Transformation models with informative partly interval-censored data
Partly interval censoring is frequently encountered in clinical trials when the failure time of an event is observed exactly for some subjects but is only known to fall within an observed interval for others. Although this kind of censoring has drawn recent attention in survival analysis, available...
Saved in:
Published in | Statistics and computing Vol. 34; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0960-3174 1573-1375 |
DOI | 10.1007/s11222-023-10306-3 |
Cover
Loading…
Abstract | Partly interval censoring is frequently encountered in clinical trials when the failure time of an event is observed exactly for some subjects but is only known to fall within an observed interval for others. Although this kind of censoring has drawn recent attention in survival analysis, available methods typically assume that the observed interval is independent of the failure time and that all potential predictors can be fully observable. However, the above assumptions may not be valid in practice. This paper considers a new joint modeling approach to simultaneously model the failure and observation times and correlate these two stochastic processes through shared latent factors. The proposed model comprises a transformation model for the failure time of interest, a proportional hazards model for the length of censoring interval, and a factor analysis model for characterization of the latent factors. A multi-stage data augmentation procedure is introduced to tackle the challenges posed by the complex model and data structure. A Bayesian approach coupled with monotone spline approximation and Markov chain Monte Carlo techniques is developed to estimate the unknown parameters and nonparametric functions. The satisfactory performance of the proposed method is demonstrated through simulations, and it is then applied to a Framingham Heart study. |
---|---|
AbstractList | Partly interval censoring is frequently encountered in clinical trials when the failure time of an event is observed exactly for some subjects but is only known to fall within an observed interval for others. Although this kind of censoring has drawn recent attention in survival analysis, available methods typically assume that the observed interval is independent of the failure time and that all potential predictors can be fully observable. However, the above assumptions may not be valid in practice. This paper considers a new joint modeling approach to simultaneously model the failure and observation times and correlate these two stochastic processes through shared latent factors. The proposed model comprises a transformation model for the failure time of interest, a proportional hazards model for the length of censoring interval, and a factor analysis model for characterization of the latent factors. A multi-stage data augmentation procedure is introduced to tackle the challenges posed by the complex model and data structure. A Bayesian approach coupled with monotone spline approximation and Markov chain Monte Carlo techniques is developed to estimate the unknown parameters and nonparametric functions. The satisfactory performance of the proposed method is demonstrated through simulations, and it is then applied to a Framingham Heart study. |
ArticleNumber | 8 |
Author | Jiang, Jingjing Pan, Deng Song, Xinyuan Wang, Chunjie |
