soc
  contributor:
    fullname: K Mani
– ident: 3690_CR3
– volume: 96
  year: 2020
  ident: 3690_CR10
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2019.105587
  contributor:
    fullname: MG De Giorgi
– volume: 42
  start-page: 55
  issue: 1
  year: 2000
  ident: 3690_CR39
  publication-title: Technometrics
  doi: 10.1080/00401706.2000.10485979
  contributor:
    fullname: MD McKay
– volume: 9
  start-page: 375
  issue: 4
  year: 2008
  ident: 3690_CR28
  publication-title: Optim Eng
  doi: 10.1007/s11081-007-9032-0
  contributor:
    fullname: S Koziel
– volume: 870
  start-page: 870
  year: 2019
  ident: 3690_CR54
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2019.235
  contributor:
    fullname: A Sharma
– ident: 3690_CR47
  doi: 10.2514/6.2014-0243
– volume: 72
  start-page: 476
  year: 2018
  ident: 3690_CR44
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2017.11.030
  contributor:
    fullname: J Niu
– volume: 45
  start-page: 50
  issue: 1–3
  year: 2009
  ident: 3690_CR16
  publication-title: Prog Aerosp Sci
  doi: 10.1016/j.paerosci.2008.11.001
  contributor:
    fullname: AI Forrester
– volume: 55
  start-page: 163
  issue: 3
  year: 2009
  ident: 3690_CR52
  publication-title: Can Aeronaut Space J
  doi: 10.5589/q10-002
  contributor:
    fullname: T Rogalsky
– ident: 3690_CR32
  doi: 10.2514/6.2008-1889
– volume: 17
  start-page: 129
  issue: 2
  year: 2001
  ident: 3690_CR56
  publication-title: Eng Comput
  doi: 10.1007/PL00007198
  contributor:
    fullname: TW Simpson
– volume: 54
  start-page: 1241
  issue: 4
  year: 2017
  ident: 3690_CR59
  publication-title: J Aircr
  doi: 10.2514/1.C033649
  contributor:
    fullname: J Tang
– ident: 3690_CR4
– volume: 41
  start-page: 595
  issue: 4
  year: 2003
  ident: 3690_CR53
  publication-title: AIAA J
  doi: 10.2514/2.2013
  contributor:
    fullname: CJ Roy
– volume: 62–3
  start-page: 1749
  year: 2006
  ident: 3690_CR69
  publication-title: Annu Forum Proc-Am Helicopter Soc
  contributor:
    fullname: T Wong
– volume-title: Aerodynamic shape optimization using the adjoint method
  year: 2003
  ident: 3690_CR25
  contributor:
    fullname: A Jameson
– volume: 72
  start-page: 502
  year: 2018
  ident: 3690_CR65
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2017.11.033
  contributor:
    fullname: Q Wang
– volume: 39
  start-page: 1529
  issue: 9
  year: 2010
  ident: 3690_CR67
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2010.05.004
  contributor:
    fullname: S Wang
– volume: 129
  start-page: 53
  year: 2016
  ident: 3690_CR26
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2016.02.004
  contributor:
    fullname: Y Kim
– volume: 49
  start-page: 289
  issue: 2
  year: 2011
  ident: 3690_CR31
  publication-title: AIAA J
  doi: 10.2514/1.J050384
  contributor:
    fullname: Y Kuya
– start-page: 1733
  volume-title: 34th Wind energy symposium
  year: 2016
  ident: 3690_CR70
  contributor:
    fullname: W Yamazaki
– volume: 60
  start-page: 1
  issue: 2
  year: 2015
  ident: 3690_CR30
  publication-title: J Am Helicopter Soc
  doi: 10.4050/JAHS.60.022001
  contributor:
    fullname: D Kumar
– start-page: 71
  volume-title: Recent development of aerodynamic design methodologies
  year: 1999
  ident: 3690_CR58
  doi: 10.1007/978-3-322-89952-1_4
  contributor:
    fullname: H Sobieczky
– volume: 97
  year: 2020
  ident: 3690_CR60
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2020.103081
  contributor:
    fullname: AS Thelen
– ident: 3690_CR50
  doi: 10.2514/6.2021-0340
– volume: 42
  start-page: 106
  year: 2015
  ident: 3690_CR64
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2014.10.020
  contributor:
    fullname: NA Vu
– volume: 60
  start-page: 550
  issue: 3
  year: 2018
  ident: 3690_CR48
  publication-title: SIAM Rev
  doi: 10.1137/16M1082469
  contributor:
    fullname: B Peherstorfer
– ident: 3690_CR14
  doi: 10.2514/6.2013-632
– volume-title: Engineering design via surrogate modelling: a practical guide
  year: 2008
  ident: 3690_CR20
  doi: 10.1002/9780470770801
  contributor:
    fullname: A Forrester
– volume: 463
  start-page: 3251
  issue: 2088
  year: 2007
  ident: 3690_CR18
  publication-title: Proc R Soc A: Math, Phys Eng Sci
  doi: 10.1098/rspa.2007.1900
  contributor:
    fullname: AI Forrester
– volume: 88
  start-page: 468
  year: 2019
  ident: 3690_CR73
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2019.03.022
  contributor:
    fullname: H Zhu
– volume: 44
  start-page: 2331
  issue: 10
  year: 2006
  ident: 3690_CR17
  publication-title: AIAA J
  doi: 10.2514/1.20068
  contributor:
    fullname: J Forrester
– volume: 90
  start-page: 680
  year: 2015
  ident: 3690_CR9
  publication-title: Energy
  doi: 10.1016/j.energy.2015.07.102
  contributor:
    fullname: L Daróczy
– volume: 44
  start-page: 469
  issue: 3
  year: 2006
  ident: 3690_CR34
  publication-title: AIAA J
  doi: 10.2514/1.17263
  contributor:
    fullname: T Lee
– volume: 234
  start-page: 375
  issue: 2
  year: 2020
  ident: 3690_CR66
  publication-title: Proc Inst Mech Eng, Part G: J Aerosp Eng
  doi: 10.1177/0954410019865700
  contributor:
    fullname: Q Wang
– volume: 58
  start-page: 1
  year: 2021
  ident: 3690_CR43
  publication-title: J Aircr
  doi: 10.2514/1.C035297
  contributor:
    fullname: J Nagawkar
– volume: 54
  start-page: 828
  issue: 3
  year: 2016
  ident: 3690_CR13
  publication-title: AIAA J
  doi: 10.2514/1.J053813
  contributor:
    fullname: TD Economon
– ident: 3690_CR45
– volume: 202
  start-page: 3439
  issue: 23
  year: 1999
  ident: 3690_CR15
  publication-title: J Exp Biol
  doi: 10.1242/jeb.202.23.3439
  contributor:
    fullname: CP Ellington
– volume: 58
  start-page: 4764
  issue: 11
  year: 2020
  ident: 3690_CR61
  publication-title: AIAA J
  doi: 10.2514/1.J059208
  contributor:
    fullname: A Thelen
– volume: 13
  start-page: 27
  issue: 2
  year: 1968
  ident: 3690_CR24
  publication-title: J Am Helicopter Soc
  doi: 10.4050/JAHS.13.2.27
  contributor:
    fullname: FD Harris
– volume: 463
  start-page: 3251
  issue: 2088
  year: 2007
  ident: 3690_CR19
  publication-title: Proc R Soc A: Math, Phys Eng Sci
  doi: 10.1098/rspa.2007.1900
  contributor:
    fullname: AI Forrester
– volume: 14
  start-page: 57
  issue: 1
  year: 1976
  ident: 3690_CR37
  publication-title: AIAA J
  doi: 10.2514/3.61332
  contributor:
    fullname: WJ McCroskey
– volume: 33
  start-page: 289
  issue: 2
  year: 1995
  ident: 3690_CR71
  publication-title: AIAA J
  doi: 10.2514/3.12496
  contributor:
    fullname: YH Yu
– volume: 57
  start-page: 3132
  issue: 8
  year: 2019
  ident: 3690_CR2
  publication-title: AIAA J
  doi: 10.2514/1.J056513
  contributor:
    fullname: J Bailly
– volume: 25
  start-page: 3
  issue: 1–3
  year: 2006
  ident: 3690_CR22
  publication-title: Int J Mater Prod Technol
  doi: 10.1504/IJMPT.2006.008271
  contributor:
    fullname: L Gu
– volume-title: Studies in computational intelligence
  year: 2011
  ident: 3690_CR27
  contributor:
    fullname: S Koziel
– ident: 3690_CR46
  doi: 10.2514/6.2013-287
– volume: 36
  start-page: 260
  issue: 2
  year: 2020
  ident: 3690_CR62
  publication-title: Acta Mech Sin
  doi: 10.1007/s10409-020-00951-6
  contributor:
    fullname: R Veerakumar
– volume: 111
  year: 2021
  ident: 3690_CR51
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2021.106555
  contributor:
    fullname: V Raul
– volume-title: Simulation-driven aerodynamic design using variable-fidelity models
  year: 2015
  ident: 3690_CR35
  doi: 10.1142/p987
  contributor:
    fullname: L Leifsson
– ident: 3690_CR6
– volume: 45
  start-page: 1478
  issue: 7
  year: 2007
  ident: 3690_CR42
  publication-title: AIAA J
  doi: 10.2514/1.24332
  contributor:
    fullname: SK Nadarajah
– volume: 9
  start-page: 105
  issue: 6
  year: 2008
  ident: 3690_CR29
  publication-title: IEEE Microw Mag
  doi: 10.1109/MMM.2008.929554
  contributor:
    fullname: S Koziel
– ident: 3690_CR57
– volume: 57
  start-page: 2039
  issue: 5
  year: 2019
  ident: 3690_CR21
  publication-title: AIAA J
  doi: 10.2514/1.J057750
  contributor:
    fullname: M Giselle Fernández-Godino
– volume-title: Understanding analysis
  year: 2001
  ident: 3690_CR1
  doi: 10.1007/978-0-387-21506-8
  contributor:
    fullname: S Abbott
– volume: 512
  start-page: 313
  year: 2004
  ident: 3690_CR33
  publication-title: J Fluid Mech
  contributor:
    fullname: T Lee
– volume: 28
  start-page: 346
  issue: 2
  year: 2015
  ident: 3690_CR68
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2014.12.033
  contributor:
    fullname: Q Wang
– ident: 3690_CR63
  doi: 10.1038/s41592-020-0772-5
– volume: 25
  start-page: 6
  issue: 1
  year: 1988
  ident: 3690_CR7
  publication-title: J Aircr
  doi: 10.2514/3.45534
  contributor:
    fullname: LW Carr
– volume: 11
  start-page: 193
  issue: 4–6
  year: 2008
  ident: 3690_CR11
  publication-title: Comput Vis Sci
  doi: 10.1007/s00791-008-0096-y
  contributor:
    fullname: D Echeverría
– volume: 97
  start-page: 47
  year: 2016
  ident: 3690_CR41
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.05.053
  contributor:
    fullname: HF Müller-Vahl
– volume: 46
  start-page: 159
  issue: 2
  year: 2012
  ident: 3690_CR55
  publication-title: Struct Multidisc Optim
  doi: 10.1007/s00158-012-0760-1
  contributor:
    fullname: L Shi
– volume: 26
  start-page: 40
  issue: 3
  year: 1981
  ident: 3690_CR38
  publication-title: J Am Helicopter Soc
  doi: 10.4050/JAHS.26.3.40
  contributor:
    fullname: WJ McCroskey
– volume: 149
  start-page: 12
  year: 2017
  ident: 3690_CR23
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2017.02.021
  contributor:
    fullname: B Hand
– volume: 146
  start-page: 163
  year: 2015
  ident: 3690_CR5
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2015.09.001
  contributor:
    fullname: A Buchner
– volume: 32
  start-page: 1598
  issue: 8
  year: 1994
  ident: 3690_CR40
  publication-title: AIAA J
  doi: 10.2514/3.12149
  contributor:
    fullname: FR Menter
– year: 2012
  ident: 3690_CR49
  publication-title: Comm Appl Ind Math
  doi: 10.1685/journal.caim.393
  contributor:
    fullname: D Peri
– volume: 3
  start-page: 2832
  year: 2005
  ident: 3690_CR72
  publication-title: IEEE Congress Evol Comput
  contributor:
    fullname: Z Zhou
– ident: 3690_CR12
SSID ssj0008049
Score 2.4369457
Snippet This work proposes a multifidelity modeling approach to mitigate adverse characteristics of airfoil dynamic stall through aerodynamic shape optimization (ASO)....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 237
SubjectTerms Accuracy
Aerodynamic coefficients
Airfoils
Computational fluid dynamics
Computational Mathematics and Numerical Analysis
Computing time
Constraint modelling
Criteria
Engineering
Engineering Design
Fluid flow
Optimization
Peak values
Redevelopment
Regression
Research Paper
Reynolds averaged Navier-Stokes method
Shape optimization
Stalling
Theoretical and Applied Mechanics
Turbulence models
Unsteady aerodynamics
Title Multifidelity aerodynamic shape optimization for mitigating dynamic stall using Cokriging regression-based infill
URI https://link.springer.com/article/10.1007/s00158-023-03690-x
https://www.proquest.com/docview/2886457954
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMctHgsMiKcoj8oDG1jKw47tsUUNCESFEJXKFDmJHRBtWqBIfHzOTtICgoEpimJ5-Pty90t8d0bohIs81UpJkgGOE8qYIakwDG6N5kYYTjP7Q_-mH10O6NWQDRd13C7ZvdmRdI56Xutmo7sgEGIIOF3pEQDHVYAHavO4BkFn7n5FxbyWZIhP-bCulPl9ju_RaIGYP3ZFXbCJN9FGTYm4Uy3rFlrS5TZa_9I7cAe9uNJZY7tUAUhjpcETVqfL47dHNdV4As5gXFdZYkBTPH6q-mmUBZ6PBPQeYZv7XuDzybM7JKvAr7qosmNLYoNcjsEKn0ajXTSIe_fnl6Q-PwGU5t6MaCopCz3DPEXTKEqlnwYyY4bmNIAV4sYPM_icYK5-1hgAC61FFikZgnmlURjuoZVyUup9hH0VSZV6UliE0babba4izvMsFFpRzVvotNExmVZtMpJ5Q2SnegKqJ0715KOFjhqpk_qVeUsCISLKuGS0hc4a-ReP_57t4H_DD9FaUFkA8fwjtDJ7fdfHABaztI2WRXzRRquduNvt2-vFw3UPrt1e__au7czsExqBzfA
link.rule.ids 315,783,787,27938,27939,33387,33758,41095,41537,42164,42606,52125,52248
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQDMCA-BSFAh7YwFI-7Ngeq4qqQNuplbpFTmKHijYtbZH4-ZzzVUAwMEaxPDyf715iv3cI3XKRRFopSWKg44QyZkgkDINHo7kRhtPY_tDvD4LuiD6N2bgUha2q2-7VkWSeqWuxmy3vgkCNIZB1pUOAOe5Yf3Ub1yOvVedfUZBeS2WIS_m4lMr8Psf3crThmD-ORfNq0zlEByVNxK1iXY_Qls6O0f4X88AT9JZrZ421qQImjZWGVFi0l8erF7XQeA7ZYFbKLDFwUzybFIYaWYrrkcC9p9hefk9xe_6ad8lK8VKnxfXYjNgql2AIw8l0eopGnYdhu0vKBgoANXfWRFNJme8Y5igaBUEk3ciTMTM0oR4sETeuH8P3BMsFtMYAs9BaxIGSPsRXFPj-GdrO5pk-R9hVgVSRI4XlMNra2SYq4DyJfaEV1byB7iocw0XhkxHWjsg56iGgHuaohx8N1KygDss9swo9IQLKuGS0ge4r-Dev_57t4n_Db9Bud9jvhb3HwfMl2rP94wtxYRNtr5fv-gpYxjq6zoPqEwWty7o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB2hRULtoS1fYoEWH7iBIdnYsX1ElC3f4lCk5RTZib0gluwWglTx6xnHyUJRe0A9RrGsxDOeeYnnvQHYFLIwVmtFc4TjlHHuqJGO46WzwkknWO5_6J-dp4eX7HjAB69Y_HW1e3skGTgNXqWprHYnhdudEt98qpcU8w3FCKwiiihylsUIFzowu_fj6uRgGo1lgMAe2NCYiUFDnPn7LH8mpxfE-eaQtM49_c-g26cOJSe3O4-V2cmf3gg6_s9rfYFPDTAle8GT5mHGlgvw8ZVc4SL8qtm6zgtjIXYn2mLwDQ3tycO1nlgyxvhz1xA7CaJhcncTJDzKIZmORLQ_Ir7cfkj2x7d1X64hubfDUJBbUp9XC4KOfzMaLcFl_-Dn_iFtWjagcUVUUcsU40nkeKSZSVOjYtNTOXesYD10CuHiJMcvGF5Tdp1DLGOtzFOtEvRokybJMnTKcWlXgMQ6VdpESnrUZL2AbqFTIYo8kVYzK7qw1doqmwRljmyqwVwvZIYLmdULmf3uwnprzqzZpQ9ZT8qUcaE468J2a52X2_-ebfV9wzdg7uJ7Pzs9Oj9Zgw--YX1gM65Dp7p_tF8R1lTmW-O5zxSX8dM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifidelity+aerodynamic+shape+optimization+for+mitigating+dynamic+stall+using+Cokriging+regression-based+infill&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Raul%2C+Vishal&rft.au=Leifsson%2C+Leifur&rft.date=2023-11-01&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=66&rft.issue=11&rft_id=info:doi/10.1007%2Fs00158-023-03690-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00158_023_03690_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon