Self-healing mechanisms for Ge–Sb–S chalcogenide glasses upon gamma irradiation
We report atomistic mechanisms that directly correlate the time-dependent optical responses of bulk Ge 23 Sb 7 S 70 chalcogenide glasses to their metastable structural defects created and subsequently annihilated following gamma irradiation. These defects are characterized by an irradiation-induced...
Saved in:
Published in | MRS bulletin Vol. 49; no. 8; pp. 778 - 786 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report atomistic mechanisms that directly correlate the time-dependent optical responses of bulk Ge
23
Sb
7
S
70
chalcogenide glasses to their metastable structural defects created and subsequently annihilated following gamma irradiation. These defects are characterized by an irradiation-induced increase in the concentration of edge-shared GeS
4/2
tetrahedra bonding units, which gradually decreases to a pre-irradiation level during recovery, thus illustrating the glass’ metastable behavior. This time-dependent structural change gives rise to the evolution of the glass’s mass density that correspondingly induces a change and subsequent relaxation of linear refractive index and bandgap energy. Concurrent with this evolution in linear optical properties, the glass’ nonlinear response is found to be unaffected, likely due to a counter effect associated with the glass network’s free electrons.
Graphical abstract
Impact statement
Our work is the first study to employ a combined theoretical-experimental approach to the quantitative processing–structure–property relationship correlating the time-dependent structural and linear/nonlinear optical responses of chalcogenide Ge–Sb–S bulk glasses to their metastable topological coordination defects. These defects are created upon gamma-ray exposure and subsequently undergo relaxation at room temperature. The novelty of our study is that multifaceted aspects of such a key infrared chalcogenide glass, including optical, electronic, morphological, chemical, and microstructural properties, were monitored and cross-correlated as a function of time following gamma irradiation in order to identify origins behind the material system’s behavior as compared to base unirradiated material. This is, to our knowledge, the first-ever integrated approach (summarizing pre- and postexposure properties on the same samples) to the phenomenon. The behavior in metastable bulk chalcogenide glasses serves as a key cornerstone that will enable the material system to be deployed as robust, reversible radiation sensors in extreme environments such as space and ground-based radioactive facilities where gamma ray is characteristically abundant. Findings in our paper may shed light on the lingering question on the microscopic origin behind the self-healing process in chalcogenide glasses. |
---|---|
AbstractList | We report atomistic mechanisms that directly correlate the time-dependent optical responses of bulk Ge23Sb7S70 chalcogenide glasses to their metastable structural defects created and subsequently annihilated following gamma irradiation. These defects are characterized by an irradiation-induced increase in the concentration of edge-shared GeS4/2 tetrahedra bonding units, which gradually decreases to a pre-irradiation level during recovery, thus illustrating the glass’ metastable behavior. This time-dependent structural change gives rise to the evolution of the glass’s mass density that correspondingly induces a change and subsequent relaxation of linear refractive index and bandgap energy. Concurrent with this evolution in linear optical properties, the glass’ nonlinear response is found to be unaffected, likely due to a counter effect associated with the glass network’s free electrons.Impact statementOur work is the first study to employ a combined theoretical-experimental approach to the quantitative processing–structure–property relationship correlating the time-dependent structural and linear/nonlinear optical responses of chalcogenide Ge–Sb–S bulk glasses to their metastable topological coordination defects. These defects are created upon gamma-ray exposure and subsequently undergo relaxation at room temperature. The novelty of our study is that multifaceted aspects of such a key infrared chalcogenide glass, including optical, electronic, morphological, chemical, and microstructural properties, were monitored and cross-correlated as a function of time following gamma irradiation in order to identify origins behind the material system’s behavior as compared to base unirradiated material. This is, to our knowledge, the first-ever integrated approach (summarizing pre- and postexposure properties on the same samples) to the phenomenon. The behavior in metastable bulk chalcogenide glasses serves as a key cornerstone that will enable the material system to be deployed as robust, reversible radiation sensors in extreme environments such as space and ground-based radioactive facilities where gamma ray is characteristically abundant. Findings in our paper may shed light on the lingering question on the microscopic origin behind the self-healing process in chalcogenide glasses. We report atomistic mechanisms that directly correlate the time-dependent optical responses of bulk Ge 23 Sb 7 S 70 chalcogenide glasses to their metastable structural defects created and subsequently annihilated following gamma irradiation. These defects are characterized by an irradiation-induced increase in the concentration of edge-shared GeS 4/2 tetrahedra bonding units, which gradually decreases to a pre-irradiation level during recovery, thus illustrating the glass’ metastable behavior. This time-dependent structural change gives rise to the evolution of the glass’s mass density that correspondingly induces a change and subsequent relaxation of linear refractive index and bandgap energy. Concurrent with this evolution in linear optical properties, the glass’ nonlinear response is found to be unaffected, likely due to a counter effect associated with the glass network’s free electrons. Graphical abstract Impact statement Our work is the first study to employ a combined theoretical-experimental approach to the quantitative processing–structure–property relationship correlating the time-dependent structural and linear/nonlinear optical responses of chalcogenide Ge–Sb–S bulk glasses to their metastable topological coordination defects. These defects are created upon gamma-ray exposure and subsequently undergo relaxation at room temperature. The novelty of our study is that multifaceted aspects of such a key infrared chalcogenide glass, including optical, electronic, morphological, chemical, and microstructural properties, were monitored and cross-correlated as a function of time following gamma irradiation in order to identify origins behind the material system’s behavior as compared to base unirradiated material. This is, to our knowledge, the first-ever integrated approach (summarizing pre- and postexposure properties on the same samples) to the phenomenon. The behavior in metastable bulk chalcogenide glasses serves as a key cornerstone that will enable the material system to be deployed as robust, reversible radiation sensors in extreme environments such as space and ground-based radioactive facilities where gamma ray is characteristically abundant. Findings in our paper may shed light on the lingering question on the microscopic origin behind the self-healing process in chalcogenide glasses. |
Author | Zachariou, Anna Schwarz, Casey M. Luzinov, Igor Lynch, Patrick E. Lee, Jonathan Pujari, Ruturaj Sohn, Byoung-Uk Richardson, Kathleen A. Sisken, Laura Yadav, Anupama Tan, Dawn T. H. Ma, Danhao Novak, Spencer Hu, Juejun Kang, Myungkoo Arias, Chanelle Agarwal, Anuradha M. Blanco, Cesar Goncalves, Claudia Du, Qingyang |
Author_xml | – sequence: 1 givenname: Myungkoo orcidid: 0009-0009-8048-4204 surname: Kang fullname: Kang, Myungkoo email: kangm@alfred.edu organization: New York State College of Ceramics, Alfred University, CREOL, College of Optics and Photonics, University of Central Florida – sequence: 2 givenname: Byoung-Uk surname: Sohn fullname: Sohn, Byoung-Uk organization: Engineering Product Development, Singapore University of Technology and Design – sequence: 3 givenname: Qingyang surname: Du fullname: Du, Qingyang organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology – sequence: 4 givenname: Danhao surname: Ma fullname: Ma, Danhao organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology – sequence: 5 givenname: Ruturaj surname: Pujari fullname: Pujari, Ruturaj organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology – sequence: 6 givenname: Laura surname: Sisken fullname: Sisken, Laura organization: CREOL, College of Optics and Photonics, University of Central Florida – sequence: 7 givenname: Cesar surname: Blanco fullname: Blanco, Cesar organization: CREOL, College of Optics and Photonics, University of Central Florida – sequence: 8 givenname: Claudia surname: Goncalves fullname: Goncalves, Claudia organization: CREOL, College of Optics and Photonics, University of Central Florida – sequence: 9 givenname: Chanelle surname: Arias fullname: Arias, Chanelle organization: CREOL, College of Optics and Photonics, University of Central Florida – sequence: 10 givenname: Anna surname: Zachariou fullname: Zachariou, Anna organization: CREOL, College of Optics and Photonics, University of Central Florida – sequence: 11 givenname: Anupama surname: Yadav fullname: Yadav, Anupama organization: CREOL, College of Optics and Photonics, University of Central Florida – sequence: 12 givenname: Patrick E. surname: Lynch fullname: Lynch, Patrick E. organization: New York State College of Ceramics, Alfred University – sequence: 13 givenname: Jonathan surname: Lee fullname: Lee, Jonathan organization: Department of Materials Science and Engineering, University of Central Florida – sequence: 14 givenname: Spencer surname: Novak fullname: Novak, Spencer organization: Department of Materials Science and Engineering, Clemson University – sequence: 15 givenname: Casey M. surname: Schwarz fullname: Schwarz, Casey M. organization: Department of Physics and Astronomy, Ursinus College – sequence: 16 givenname: Igor surname: Luzinov fullname: Luzinov, Igor organization: Department of Materials Science and Engineering, Clemson University – sequence: 17 givenname: Juejun surname: Hu fullname: Hu, Juejun organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology – sequence: 18 givenname: Anuradha M. surname: Agarwal fullname: Agarwal, Anuradha M. organization: Department of Materials Science and Engineering, Massachusetts Institute of Technology – sequence: 19 givenname: Dawn T. H. surname: Tan fullname: Tan, Dawn T. H. organization: Engineering Product Development, Singapore University of Technology and Design – sequence: 20 givenname: Kathleen A. surname: Richardson fullname: Richardson, Kathleen A. organization: CREOL, College of Optics and Photonics, University of Central Florida |
BookMark | eNp9kLFOwzAQhi0EEm3hBZgsMRvs2I7tEVVQkCoxFGbLSc5pqsQpdiuVjXfgDXkSUoLExnI33Pf_J31TdBr6AAhdMXrDpFS3SXCpFKGZIJTmhpPDCZowwzVhIpOnaEK15kTlRpyjaUobSpmkSk7QagWtJ2twbRNq3EG5dqFJXcK-j3gBXx-fq-I48HBoy76G0FSA69alBAnvt33Ates6h5sYXdW4XdOHC3TmXZvg8nfP0OvD_cv8kSyfF0_zuyUpM0V3BBgXFJzRXjuZ50bysjQic05UGQA3UFYKcsFUkXsugHnqK-9ykN4VhdCGz9D12LuN_dse0s5u-n0Mw0vLqVaZoZTqgcpGqox9ShG83camc_HdMmqP8uwozw7y7I88exhCfAylAQ41xL_qf1Lfjh13fA |
Cites_doi | 10.1038/nphoton.2014.138 10.1016/j.jpcs.2016.12.016 10.1038/srep39234 10.1364/PRJ.6.000B37 10.1016/j.jallcom.2018.09.334 10.1088/1054-660X/25/3/036001 10.1016/j.jnoncrysol.2013.03.020 10.1002/adom.202000150 10.1016/j.mssp.2012.03.017 10.1111/jace.18492 10.1038/s41598-018-25481-x 10.1021/ph400107s 10.1016/j.jnoncrysol.2003.09.008 10.1364/OE.16.020081 10.1364/OL.31.001495 10.1021/jp410017k 10.1063/1.5079908 10.1038/ncomms13371 10.1038/s41566-017-0033-z 10.1016/j.nimb.2005.02.019 10.1021/acsnano.3c01968 10.1364/OME.8.002722 10.1007/s00340-013-5748-z 10.1021/acsphotonics.9b01593 10.1016/j.optlastec.2020.106058 10.1088/1742-6596/289/1/012007 10.1002/adma.201803628 10.1063/1.5085504 10.1021/jp208614j 10.13036/17533562.58.4.115 10.1364/OE.11.001541 10.1364/OL.41.003090 10.1063/1.323539 10.1016/j.jssc.2009.07.027 10.1143/JPSJ.45.1603 10.1021/jp202174x 10.1002/adfm.201902217 10.1016/j.nimb.2004.05.033 10.1021/jp062900t 10.1063/1.4742863 10.1364/OE.15.002307 10.1038/s41467-019-12196-4 10.1103/PhysRevLett.35.1293 10.1103/PhysRevLett.100.076103 10.1039/c2jm32235h 10.1038/nphoton.2011.309 10.1002/lpor.201700005 10.1103/PhysRevLett.120.183901 10.1016/j.jnoncrysol.2016.10.021 10.1007/s00339-022-05522-z 10.1364/OL.42.000587 10.1002/pssc.201000759 10.1063/1.5053599 10.1103/PhysRev.128.2093 10.1016/j.jssc.2012.03.046 10.1109/JLT.2009.2030899 10.1063/1.4990590 10.1080/10420150108211840 10.1021/acsami.7b06140 10.1103/PhysRevB.60.R14985 10.1364/PRJ.379019 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive License to the Materials Research Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive License to the Materials Research Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 7SR 7TA 8BQ 8FD JG9 |
DOI | 10.1557/s43577-024-00693-x |
DatabaseName | CrossRef Engineered Materials Abstracts Materials Business File METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Materials Business File METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1938-1425 |
EndPage | 786 |
ExternalDocumentID | 10_1557_s43577_024_00693_x |
GrantInformation_xml | – fundername: Defense Threat Reduction Agency grantid: HDTRA 1-13-1-0001 funderid: http://dx.doi.org/10.13039/100000774 |
GroupedDBID | -2P -2V -E. .FH 0E1 0R~ 123 2JN 4.4 406 5VS 74X 74Y 7~V 8FE 8FG 8UJ AAAZR AABES AABWE AACDK AACJH AAEWM AAGFV AAHNG AAJBT AAKTX AARAB AASML AATID AATNV AAUKB ABAKF ABBXD ABECU ABEFU ABGDZ ABJCF ABJNI ABKKG ABMQK ABMWE ABQTM ABROB ABTEG ABTKH ABTMW ABZCX ABZUI ACAOD ACBEA ACBEK ACBMC ACDTI ACETC ACGFS ACHSB ACIMK ACIWK ACQPF ACUIJ ACWMK ACXSD ACZBM ACZOJ ACZUX ADCGK ADFEC ADOVH ADOVT AEBAK AEFQL AEHGV AEMSY AEMTW AENEX AENGE AESKC AESTI AEYYC AFBBN AFDJF AFFUJ AFKQG AFKRA AFLOS AFLVW AFQWF AFUTZ AGLWM AGMZJ AGQEE AHQXX AIGIU AIGNW AIHIV AIOIP AISIE AJCYY AJPFC AJQAS AKYQF AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AMTXH AMXSW AMYLF ARABE ARZZG ATUCA AUXHV AYIQA BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BMAJL BQFHP C0O CBIIA CCPQU CCUQV CFAFE CFBFF CGQII CTKSN CZ9 D1I DC4 DOHLZ DPUIP EBLON EBS EJD FIGPU HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IKXTQ IOEEP IOO IS6 IWAJR I~P J36 J38 J3A JHPGK JKPOH JQKCU JZLTJ KAFGG KB. KC. KCGVB KFECR L98 LHUNA LLZTM M-V M7~ M8. NIKVX NPVJJ NQJWS O9- PDBOC PYCCK RAMDC RCA RNS ROL RR0 RSV S0W S6- S6U SAAAG SNE SNPRN SOHCF SOJ SRMVM SSLCW T9M TN5 UT1 WQ3 WXU WXY ZDLDU ZE2 ZJOSE ZMEZD ZYDXJ ~V1 AAYXX CITATION SJYHP 7SR 7TA 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c270t-e1340ea98f8a566953cc942aa4d2ee39ecd7e6417b6f34e1f0fdfa6e5fabb4893 |
ISSN | 0883-7694 |
IngestDate | Thu Oct 10 22:29:23 EDT 2024 Thu Sep 26 20:51:11 EDT 2024 Fri Aug 02 08:36:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Radiation effects Raman spectroscopy Healable Glass Defects |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c270t-e1340ea98f8a566953cc942aa4d2ee39ecd7e6417b6f34e1f0fdfa6e5fabb4893 |
ORCID | 0009-0009-8048-4204 |
PQID | 3087290008 |
PQPubID | 626324 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3087290008 crossref_primary_10_1557_s43577_024_00693_x springer_journals_10_1557_s43577_024_00693_x |
PublicationCentury | 2000 |
PublicationDate | 8-2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 8-2024 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Warrendale |
PublicationTitle | MRS bulletin |
PublicationTitleAbbrev | MRS Bulletin |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | ShenBLinHAzadehSSNojicJKangMMergetFRichardsonKAHuJWitzensJACS Photonics202074991:CAS:528:DC%2BB3cXksVOgtg%3D%3D10.1021/acsphotonics.9b01593 StreetRAMottNFPhys. Rev. Lett.19753512931:CAS:528:DyaE28XhtFaksg%3D%3D10.1103/PhysRevLett.35.1293 ZhangYChouJBLiJLiHDuQYadavAZhouSShalaginovMYFangZZhongHRobertsCRobinsonPBohlinBRiosCLinHKangMGuTWarnerJLibermanVRichardsonKHuJNat. Commun.201910427931570710676886610.1038/s41467-019-12196-4 XiaFBaccaroSZhaoDFalconieriMChenGNucl. Instrum. Methods Phys. Res. B20052345251:CAS:528:DC%2BD2MXlt1Giurk%3D10.1016/j.nimb.2005.02.019 OuisMAAbd-AllahWMSallamOIAppl. Phys. A20221283891:CAS:528:DC%2BB38XpsFWqsbw%3D10.1007/s00339-022-05522-z LepicardABonduFKangMSiskenLYadavAAdamietzFRodriguezVRichardsonKDussauzeMSci. Rep.20188738829743577594334110.1038/s41598-018-25481-x El-SayedSMNucl. Instrum. Methods Phys. Res. B20042255351:CAS:528:DC%2BD2cXnsVGltLc%3D10.1016/j.nimb.2004.05.033 MingareevIKangMTrumanMQinJYinGHuJSchwarzCMMurrayIBRichardsonMCRichardsonKAOpt. Laser Technol.20201261060581:CAS:528:DC%2BB3cXhvFOrtro%3D10.1016/j.optlastec.2020.106058 WatanabeIIshikawaMShimizuTJ. Phys. Soc. Jpn.19784516031:CAS:528:DyaE1MXjtlSgtQ%3D%3D10.1143/JPSJ.45.1603 LeeYChoiYWLeeKSongCErciusPCohenMLKimKZettlAACS Nano20231787341:CAS:528:DC%2BB3sXosVyqtb0%3D371272881017368210.1021/acsnano.3c01968 CaucheteurCGuoTLiuFGuanB-OAlbertJNat. Commun.20167133711:CAS:528:DC%2BC28XhvVGju7bE27834366511463910.1038/ncomms13371 ShpotyukYIngramAFilipeckiJHylaMPhys. Status Solidi C2011831631:CAS:528:DC%2BC3MXhsV2qtbbM10.1002/pssc.201000759 PetitLCarlieNChenHGaylordSMasseraJBoudebsGHuJAgarwalAKimerlingLCRichardsonKJ. Solid State Chem.200918227561:CAS:528:DC%2BD1MXht1aqsb7E10.1016/j.jssc.2009.07.027 HuJCarlieNPetitLAgarwalARichardsonKKimerlingLCJ. Lightwave Technol.20092752401:CAS:528:DC%2BC3cXmvVahsw%3D%3D10.1109/JLT.2009.2030899 ChrissanthopoulosAJovariPKabanIGrunerSKavetskyyTBorcJWangWRenJChenGYannopoulosSNJ. Solid State Chem.201219271:CAS:528:DC%2BC38XhtVOgsrvN10.1016/j.jssc.2012.03.046 DuQMichonJLiBKitaDMaDZuoHYuSGuTAgarwalALiMHuJPhotonics Res.2020821861:CAS:528:DC%2BB3cXit1ShtLzM10.1364/PRJ.379019 AndersonTPetitLCarlieNChoiJHuJAgarwalAKimerlingLRichardsonKRichardsonMOpt. Express200816200811:CAS:528:DC%2BD1cXhsFSiurbL1903009410.1364/OE.16.020081 KangMWuJHHuangSWarrenMVJiangYRobbEAGoldmanRSAppl. Phys. Lett.201210108210110.1063/1.4742863 YiCZhangPChenFDaiSWangXXuTNieQAppl. Phys. B20141166531:CAS:528:DC%2BC2cXisVartr0%3D10.1007/s00340-013-5748-z KangMGoldmanRSAppl. Phys. Rev.201960413071:CAS:528:DC%2BC1MXitVelsrbN10.1063/1.5079908 MaoAWAitkenBGSenSNon-CrystJJ. Non-Cryst. Solids2013369381:CAS:528:DC%2BC3sXms1ykurw%3D10.1016/j.jnoncrysol.2013.03.020 PierretRFSemiconductor Device Fundamentals1996New YorkAddison Wesley PethesINazabalVAriJKabanIDarpentignyJWelterEGutowskiOBureauBMessaddeqYJovariPJ. Alloys Compd.201977410091:CAS:528:DC%2BC1cXhvFCht7nK10.1016/j.jallcom.2018.09.334 KovalskiyAPJainHMillerACGolovchakRYShpotyukOIJ. Phys. Chem. B2006110229301:CAS:528:DC%2BD28XhtVKiur7K1709204610.1021/jp062900t LucasPDoraiswamyAKingEANon-CrystJJ. Non-Cryst. Solids2003332351:CAS:528:DC%2BD3sXptVSju7k%3D10.1016/j.jnoncrysol.2003.09.008 SernaSLinHAlonso-RamosCYadavARouxXLRichardsonKCassanEDubreuilNHuJVivienLPhotonics Res.20186B371:CAS:528:DC%2BC1MXksleqtbg%3D10.1364/PRJ.6.000B37 AminGAMGregusJZahoranMMater. Sci. Semicond. Process.2012154551:CAS:528:DC%2BC38XmsVersrg%3D10.1016/j.mssp.2012.03.017 ZhaYLinPTKimerlingLAgarwalAArnoldCBACS Photonics201411531:CAS:528:DC%2BC2cXisFajtLg%3D10.1021/ph400107s SohnB-UKangMChoiJAgarwalAMRichardsonKTanDTHAPL Photonics2019403610210.1063/1.5085504 KavetskyyTKabanIShpotyukOHoyerWTsmotsVJ. Phys. Conf. Ser.201128901200710.1088/1742-6596/289/1/012007 ShpotyukOShpotyukMUbizskiiSRadiat. Appl.20172294 SohnB-UMonmeyranCKimerlingLCAgarwalAMTanDTHAppl. Phys. Lett.201711109190210.1063/1.4990590 MaoJYangKChenXZhuSZhangGYangFZhangXQinKWangTPengHJ. Am. Ceram. Soc.202210551781:CAS:528:DC%2BB38XhtVyjt7%2FO10.1111/jace.18492 HuJTarasovVAgarwalAKimerlingLCarlieNPetitLRichardsonKOpt. Express20071523071:CAS:528:DC%2BD2sXjtlejur0%3D1953246510.1364/OE.15.002307 NaikRJenaSGanesanRSahooNKLaser Phys.201525110.1088/1054-660X/25/3/036001 WeiQLianJLuWWangLPhys. Rev. Lett.20081000761031835257310.1103/PhysRevLett.100.076103 PetitLCarlieNRichardsonKHumeauACherukulappurathSBoudebsGOpt. Lett.20063114951:CAS:528:DC%2BD28XlsFWrur0%3D1664215010.1364/OL.31.001495 EdwardsTGSenSJ. Phys. Chem. B201111543071:CAS:528:DC%2BC3MXjvFartro%3D2144674110.1021/jp202174x KangMSiskenLLonerganCBuffAYadavAGoncalvesCBlancoCWachtelPMusgravesJDPogrebnyakovAVBaleineERivero-BaleineCMayerTSPantanoCGRichardsonKAAdv. Opt. Mater.202010200015010.1002/adom.202000150 EggletonBJLuther-DaviesBRichardsonKNat. Photonics201151411:CAS:528:DC%2BC3MXisFWru7s%3D10.1038/nphoton.2011.309 KangMSwisherAMPogrebnyanovAVLiuLKirkAAikenSSiskenLLonerganCCookJMalendevychTKompanFDivlianskyIGlebovLBRichardsonMCRivero-BaleineCPantanoCGMayerTSRichardsonKAdv. Mater.201830180362810.1002/adma.201803628 DuQHuangYOgbuuOZhangWLiJSinghVAgarwalAMHuJOpt. Lett.2017425871:CAS:528:DC%2BC1cXisVKgtb7N2814653410.1364/OL.42.000587 MaoAWAitkenBGYoungmanREKasemanDCSenSJ. Phys. Chem. B2013117165941:CAS:528:DC%2BC3sXhvV2rtrvN2432811410.1021/jp410017k DuQHuangYLiJKitaDMichonJLinHLiLNovakSRichardsonKZhangWHuJOpt. Lett.20164130901:CAS:528:DC%2BC1cXmslajs74%3D2736710910.1364/OL.41.003090 ItohKJ. Phys. Chem. Solids20171031091:CAS:528:DC%2BC28XitFCltLzI10.1016/j.jpcs.2016.12.016 KangMSiskenLCookJBlancoCRichardsonMCMingareevIRichardsonKOpt. Mater. Express2018827221:CAS:528:DC%2BC1MXmtFWhu78%3D10.1364/OME.8.002722 YadavAKangMSmithCLonerganJBuffASiskenLChammaKBlancoCCaraccioJMayerTRivero-BaleineCRichardsonKPhys. Chem. Glasses Eur. J. Glass Sci. Tech. B20175811510.13036/17533562.58.4.115 LinCLiZYingLXuYZhangPDaiSXuTNieQJ. Phys. Chem. C201211658621:CAS:528:DC%2BC38XitVertL4%3D10.1021/jp208614j JacksonKBrileyAGrossmanSPorezagDVPedersonMRPhys. Rev. B199960R149851:CAS:528:DyaK1MXnslWlsrs%3D10.1103/PhysRevB.60.R14985 LiLLinHQiaoSZouYDantoSRichardsonKMusgravesJDLuNHuJNat. Photonics201486431:CAS:528:DC%2BC2cXhtVKlsrfE10.1038/nphoton.2014.138 SiskenLKangMVerasJMSmithCBuffAYadavAMcClaneDBlancoCRivero-BaleineCMayerTSRichardsonKAdv. Funct. Mater.201929190221710.1002/adfm.201902217 MichaelsonHBJ. Appl. Phys.19774847291:CAS:528:DyaE1cXjtVOhuw%3D%3D10.1063/1.323539 WaldmannMMusgravesJDRichardsonKArnoldCBJ. Mater. Chem.201222178481:CAS:528:DC%2BC38XhtFGlu7fM10.1039/c2jm32235h ZhaoZWuBWangXPanZLiuZZhangPShenXNieQDaiSWangRLaser Photon. Rev.201711170000510.1002/lpor.201700005 PennDRPhys. Rev.196212820931:CAS:528:DyaF3sXnvV0%3D10.1103/PhysRev.128.2093 WahlstrandJKZahedpourSBahlAKolesikMMilchbergHMPhys. Rev. Lett.20181201839011:CAS:528:DC%2BC1MXltV2isbg%3D29775376607403210.1103/PhysRevLett.120.183901 NovakSSinghVMonmeyranCIngramAHanZLinHBorodinovNPatelNDuQHuJLuzinovIGolovchakRAgarwalARichardsonKNon-CrystJJ. Non-Cryst. Solids2017455291:CAS:528:DC%2BC28XhslCqs73M10.1016/j.jnoncrysol.2016.10.021 OughstunKECartwrightNAOpt. Express20031115411946602810.1364/OE.11.001541 NovakSLinPTLiCLumdeeCHuJAgarwalAKikPGDengWRichardsonKApplACSACS Appl. Mater. Interfaces20179269901:CAS:528:DC%2BC2sXhtFyqs7nE2872239410.1021/acsami.7b06140 ChoiJWHanZSohnB-UChenGFRSmithCKimerlingLCRichardsonKAAgarwalAMTanDTHSci. Rep.20166392341:CAS:528:DC%2BC28XitFGis7jF28000725517526410.1038/srep39234 SuPHanZKitaDBeclaPLinHDeckoff-JonesSRichardsonKKimerlingLCHuJAgarwalAAppl. Phys. Lett.201911405110310.1063/1.5053599 ButkiewiczBGolovchakRKovalskiyAShpotyukOVakivMRadiat. Effect Defect Sci.20011532111:CAS:528:DC%2BD3MXivFOht70%3D10.1080/10420150108211840 LinHSongYHuangYKitaDDeckoff-JonesSWangKLiLLiJZhengHLuoZWangHNovakSYadavAHuangCShiueREnglundDGuTHewakDRichardsonKKongJHuJNat. Photonics2017117981:CAS:528:DC%2BC2sXhvVygtbbF10.1038/s41566-017-0033-z B-U Sohn (693_CR9) 2019; 4 C Caucheteur (693_CR1) 2016; 7 Q Du (693_CR39) 2016; 41 H Lin (693_CR38) 2017; 11 M Kang (693_CR8) 2018; 30 F Xia (693_CR17) 2005; 234 MA Ouis (693_CR44) 2022; 128 R Naik (693_CR36) 2015; 25 C Lin (693_CR53) 2012; 116 I Watanabe (693_CR40) 1978; 45 AP Kovalskiy (693_CR22) 2006; 110 C Yi (693_CR35) 2014; 116 Y Shpotyuk (693_CR20) 2011; 8 Y Lee (693_CR61) 2023; 17 L Petit (693_CR33) 2006; 31 B Butkiewicz (693_CR21) 2001; 153 T Anderson (693_CR28) 2008; 16 K Jackson (693_CR52) 1999; 60 TG Edwards (693_CR59) 2011; 115 O Shpotyuk (693_CR19) 2017; 2 J Mao (693_CR43) 2022; 105 AW Mao (693_CR62) 2013; 117 DR Penn (693_CR48) 1962; 128 P Lucas (693_CR25) 2003; 332 Y Zhang (693_CR12) 2019; 10 RF Pierret (693_CR57) 1996 Q Wei (693_CR47) 2008; 100 JK Wahlstrand (693_CR58) 2018; 120 Y Zha (693_CR15) 2014; 1 L Petit (693_CR32) 2009; 182 SM El-Sayed (693_CR16) 2004; 225 A Yadav (693_CR7) 2017; 58 KE Oughstun (693_CR56) 2003; 11 S Novak (693_CR14) 2017; 9 M Waldmann (693_CR34) 2012; 22 L Li (693_CR37) 2014; 8 J Hu (693_CR42) 2009; 27 A Chrissanthopoulos (693_CR55) 2012; 192 A Lepicard (693_CR6) 2018; 8 M Kang (693_CR4) 2020; 10 Q Du (693_CR26) 2017; 42 BJ Eggleton (693_CR2) 2011; 5 S Serna (693_CR31) 2018; 6 Z Zhao (693_CR49) 2017; 11 B-U Sohn (693_CR29) 2017; 111 JW Choi (693_CR30) 2016; 6 K Itoh (693_CR60) 2017; 103 L Sisken (693_CR5) 2019; 29 T Kavetskyy (693_CR23) 2011; 289 M Kang (693_CR11) 2018; 8 S Novak (693_CR24) 2017; 455 B Shen (693_CR13) 2020; 7 M Kang (693_CR46) 2012; 101 P Su (693_CR41) 2019; 114 AW Mao (693_CR63) 2013; 369 Q Du (693_CR27) 2020; 8 I Pethes (693_CR54) 2019; 774 J Hu (693_CR3) 2007; 15 I Mingareev (693_CR10) 2020; 126 M Kang (693_CR45) 2019; 6 RA Street (693_CR50) 1975; 35 GAM Amin (693_CR18) 2012; 15 HB Michaelson (693_CR51) 1977; 48 |
References_xml | – volume: 8 start-page: 643 year: 2014 ident: 693_CR37 publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.138 contributor: fullname: L Li – volume: 103 start-page: 109 year: 2017 ident: 693_CR60 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2016.12.016 contributor: fullname: K Itoh – volume: 6 start-page: 39234 year: 2016 ident: 693_CR30 publication-title: Sci. Rep. doi: 10.1038/srep39234 contributor: fullname: JW Choi – volume: 6 start-page: B37 year: 2018 ident: 693_CR31 publication-title: Photonics Res. doi: 10.1364/PRJ.6.000B37 contributor: fullname: S Serna – volume: 774 start-page: 1009 year: 2019 ident: 693_CR54 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.09.334 contributor: fullname: I Pethes – volume: 25 start-page: 1 year: 2015 ident: 693_CR36 publication-title: Laser Phys. doi: 10.1088/1054-660X/25/3/036001 contributor: fullname: R Naik – volume: 369 start-page: 38 year: 2013 ident: 693_CR63 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2013.03.020 contributor: fullname: AW Mao – volume: 10 start-page: 2000150 year: 2020 ident: 693_CR4 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202000150 contributor: fullname: M Kang – volume: 15 start-page: 455 year: 2012 ident: 693_CR18 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2012.03.017 contributor: fullname: GAM Amin – volume: 105 start-page: 5178 year: 2022 ident: 693_CR43 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.18492 contributor: fullname: J Mao – volume: 8 start-page: 7388 year: 2018 ident: 693_CR6 publication-title: Sci. Rep. doi: 10.1038/s41598-018-25481-x contributor: fullname: A Lepicard – volume: 1 start-page: 153 year: 2014 ident: 693_CR15 publication-title: ACS Photonics doi: 10.1021/ph400107s contributor: fullname: Y Zha – volume: 332 start-page: 35 year: 2003 ident: 693_CR25 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2003.09.008 contributor: fullname: P Lucas – volume: 16 start-page: 20081 year: 2008 ident: 693_CR28 publication-title: Opt. Express doi: 10.1364/OE.16.020081 contributor: fullname: T Anderson – volume: 31 start-page: 1495 year: 2006 ident: 693_CR33 publication-title: Opt. Lett. doi: 10.1364/OL.31.001495 contributor: fullname: L Petit – volume: 117 start-page: 16594 year: 2013 ident: 693_CR62 publication-title: J. Phys. Chem. B doi: 10.1021/jp410017k contributor: fullname: AW Mao – volume: 6 start-page: 041307 year: 2019 ident: 693_CR45 publication-title: Appl. Phys. Rev. doi: 10.1063/1.5079908 contributor: fullname: M Kang – volume: 7 start-page: 13371 year: 2016 ident: 693_CR1 publication-title: Nat. Commun. doi: 10.1038/ncomms13371 contributor: fullname: C Caucheteur – volume: 11 start-page: 798 year: 2017 ident: 693_CR38 publication-title: Nat. Photonics doi: 10.1038/s41566-017-0033-z contributor: fullname: H Lin – volume: 234 start-page: 525 year: 2005 ident: 693_CR17 publication-title: Nucl. Instrum. Methods Phys. Res. B doi: 10.1016/j.nimb.2005.02.019 contributor: fullname: F Xia – volume: 17 start-page: 8734 year: 2023 ident: 693_CR61 publication-title: ACS Nano doi: 10.1021/acsnano.3c01968 contributor: fullname: Y Lee – volume: 8 start-page: 2722 year: 2018 ident: 693_CR11 publication-title: Opt. Mater. Express doi: 10.1364/OME.8.002722 contributor: fullname: M Kang – volume: 116 start-page: 653 year: 2014 ident: 693_CR35 publication-title: Appl. Phys. B doi: 10.1007/s00340-013-5748-z contributor: fullname: C Yi – volume: 7 start-page: 499 year: 2020 ident: 693_CR13 publication-title: ACS Photonics doi: 10.1021/acsphotonics.9b01593 contributor: fullname: B Shen – volume: 126 start-page: 106058 year: 2020 ident: 693_CR10 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2020.106058 contributor: fullname: I Mingareev – volume: 289 start-page: 012007 year: 2011 ident: 693_CR23 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/289/1/012007 contributor: fullname: T Kavetskyy – volume: 30 start-page: 1803628 year: 2018 ident: 693_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.201803628 contributor: fullname: M Kang – volume: 4 start-page: 036102 year: 2019 ident: 693_CR9 publication-title: APL Photonics doi: 10.1063/1.5085504 contributor: fullname: B-U Sohn – volume: 116 start-page: 5862 year: 2012 ident: 693_CR53 publication-title: J. Phys. Chem. C doi: 10.1021/jp208614j contributor: fullname: C Lin – volume: 58 start-page: 115 year: 2017 ident: 693_CR7 publication-title: Phys. Chem. Glasses Eur. J. Glass Sci. Tech. B doi: 10.13036/17533562.58.4.115 contributor: fullname: A Yadav – volume: 11 start-page: 1541 year: 2003 ident: 693_CR56 publication-title: Opt. Express doi: 10.1364/OE.11.001541 contributor: fullname: KE Oughstun – volume: 41 start-page: 3090 year: 2016 ident: 693_CR39 publication-title: Opt. Lett. doi: 10.1364/OL.41.003090 contributor: fullname: Q Du – volume: 48 start-page: 4729 year: 1977 ident: 693_CR51 publication-title: J. Appl. Phys. doi: 10.1063/1.323539 contributor: fullname: HB Michaelson – volume: 182 start-page: 2756 year: 2009 ident: 693_CR32 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2009.07.027 contributor: fullname: L Petit – volume: 45 start-page: 1603 year: 1978 ident: 693_CR40 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.45.1603 contributor: fullname: I Watanabe – volume: 115 start-page: 4307 year: 2011 ident: 693_CR59 publication-title: J. Phys. Chem. B doi: 10.1021/jp202174x contributor: fullname: TG Edwards – volume: 29 start-page: 1902217 year: 2019 ident: 693_CR5 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902217 contributor: fullname: L Sisken – volume: 225 start-page: 535 year: 2004 ident: 693_CR16 publication-title: Nucl. Instrum. Methods Phys. Res. B doi: 10.1016/j.nimb.2004.05.033 contributor: fullname: SM El-Sayed – volume: 110 start-page: 22930 year: 2006 ident: 693_CR22 publication-title: J. Phys. Chem. B doi: 10.1021/jp062900t contributor: fullname: AP Kovalskiy – volume-title: Semiconductor Device Fundamentals year: 1996 ident: 693_CR57 contributor: fullname: RF Pierret – volume: 101 start-page: 082101 year: 2012 ident: 693_CR46 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4742863 contributor: fullname: M Kang – volume: 15 start-page: 2307 year: 2007 ident: 693_CR3 publication-title: Opt. Express doi: 10.1364/OE.15.002307 contributor: fullname: J Hu – volume: 2 start-page: 94 issue: 2 year: 2017 ident: 693_CR19 publication-title: Radiat. Appl. contributor: fullname: O Shpotyuk – volume: 10 start-page: 4279 year: 2019 ident: 693_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12196-4 contributor: fullname: Y Zhang – volume: 35 start-page: 1293 year: 1975 ident: 693_CR50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.35.1293 contributor: fullname: RA Street – volume: 100 start-page: 076103 year: 2008 ident: 693_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.076103 contributor: fullname: Q Wei – volume: 22 start-page: 17848 year: 2012 ident: 693_CR34 publication-title: J. Mater. Chem. doi: 10.1039/c2jm32235h contributor: fullname: M Waldmann – volume: 5 start-page: 141 year: 2011 ident: 693_CR2 publication-title: Nat. Photonics doi: 10.1038/nphoton.2011.309 contributor: fullname: BJ Eggleton – volume: 11 start-page: 1700005 year: 2017 ident: 693_CR49 publication-title: Laser Photon. Rev. doi: 10.1002/lpor.201700005 contributor: fullname: Z Zhao – volume: 120 start-page: 183901 year: 2018 ident: 693_CR58 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.183901 contributor: fullname: JK Wahlstrand – volume: 455 start-page: 29 year: 2017 ident: 693_CR24 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2016.10.021 contributor: fullname: S Novak – volume: 128 start-page: 389 year: 2022 ident: 693_CR44 publication-title: Appl. Phys. A doi: 10.1007/s00339-022-05522-z contributor: fullname: MA Ouis – volume: 42 start-page: 587 year: 2017 ident: 693_CR26 publication-title: Opt. Lett. doi: 10.1364/OL.42.000587 contributor: fullname: Q Du – volume: 8 start-page: 3163 year: 2011 ident: 693_CR20 publication-title: Phys. Status Solidi C doi: 10.1002/pssc.201000759 contributor: fullname: Y Shpotyuk – volume: 114 start-page: 051103 year: 2019 ident: 693_CR41 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5053599 contributor: fullname: P Su – volume: 128 start-page: 2093 year: 1962 ident: 693_CR48 publication-title: Phys. Rev. doi: 10.1103/PhysRev.128.2093 contributor: fullname: DR Penn – volume: 192 start-page: 7 year: 2012 ident: 693_CR55 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2012.03.046 contributor: fullname: A Chrissanthopoulos – volume: 27 start-page: 5240 year: 2009 ident: 693_CR42 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2009.2030899 contributor: fullname: J Hu – volume: 111 start-page: 091902 year: 2017 ident: 693_CR29 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4990590 contributor: fullname: B-U Sohn – volume: 153 start-page: 211 year: 2001 ident: 693_CR21 publication-title: Radiat. Effect Defect Sci. doi: 10.1080/10420150108211840 contributor: fullname: B Butkiewicz – volume: 9 start-page: 26990 year: 2017 ident: 693_CR14 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b06140 contributor: fullname: S Novak – volume: 60 start-page: R14985 year: 1999 ident: 693_CR52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.60.R14985 contributor: fullname: K Jackson – volume: 8 start-page: 186 issue: 2 year: 2020 ident: 693_CR27 publication-title: Photonics Res. doi: 10.1364/PRJ.379019 contributor: fullname: Q Du |
SSID | ssj0015075 |
Score | 2.4643004 |
Snippet | We report atomistic mechanisms that directly correlate the time-dependent optical responses of bulk Ge
23
Sb
7
S
70
chalcogenide glasses to their metastable... We report atomistic mechanisms that directly correlate the time-dependent optical responses of bulk Ge23Sb7S70 chalcogenide glasses to their metastable... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 778 |
SubjectTerms | Applied and Technical Physics Chalcogenides Characterization and Evaluation of Materials Chemistry and Materials Science Correlation Defects Energy Materials Evolution Extreme environments Free electrons Gamma irradiation Gamma rays Glass Impact Article Materials Engineering Materials Science Nanotechnology Nonlinear optics Nonlinear response Optical properties Radiation detectors Refractivity Room temperature Tetrahedra Time dependence |
Title | Self-healing mechanisms for Ge–Sb–S chalcogenide glasses upon gamma irradiation |
URI | https://link.springer.com/article/10.1557/s43577-024-00693-x https://www.proquest.com/docview/3087290008 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqTUjwgGCAKAzkB96CRy5OnDxuwDYhbRJ0lfYW-RZWbW2mppXonvYfkPiB_BKOY-eyjkmMFzdyLTf1-fL5nBOfcxB6BxaFUrDPkUwqRaiSnHAZU8IL-GBgIAhqApyPjpPDMf1yGp8OBr96p5aWC7Ejr_4aV_I_UoU-kKuJkr2HZNtJoQOuQb7QgoSh_ScZj_RFQYyqZ-z9qTZBvJPKZljwDnRzjiEaie7SRPpeyBKmnCjt1bqzrrzlJYDgO59OuTeZz026glZeTbWnbyNP9FN1G5J2vuajFTDGeVm23pryzBaBXxkqIeM2GOjT0nR_hbtdcbdj1s5wF-t-xsu-EyKka06Ixgm55sbsPGk3WC0iLLGVjXe0Zd0MWDegNgK6oWWbydTBL-1xLLM1f9x2zWwm7Vs7QVyXL65AG2SM1HfsJ1lEfnT7Xnsa0dhBMDy3g3MYnNeDjW2yGQKBAXNu7u7v7R2376dim8K5_TMuHAtm-XD7J2-qPJ0ds_bqvdZoTp6gx84UwbsWV0_RQM-20KNegsot9KA-ICyrZ2jUxxrusIYBa_hA_77-ORKmwX18YYcvbPCFa3zhHr6eo_H-55OPh8QV5CAyZP6C6CCivuZZWqQczIAsjqTMaMg5VaHWUaalYjqhARNJEVEdFH6hCp7ouOBCmCxHL9DGrJzplwgrqiPFeCp04FOg_lSA4SREnKWB9LlUQ-Q1a5Zf2rwr-d1yGqLtZllz93xWucl1GZqauOkQvW-Wuvv67tle3W_4a_SweyS20cZivtRvQFNdiLcONn8AMA6Sfg |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-healing+mechanisms+for+Ge%E2%80%93Sb%E2%80%93S+chalcogenide+glasses+upon+gamma+irradiation&rft.jtitle=MRS+bulletin&rft.au=Kang%2C+Myungkoo&rft.au=Sohn%2C+Byoung-Uk&rft.au=Du%2C+Qingyang&rft.au=Ma%2C+Danhao&rft.date=2024-01-01&rft.pub=Springer+International+Publishing&rft.issn=0883-7694&rft.eissn=1938-1425&rft.volume=49&rft.issue=8&rft.spage=778&rft.epage=786&rft_id=info:doi/10.1557%2Fs43577-024-00693-x&rft.externalDocID=10_1557_s43577_024_00693_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-7694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-7694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-7694&client=summon |