Author_xml | – sequence: 1 givenname: Jingjing surname: Jiang fullname: Jiang, Jingjing organization: School of Mathematics and Statistics, Changchun University of Technology – sequence: 2 givenname: Chunjie surname: Wang fullname: Wang, Chunjie email: wangchunjie@ccut.edu.cn organization: School of Mathematics and Statistics, Changchun University of Technology – sequence: 3 givenname: Deng surname: Pan fullname: Pan, Deng organization: School of Mathematics and Statistics, Huazhong University of Science and Technology – sequence: 4 givenname: Xinyuan surname: Song fullname: Song, Xinyuan email: xysong@sta.cuhk.edu.hk organization: Department of Statistics, The Chinese University of Hong Kong |
BookMark | eNp9kEFLAzEUhINUsK3-AU8LnqMvye5mc5SqVSh4qefwdjfRLdukJttK_73RLXjz9JhhZh58MzJx3hlCrhncMgB5FxnjnFPggjIQUFJxRqaskEkKWUzIFFQJVDCZX5BZjBsAxkqRT8nDOqCL1octDp132da3po_ZVzd8ZJ07-QeT7TAM_TFZgwkH7GljXPTBtFmLA16Sc4t9NFenOydvT4_rxTNdvS5fFvcr2nAJA20bIVULWFqToy0qXvFaVsJKZFYVShVNxZUp6ly2oPLaiLIBRLQg0da1rcWc3Iy7u-A_9yYOeuP3waWXmldSFRXjiqcUH1NN8DEGY_UudFsMR81A_9DSIy2daOlfWlqkkhhLMYXduwl_0_-0vgEgLXAB |
Cites_doi | 10.1002/sim.9035 10.1007/s10985-018-9445-4 10.1002/bimj.200710419 10.1080/01621459.2014.950083 10.1093/biomet/82.1.127 10.1016/j.csda.2011.03.013 10.1007/s11222-011-9280-x 10.1007/s10985-007-9035-3 10.1080/10485252.2012.720256 10.1111/1467-9868.00398 10.1111/biom.12389 10.1198/016214508000000337 10.1016/j.csda.2016.04.011 10.7326/0003-4819-143-7-200510040-00005 10.1093/biomet/asw013 10.1002/9781118032985 10.1093/biomet/91.2.277 10.1016/j.csda.2019.02.010 10.1177/0962280220921552 10.1002/9781118358887 10.1002/9780470024737 10.1002/sim.2721 10.1007/s00125-009-1400-1 10.1023/A:1009634103154 10.1111/j.0006-341X.2004.00225.x 10.1111/j.1369-7412.2007.00606.x 10.1093/biomet/89.3.617 10.2307/2532360 10.1002/sim.9271 10.1198/016214505000001122 10.1111/biom.12700 10.1007/978-1-4612-1304-8 10.2307/2986138 10.1111/j.0006-341X.2002.00058.x 10.1177/0962280220942555 10.1111/j.0006-341X.2002.00298.x 10.1007/s10985-014-9305-9 10.1080/02664763.2020.1752633 10.1002/sim.2255 10.4310/SII.2015.v8.n3.a10 10.1016/j.jkss.2015.09.002 10.1080/10485252.2019.1626383 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11222-023-10306-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1573-1375 |
ExternalDocumentID | 10_1007_s11222_023_10306_3 |
GrantInformation_xml | – fundername: Research Grants Council, University Grants Committee grantid: 14302220, 14303622 funderid: http://dx.doi.org/10.13039/501100002920 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7W Z7X Z7Y Z81 Z83 Z87 Z88 Z8O Z8R Z8U Z8W Z91 Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c270t-dc379d0a6fe4af58282b783f7a1f95995c829e5b47d094be36c0aaaf07afbbfb3 |
IEDL.DBID | U2A |
ISSN | 0960-3174 |
IngestDate | Fri Jul 25 08:55:06 EDT 2025 Tue Jul 01 02:17:07 EDT 2025 Fri Feb 21 02:41:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Latent factor Data augmentation Bayesian method Informative partly-interval censoring Transformation model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-dc379d0a6fe4af58282b783f7a1f95995c829e5b47d094be36c0aaaf07afbbfb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2879581292 |
PQPubID | 2043829 |
ParticipantIDs | proquest_journals_2879581292 crossref_primary_10_1007_s11222_023_10306_3 springer_journals_10_1007_s11222_023_10306_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Statistics and computing |
PublicationTitleAbbrev | Stat Comput |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Wu, Chambers, Xu (CR38) 2019; 25 Lee (CR16) 2007 Scharfstein, Robins (CR29) 2002; 89 Kim, Kim, Kim (CR15) 2016; 45 Liu, Wolfe, Huang (CR21) 2004; 60 Zheng, Klein (CR46) 1995; 82 Lin, Cai, Wang, Zhang (CR20) 2015; 21 Nelsen (CR23) 2006 Zeng, Yin, Ibrahim (CR41) 2006; 101 Dabrowska, Doksum (CR6) 1988; 15 Scharfstein, Tsiatis, Gilbert (CR30) 1998; 4 Li, Ma (CR17) 2019; 137 Ramsay (CR28) 1988; 3 Zhao, Hu, Ma, Wang, Sun (CR45) 2015; 8 Cai, Cheng (CR4) 2004; 91 Zhou, Sun, Gilbert (CR47) 2021; 40 Du, Zhou, Zhao, Sun (CR7) 2021; 48 Li, Wang, Sun (CR19) 2012; 24 Wang, Jiang, Song (CR37) 2022; 41 Aljawadi (CR1) 2017; 11 Betensky, Finkelstein (CR3) 2002; 58 Pan, Cai, Wang (CR26) 2020; 29 Hougaard (CR11) 2000 Gilks, Best, Tan (CR10) 1995; 44 Odell, Anderson, D’Agostino (CR24) 1992; 48 Song, Lee, Ma, So, Cai, Tam, Lam, Ying, Ng, Chan (CR33) 2009; 52 Li, Ma (CR18) 2020; 29 Zucker, Yang (CR48) 2006; 25 Cai, Lin, Wang (CR5) 2011; 55 Zeng, Mao, Lin (CR42) 2016; 103 Kalbfleisch, Prentice (CR13) 2002 Pan, He, Song, Sun (CR25) 2015; 110 Song, Lee (CR31) 2012 Xu, Zhao, Hu, Sun (CR39) 2019; 31 Zhang, Sun, Sun, Finkelstein (CR43) 2007; 26 Finkelstein, Goggins, Schoenfeld (CR8) 2002; 58 CR44 Banerjee, Chen, Dey, Kim (CR2) 2007; 13 Park, Casella (CR27) 2008; 103 Ma, Hu, Sun (CR22) 2016; 103 Zeng, Lin (CR40) 2007; 69 Wang, McMahan, Hudgens, Qureshi (CR36) 2016; 72 Wang, Sun, Tong (CR35) 2010; 20 Song, Lu (CR32) 2012; 22 Huang (CR12) 1999; 9 Gao, Zeng, Lin (CR9) 2017; 73 Vasan, Pencina, Cobain, Freiberg, D’Agostino (CR34) 2005; 143 Kim (CR14) 2003; 65 M Du (10306_CR7) 2021; 48 D Scharfstein (10306_CR30) 1998; 4 D Zeng (10306_CR40) 2007; 69 C Wang (10306_CR37) 2022; 41 D Zucker (10306_CR48) 2006; 25 T Cai (10306_CR4) 2004; 91 X Song (10306_CR33) 2009; 52 T Banerjee (10306_CR2) 2007; 13 D Finkelstein (10306_CR8) 2002; 58 R Vasan (10306_CR34) 2005; 143 Q Zhou (10306_CR47) 2021; 40 L Liu (10306_CR21) 2004; 60 L Ma (10306_CR22) 2016; 103 R Nelsen (10306_CR23) 2006 J Kalbfleisch (10306_CR13) 2002 P Hougaard (10306_CR11) 2000 R Betensky (10306_CR3) 2002; 58 F Gao (10306_CR9) 2017; 73 X Song (10306_CR32) 2012; 22 D Xu (10306_CR39) 2019; 31 D Scharfstein (10306_CR29) 2002; 89 J Li (10306_CR19) 2012; 24 Y Wu (10306_CR38) 2019; 25 W Gilks (10306_CR10) 1995; 44 J Kim (10306_CR14) 2003; 65 D Pan (10306_CR25) 2015; 110 C Pan (10306_CR26) 2020; 29 L Wang (10306_CR35) 2010; 20 M Zheng (10306_CR46) 1995; 82 S Lee (10306_CR16) 2007 X Lin (10306_CR20) 2015; 21 S Zhao (10306_CR45) 2015; 8 J Ramsay (10306_CR28) 1988; 3 J Li (10306_CR17) 2019; 137 T Park (10306_CR27) 2008; 103 B Aljawadi (10306_CR1) 2017; 11 J Kim (10306_CR15) 2016; 45 D Zeng (10306_CR41) 2006; 101 J Li (10306_CR18) 2020; 29 B Cai (10306_CR5) 2011; 55 J Huang (10306_CR12) 1999; 9 L Wang (10306_CR36) 2016; 72 Z Zhang (10306_CR43) 2007; 26 D Dabrowska (10306_CR6) 1988; 15 P Odell (10306_CR24) 1992; 48 10306_CR44 X Song (10306_CR31) 2012 D Zeng (10306_CR42) 2016; 103 |
References_xml | – year: 2012 ident: CR31 publication-title: Basic and Advanced Bayesian Structural Equation Modeling: With Applications in the Medical and Behavioral Sciences – volume: 52 start-page: 1543 issue: 8 year: 2009 end-page: 1553 ident: CR33 article-title: Phenotype-genotype interactions on renal function in type2 diabetes: an analysis using structural equation modelling publication-title: Diabetologia – volume: 26 start-page: 2533 issue: 12 year: 2007 end-page: 2546 ident: CR43 article-title: Regression analysis of failure time data with informative interval censoring publication-title: Stat. Med. – volume: 13 start-page: 241 issue: 2 year: 2007 end-page: 260 ident: CR2 article-title: Bayesian analysis of generalized odds-rate hazards models for survival data publication-title: Lifetime Data Anal. – volume: 110 start-page: 1148 issue: 511 year: 2015 end-page: 1159 ident: CR25 article-title: Regression analysis of additive hazards model with latent variables publication-title: J. Am. Stat. Assoc. – volume: 143 start-page: 473 issue: 7 year: 2005 end-page: 480 ident: CR34 article-title: Estimated risks for developing obesity in the Framingham heart study publication-title: Ann. Intern. Med. – volume: 103 start-page: 681 issue: 482 year: 2008 end-page: 686 ident: CR27 article-title: The Bayesian lasso publication-title: J. Am. Stat. Assoc. – volume: 25 start-page: 995 issue: 6 year: 2006 end-page: 1014 ident: CR48 article-title: Inference for a family of survival models encompassing the proportional hazards and proportional odds models publication-title: Stat. Med. – year: 2007 ident: CR16 publication-title: Structural Equation Modeling: A Bayesian Approach – volume: 3 start-page: 425 issue: 4 year: 1988 end-page: 461 ident: CR28 article-title: Monotone regression splines in action publication-title: Stat. Sci. – volume: 44 start-page: 455 issue: 4 year: 1995 end-page: 472 ident: CR10 article-title: Adaptive rejection metropolis sampling within Gibbs sampling publication-title: Appl. Stat. – volume: 20 start-page: 1709 issue: 4 year: 2010 end-page: 1723 ident: CR35 article-title: Regression analysis of case ii interval-censored failure time data with the additive hazards model publication-title: Stat. Sin. – volume: 91 start-page: 277 issue: 2 year: 2004 end-page: 290 ident: CR4 article-title: Semiparametric regression analysis for doubly censored data publication-title: Biometrika – year: 2002 ident: CR13 publication-title: The Statistical Analysis of Failure Time Data – volume: 4 start-page: 355 issue: 4 year: 1998 end-page: 391 ident: CR30 article-title: Semiparametric efficient estimation in the generalized odds-rate class of regression models for right-censored time-to-event data publication-title: Lifetime Data Anal. – volume: 103 start-page: 253 issue: 2 year: 2016 end-page: 271 ident: CR42 article-title: Maximum likelihood estimation for semiparametric transformation models with interval-censored data publication-title: Biometrika – volume: 137 start-page: 170 issue: 9 year: 2019 end-page: 180 ident: CR17 article-title: Maximum penalized likelihood estimation of additive hazards models with partly interval censoring publication-title: Comput. Stat. Data Anal. – volume: 60 start-page: 747 issue: 3 year: 2004 end-page: 756 ident: CR21 article-title: Shared frailty models for recurrent events and a terminal event publication-title: Biometrics – year: 2006 ident: CR23 publication-title: An Introduction to Copulas – volume: 29 start-page: 3804 issue: 12 year: 2020 end-page: 3817 ident: CR18 article-title: On hazard-based penalized likelihood estimation of accelerated failure time model with partly interval censoring publication-title: Stat. Methods Med. Res. – volume: 21 start-page: 470 issue: 3 year: 2015 end-page: 490 ident: CR20 article-title: A Bayesian proportional hazards model for general interval-censored data publication-title: Lifetime Data Anal. – volume: 103 start-page: 79 issue: 9 year: 2016 end-page: 90 ident: CR22 article-title: Cox regression analysis of dependent interval-censored failure time data publication-title: Comput. Stat. Data Anal. – volume: 55 start-page: 2644 issue: 9 year: 2011 end-page: 2651 ident: CR5 article-title: Bayesian proportional hazards model for current status data with monotone splines publication-title: Comput. Stat. Data Anal. – volume: 73 start-page: 1161 issue: 4 year: 2017 end-page: 1168 ident: CR9 article-title: Semiparametric estimation of the accelerated failure time model with partly interval-censored data publication-title: Biometrics – volume: 9 start-page: 501 issue: 2 year: 1999 end-page: 519 ident: CR12 article-title: Asymptotic properties of nonparametric estimation based on partly interval-censored data publication-title: Stat. Sin. – volume: 72 start-page: 222 issue: 1 year: 2016 end-page: 231 ident: CR36 article-title: A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data publication-title: Biometrics – volume: 31 start-page: 663 issue: 3/4 year: 2019 end-page: 679 ident: CR39 article-title: Regression analysis of informatively interval-censored failure time data with semiparametric linear transformation model publication-title: J. Nonparametr. Stat. – ident: CR44 – volume: 22 start-page: 1085 year: 2012 end-page: 1098 ident: CR32 article-title: Semiparametric transformation models with Bayesian p-splines publication-title: Stat. Comput. – volume: 69 start-page: 507 issue: 4 year: 2007 end-page: 564 ident: CR40 article-title: Maximum likelihood estimation in semiparametric regression models with censored data publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.) – volume: 25 start-page: 507 issue: 3 year: 2019 end-page: 528 ident: CR38 article-title: Semiparametric sieve maximum likelihood estimation under cure model with partly interval censored and left truncated data for application to spontaneous abortion publication-title: Lifetime Data Anal. – volume: 8 start-page: 367 issue: 3 year: 2015 end-page: 377 ident: CR45 article-title: Regression analysis of interval-censored failure time data with the additive hazards model in the presence of informative censoring publication-title: Stat. Interface – volume: 48 start-page: 951 issue: 3 year: 1992 end-page: 959 ident: CR24 article-title: Maximum likelihood estimation for interval-censored data using a Weibull-based accelerated failure time model publication-title: Biometrics – volume: 11 start-page: 303 issue: 3 year: 2017 end-page: 315 ident: CR1 article-title: Approximation of survival function by Taylor series for general partly interval censored data publication-title: Malays. J. Math. Sci. – volume: 101 start-page: 670 issue: 474 year: 2006 end-page: 684 ident: CR41 article-title: Semiparametric transformation models for survival data with a cure fraction publication-title: J. Am. Stat. Assoc. – volume: 58 start-page: 298 issue: 2 year: 2002 end-page: 304 ident: CR8 article-title: Analysis of failure time data with dependent interval censoring publication-title: Biometrics – volume: 29 start-page: 3192 issue: 11 year: 2020 end-page: 3204 ident: CR26 article-title: A bayesian approach for analyzing partly interval-censored data under the proportional hazards model publication-title: Stat. Methods Med. Res. – volume: 15 start-page: 1 issue: 1 year: 1988 end-page: 23 ident: CR6 article-title: Partial likelihood in transformation models with censored data publication-title: Scand. J. Stat. – volume: 41 start-page: 1263 issue: 7 year: 2022 end-page: 1279 ident: CR37 article-title: Bayesian transformation models with partly interval-censored data publication-title: Stat. Med. – year: 2000 ident: CR11 publication-title: Analysis of Multivariate Survival Data – volume: 89 start-page: 617 issue: 3 year: 2002 end-page: 634 ident: CR29 article-title: Estimation of the failure time distribution in the presence of informative censoring publication-title: Biometrika – volume: 58 start-page: 58 issue: 1 year: 2002 end-page: 63 ident: CR3 article-title: Testing for dependence between failure time and visit compliance with interval-censored data publication-title: Biometrics – volume: 48 start-page: 846 issue: 5 year: 2021 end-page: 865 ident: CR7 article-title: Regression analysis of case-cohort studies in the presence of dependent interval censoring publication-title: J. Appl. Stat. – volume: 65 start-page: 489 issue: 2 year: 2003 end-page: 502 ident: CR14 article-title: Maximum likelihood estimation for the proportional hazards model with partly interval-censored data publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.) – volume: 24 start-page: 1041 issue: 4 year: 2012 end-page: 1050 ident: CR19 article-title: Regression analysis of clustered interval-censored failure time data with the additive hazards model publication-title: J. Nonparametr. Stat. – volume: 82 start-page: 127 issue: 1 year: 1995 end-page: 138 ident: CR46 article-title: Estimates of marginal survival for dependent competing risk based on an assumed copula publication-title: Biometrika – volume: 40 start-page: 4376 issue: 20 year: 2021 end-page: 4394 ident: CR47 article-title: Semiparametric regression analysis of partly interval-censored failure time data with application to an aids clinical trial publication-title: Stat. Med. – volume: 45 start-page: 156 issue: 1 year: 2016 end-page: 165 ident: CR15 article-title: Frailty model approach for the clustered interval-censored data with informative censoring publication-title: J. Korean Stat. Soc. – volume: 40 start-page: 4376 issue: 20 year: 2021 ident: 10306_CR47 publication-title: Stat. Med. doi: 10.1002/sim.9035 – volume: 25 start-page: 507 issue: 3 year: 2019 ident: 10306_CR38 publication-title: Lifetime Data Anal. doi: 10.1007/s10985-018-9445-4 – ident: 10306_CR44 doi: 10.1002/bimj.200710419 – volume: 110 start-page: 1148 issue: 511 year: 2015 ident: 10306_CR25 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2014.950083 – volume: 82 start-page: 127 issue: 1 year: 1995 ident: 10306_CR46 publication-title: Biometrika doi: 10.1093/biomet/82.1.127 – volume: 55 start-page: 2644 issue: 9 year: 2011 ident: 10306_CR5 publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2011.03.013 – volume: 20 start-page: 1709 issue: 4 year: 2010 ident: 10306_CR35 publication-title: Stat. Sin. – volume: 11 start-page: 303 issue: 3 year: 2017 ident: 10306_CR1 publication-title: Malays. J. Math. Sci. – volume: 22 start-page: 1085 year: 2012 ident: 10306_CR32 publication-title: Stat. Comput. doi: 10.1007/s11222-011-9280-x – volume: 13 start-page: 241 issue: 2 year: 2007 ident: 10306_CR2 publication-title: Lifetime Data Anal. doi: 10.1007/s10985-007-9035-3 – volume: 24 start-page: 1041 issue: 4 year: 2012 ident: 10306_CR19 publication-title: J. Nonparametr. Stat. doi: 10.1080/10485252.2012.720256 – volume: 65 start-page: 489 issue: 2 year: 2003 ident: 10306_CR14 publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.) doi: 10.1111/1467-9868.00398 – volume: 72 start-page: 222 issue: 1 year: 2016 ident: 10306_CR36 publication-title: Biometrics doi: 10.1111/biom.12389 – volume: 103 start-page: 681 issue: 482 year: 2008 ident: 10306_CR27 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214508000000337 – volume: 103 start-page: 79 issue: 9 year: 2016 ident: 10306_CR22 publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2016.04.011 – volume: 143 start-page: 473 issue: 7 year: 2005 ident: 10306_CR34 publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-143-7-200510040-00005 – volume: 103 start-page: 253 issue: 2 year: 2016 ident: 10306_CR42 publication-title: Biometrika doi: 10.1093/biomet/asw013 – volume-title: The Statistical Analysis of Failure Time Data year: 2002 ident: 10306_CR13 doi: 10.1002/9781118032985 – volume: 91 start-page: 277 issue: 2 year: 2004 ident: 10306_CR4 publication-title: Biometrika doi: 10.1093/biomet/91.2.277 – volume: 137 start-page: 170 issue: 9 year: 2019 ident: 10306_CR17 publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2019.02.010 – volume-title: An Introduction to Copulas year: 2006 ident: 10306_CR23 – volume: 29 start-page: 3192 issue: 11 year: 2020 ident: 10306_CR26 publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280220921552 – volume-title: Basic and Advanced Bayesian Structural Equation Modeling: With Applications in the Medical and Behavioral Sciences year: 2012 ident: 10306_CR31 doi: 10.1002/9781118358887 – volume-title: Structural Equation Modeling: A Bayesian Approach year: 2007 ident: 10306_CR16 doi: 10.1002/9780470024737 – volume: 26 start-page: 2533 issue: 12 year: 2007 ident: 10306_CR43 publication-title: Stat. Med. doi: 10.1002/sim.2721 – volume: 52 start-page: 1543 issue: 8 year: 2009 ident: 10306_CR33 publication-title: Diabetologia doi: 10.1007/s00125-009-1400-1 – volume: 4 start-page: 355 issue: 4 year: 1998 ident: 10306_CR30 publication-title: Lifetime Data Anal. doi: 10.1023/A:1009634103154 – volume: 60 start-page: 747 issue: 3 year: 2004 ident: 10306_CR21 publication-title: Biometrics doi: 10.1111/j.0006-341X.2004.00225.x – volume: 69 start-page: 507 issue: 4 year: 2007 ident: 10306_CR40 publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.) doi: 10.1111/j.1369-7412.2007.00606.x – volume: 89 start-page: 617 issue: 3 year: 2002 ident: 10306_CR29 publication-title: Biometrika doi: 10.1093/biomet/89.3.617 – volume: 48 start-page: 951 issue: 3 year: 1992 ident: 10306_CR24 publication-title: Biometrics doi: 10.2307/2532360 – volume: 41 start-page: 1263 issue: 7 year: 2022 ident: 10306_CR37 publication-title: Stat. Med. doi: 10.1002/sim.9271 – volume: 101 start-page: 670 issue: 474 year: 2006 ident: 10306_CR41 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214505000001122 – volume: 73 start-page: 1161 issue: 4 year: 2017 ident: 10306_CR9 publication-title: Biometrics doi: 10.1111/biom.12700 – volume-title: Analysis of Multivariate Survival Data year: 2000 ident: 10306_CR11 doi: 10.1007/978-1-4612-1304-8 – volume: 44 start-page: 455 issue: 4 year: 1995 ident: 10306_CR10 publication-title: Appl. Stat. doi: 10.2307/2986138 – volume: 58 start-page: 58 issue: 1 year: 2002 ident: 10306_CR3 publication-title: Biometrics doi: 10.1111/j.0006-341X.2002.00058.x – volume: 29 start-page: 3804 issue: 12 year: 2020 ident: 10306_CR18 publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280220942555 – volume: 58 start-page: 298 issue: 2 year: 2002 ident: 10306_CR8 publication-title: Biometrics doi: 10.1111/j.0006-341X.2002.00298.x – volume: 21 start-page: 470 issue: 3 year: 2015 ident: 10306_CR20 publication-title: Lifetime Data Anal. doi: 10.1007/s10985-014-9305-9 – volume: 15 start-page: 1 issue: 1 year: 1988 ident: 10306_CR6 publication-title: Scand. J. Stat. – volume: 48 start-page: 846 issue: 5 year: 2021 ident: 10306_CR7 publication-title: J. Appl. Stat. doi: 10.1080/02664763.2020.1752633 – volume: 25 start-page: 995 issue: 6 year: 2006 ident: 10306_CR48 publication-title: Stat. Med. doi: 10.1002/sim.2255 – volume: 8 start-page: 367 issue: 3 year: 2015 ident: 10306_CR45 publication-title: Stat. Interface doi: 10.4310/SII.2015.v8.n3.a10 – volume: 9 start-page: 501 issue: 2 year: 1999 ident: 10306_CR12 publication-title: Stat. Sin. – volume: 45 start-page: 156 issue: 1 year: 2016 ident: 10306_CR15 publication-title: J. Korean Stat. Soc. doi: 10.1016/j.jkss.2015.09.002 – volume: 31 start-page: 663 issue: 3/4 year: 2019 ident: 10306_CR39 publication-title: J. Nonparametr. Stat. doi: 10.1080/10485252.2019.1626383 – volume: 3 start-page: 425 issue: 4 year: 1988 ident: 10306_CR28 publication-title: Stat. Sci. |
SSID | ssj0011634 |
Score | 2.3542597 |
Snippet | Partly interval censoring is frequently encountered in clinical trials when the failure time of an event is observed exactly for some subjects but is only... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Artificial Intelligence Bayesian analysis Censored data (mathematics) Computer Science Data augmentation Data structures Factor analysis Failure times Markov chains Original Paper Probability and Statistics in Computer Science Statistical models Statistical Theory and Methods Statistics and Computing/Statistics Programs Stochastic processes Survival analysis |
Title | Transformation models with informative partly interval-censored data |
URI | https://link.springer.com/article/10.1007/s11222-023-10306-3 https://www.proquest.com/docview/2879581292 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu5SBjwKiUCoPbGApjRM7GSugVCCYWqlMkR3bElKVVk0Z-Pec89EAgoE5lod3Z99z7u4dwBW3QsaBYFSkSN8CT3k0ioVPMVYy7emUKVlU-b7wySx4nIfzqiksr6vd65RkcVM3zW5DjGUUYwx1o7E4ZbvQDt3bHb145o-2uQNkGIVoFHJzvGFEULXK_L7H93DUcMwfadEi2owPYb-iiWRU2vUIdkzWhYN6BAOpTmQX9p63sqt5FzqOOpbKy8dwN_3CSZcZKWbe5MT9eCWVXKq76sgKnWfxQd6K4ke5oCk-bJdro4krHj2B2fh-ejuh1cwEmvrC21BEV8Tak9yaQFqXE_OViBhaZGhjJy6GJolNqAKh8WGnDOOpJ6W0npBWKavYKbSyZWbOgPi-QDIwHBpPR4EJpeLMCBtyo7RiOuI9uK6hS1alNEbSiCA7oBMEOimATlgP-jW6SXVM8sR3o86RYsR-D25qxJvPf-92_r_lF9BBRwnKaus-tDbrd3OJZGKjBtAePbw-3Q8KH_oEnIfByw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG1hK7CROxgqoCrSdWqmbZSeOhFSlVVMG_j3nfDSAYGCO5eGdffecu3sHcBukQkWe4FTESN88Rzs0jASjGCt54iQx16qo8h0Hg6n3MvNnVVNYXle71ynJwlM3zW4uxjKKMYba0VgB5duwg2QgtIVcU9bb5A6QYRSiUcjN0cMIr2qV-X2P7-Go4Zg_0qJFtOkfwUFFE0mvtOsxbJmsDYf1CAZS3cg27I82sqt5G_YsdSyVl0_gcfKFky4yUsy8yYn98UoquVTr6sgSD8_8g7wVxY9qTmN82C5WJiG2ePQUpv2nycOAVjMTaMyEs6aIrogSRwWp8VRqc2JMi5CjRdw0suJiaJLI-NoTCT7stOFB7CilUkeoVOtU8zNoZYvMnANhTCAZcF3jJKFnfKUDbkTqB0Ynmidh0IG7Gjq5LKUxZCOCbIGWCLQsgJa8A90aXVldk1wyO-ocKUbEOnBfI958_nu3i_8tv4HdwWQ0lMPn8esl7DEkJmXldRda69W7uUJisdbXxTn6BMzYwyo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oJgYPPlAjitqDN23YbZcteyQiwRfxAAm3TbttExOyEMCD_97pPgCNHjxv08M37czXnZlvAG5CK2QUCE5FgvQt8JRH25FgFGMl155OuJJZle8g7I-Cp3FrvNHFn1W7lynJvKfBqTSly-ZM2-a68c3HuEYx3lA3JiukfBt20B377lyPWGeVR0C2kQlIIU9HbyOCom3m9z2-h6Y13_yRIs0iT-8Q9gvKSDq5jY9gy6Q1OCjHMZDidtZg73UlwbqoQdXRyFyF-Ri6ww1-Ok1JNv9mQdxPWFJIpzq3R2Z4kCaf5D0rhJQTmuAjdzo3mrhC0hMY9R6G931azE-gCRPekiLSItKeDK0JpHX5MaZEm6N1fBs5oTE0T2RaKhAaH3nK8DDxpJTWE9IqZRU_hUo6Tc0ZEMYEEgPfN55uB6YlVciNsK3QKK24bod1uC2hi2e5TEa8FkR2QMcIdJwBHfM6NEp04-LKLGLmxp4j3YhYHe5KxNef_97t_H_Lr2H3rduLXx4HzxdQZchR8iLsBlSW8w9ziRxjqa6yY_QFWlzHZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformation+models+with+informative+partly+interval-censored+data&rft.jtitle=Statistics+and+computing&rft.au=Jiang+Jingjing&rft.au=Wang%2C+Chunjie&rft.au=Deng%2C+Pan&rft.au=Song%2C+Xinyuan&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=34&rft.issue=1&rft_id=info:doi/10.1007%2Fs11222-023-10306-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon |