Transformation models with informative partly interval-censored data

Partly interval censoring is frequently encountered in clinical trials when the failure time of an event is observed exactly for some subjects but is only known to fall within an observed interval for others. Although this kind of censoring has drawn recent attention in survival analysis, available...

Full description

Saved in:
Bibliographic Details
Published inStatistics and computing Vol. 34; no. 1
Main Authors Jiang, Jingjing, Wang, Chunjie, Pan, Deng, Song, Xinyuan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0960-3174
1573-1375
DOI10.1007/s11222-023-10306-3

Cover

Loading…
Abstract Partly interval censoring is frequently encountered in clinical trials when the failure time of an event is observed exactly for some subjects but is only known to fall within an observed interval for others. Although this kind of censoring has drawn recent attention in survival analysis, available methods typically assume that the observed interval is independent of the failure time and that all potential predictors can be fully observable. However, the above assumptions may not be valid in practice. This paper considers a new joint modeling approach to simultaneously model the failure and observation times and correlate these two stochastic processes through shared latent factors. The proposed model comprises a transformation model for the failure time of interest, a proportional hazards model for the length of censoring interval, and a factor analysis model for characterization of the latent factors. A multi-stage data augmentation procedure is introduced to tackle the challenges posed by the complex model and data structure. A Bayesian approach coupled with monotone spline approximation and Markov chain Monte Carlo techniques is developed to estimate the unknown parameters and nonparametric functions. The satisfactory performance of the proposed method is demonstrated through simulations, and it is then applied to a Framingham Heart study.
AbstractList Partly interval censoring is frequently encountered in clinical trials when the failure time of an event is observed exactly for some subjects but is only known to fall within an observed interval for others. Although this kind of censoring has drawn recent attention in survival analysis, available methods typically assume that the observed interval is independent of the failure time and that all potential predictors can be fully observable. However, the above assumptions may not be valid in practice. This paper considers a new joint modeling approach to simultaneously model the failure and observation times and correlate these two stochastic processes through shared latent factors. The proposed model comprises a transformation model for the failure time of interest, a proportional hazards model for the length of censoring interval, and a factor analysis model for characterization of the latent factors. A multi-stage data augmentation procedure is introduced to tackle the challenges posed by the complex model and data structure. A Bayesian approach coupled with monotone spline approximation and Markov chain Monte Carlo techniques is developed to estimate the unknown parameters and nonparametric functions. The satisfactory performance of the proposed method is demonstrated through simulations, and it is then applied to a Framingham Heart study.
ArticleNumber 8
Author Jiang, Jingjing
Pan, Deng
Song, Xinyuan
Wang, Chunjie
Author_xml – sequence: 1
  givenname: Jingjing
  surname: Jiang
  fullname: Jiang, Jingjing
  organization: School of Mathematics and Statistics, Changchun University of Technology
– sequence: 2
  givenname: Chunjie
  surname: Wang
  fullname: Wang, Chunjie
  email: wangchunjie@ccut.edu.cn
  organization: School of Mathematics and Statistics, Changchun University of Technology
– sequence: 3
  givenname: Deng
  surname: Pan
  fullname: Pan, Deng
  organization: School of Mathematics and Statistics, Huazhong University of Science and Technology
– sequence: 4
  givenname: Xinyuan
  surname: Song
  fullname: Song, Xinyuan
  email: xysong@sta.cuhk.edu.hk
  organization: Department of Statistics, The Chinese University of Hong Kong
BookMark eNp9kEFLAzEUhINUsK3-AU8LnqMvye5mc5SqVSh4qefwdjfRLdukJttK_73RLXjz9JhhZh58MzJx3hlCrhncMgB5FxnjnFPggjIQUFJxRqaskEkKWUzIFFQJVDCZX5BZjBsAxkqRT8nDOqCL1octDp132da3po_ZVzd8ZJ07-QeT7TAM_TFZgwkH7GljXPTBtFmLA16Sc4t9NFenOydvT4_rxTNdvS5fFvcr2nAJA20bIVULWFqToy0qXvFaVsJKZFYVShVNxZUp6ly2oPLaiLIBRLQg0da1rcWc3Iy7u-A_9yYOeuP3waWXmldSFRXjiqcUH1NN8DEGY_UudFsMR81A_9DSIy2daOlfWlqkkhhLMYXduwl_0_-0vgEgLXAB
Cites_doi 10.1002/sim.9035
10.1007/s10985-018-9445-4
10.1002/bimj.200710419
10.1080/01621459.2014.950083
10.1093/biomet/82.1.127
10.1016/j.csda.2011.03.013
10.1007/s11222-011-9280-x
10.1007/s10985-007-9035-3
10.1080/10485252.2012.720256
10.1111/1467-9868.00398
10.1111/biom.12389
10.1198/016214508000000337
10.1016/j.csda.2016.04.011
10.7326/0003-4819-143-7-200510040-00005
10.1093/biomet/asw013
10.1002/9781118032985
10.1093/biomet/91.2.277
10.1016/j.csda.2019.02.010
10.1177/0962280220921552
10.1002/9781118358887
10.1002/9780470024737
10.1002/sim.2721
10.1007/s00125-009-1400-1
10.1023/A:1009634103154
10.1111/j.0006-341X.2004.00225.x
10.1111/j.1369-7412.2007.00606.x
10.1093/biomet/89.3.617
10.2307/2532360
10.1002/sim.9271
10.1198/016214505000001122
10.1111/biom.12700
10.1007/978-1-4612-1304-8
10.2307/2986138
10.1111/j.0006-341X.2002.00058.x
10.1177/0962280220942555
10.1111/j.0006-341X.2002.00298.x
10.1007/s10985-014-9305-9
10.1080/02664763.2020.1752633
10.1002/sim.2255
10.4310/SII.2015.v8.n3.a10
10.1016/j.jkss.2015.09.002
10.1080/10485252.2019.1626383
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11222-023-10306-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
ExternalDocumentID 10_1007_s11222_023_10306_3
GrantInformation_xml – fundername: Research Grants Council, University Grants Committee
  grantid: 14302220, 14303622
  funderid: http://dx.doi.org/10.13039/501100002920
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-dc379d0a6fe4af58282b783f7a1f95995c829e5b47d094be36c0aaaf07afbbfb3
IEDL.DBID U2A
ISSN 0960-3174
IngestDate Fri Jul 25 08:55:06 EDT 2025
Tue Jul 01 02:17:07 EDT 2025
Fri Feb 21 02:41:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Latent factor
Data augmentation
Bayesian method
Informative partly-interval censoring
Transformation model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-dc379d0a6fe4af58282b783f7a1f95995c829e5b47d094be36c0aaaf07afbbfb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2879581292
PQPubID 2043829
ParticipantIDs proquest_journals_2879581292
crossref_primary_10_1007_s11222_023_10306_3
springer_journals_10_1007_s11222_023_10306_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Wu, Chambers, Xu (CR38) 2019; 25
Lee (CR16) 2007
Scharfstein, Robins (CR29) 2002; 89
Kim, Kim, Kim (CR15) 2016; 45
Liu, Wolfe, Huang (CR21) 2004; 60
Zheng, Klein (CR46) 1995; 82
Lin, Cai, Wang, Zhang (CR20) 2015; 21
Nelsen (CR23) 2006
Zeng, Yin, Ibrahim (CR41) 2006; 101
Dabrowska, Doksum (CR6) 1988; 15
Scharfstein, Tsiatis, Gilbert (CR30) 1998; 4
Li, Ma (CR17) 2019; 137
Ramsay (CR28) 1988; 3
Zhao, Hu, Ma, Wang, Sun (CR45) 2015; 8
Cai, Cheng (CR4) 2004; 91
Zhou, Sun, Gilbert (CR47) 2021; 40
Du, Zhou, Zhao, Sun (CR7) 2021; 48
Li, Wang, Sun (CR19) 2012; 24
Wang, Jiang, Song (CR37) 2022; 41
Aljawadi (CR1) 2017; 11
Betensky, Finkelstein (CR3) 2002; 58
Pan, Cai, Wang (CR26) 2020; 29
Hougaard (CR11) 2000
Gilks, Best, Tan (CR10) 1995; 44
Odell, Anderson, D’Agostino (CR24) 1992; 48
Song, Lee, Ma, So, Cai, Tam, Lam, Ying, Ng, Chan (CR33) 2009; 52
Li, Ma (CR18) 2020; 29
Zucker, Yang (CR48) 2006; 25
Cai, Lin, Wang (CR5) 2011; 55
Zeng, Mao, Lin (CR42) 2016; 103
Kalbfleisch, Prentice (CR13) 2002
Pan, He, Song, Sun (CR25) 2015; 110
Song, Lee (CR31) 2012
Xu, Zhao, Hu, Sun (CR39) 2019; 31
Zhang, Sun, Sun, Finkelstein (CR43) 2007; 26
Finkelstein, Goggins, Schoenfeld (CR8) 2002; 58
CR44
Banerjee, Chen, Dey, Kim (CR2) 2007; 13
Park, Casella (CR27) 2008; 103
Ma, Hu, Sun (CR22) 2016; 103
Zeng, Lin (CR40) 2007; 69
Wang, McMahan, Hudgens, Qureshi (CR36) 2016; 72
Wang, Sun, Tong (CR35) 2010; 20
Song, Lu (CR32) 2012; 22
Huang (CR12) 1999; 9
Gao, Zeng, Lin (CR9) 2017; 73
Vasan, Pencina, Cobain, Freiberg, D’Agostino (CR34) 2005; 143
Kim (CR14) 2003; 65
M Du (10306_CR7) 2021; 48
D Scharfstein (10306_CR30) 1998; 4
D Zeng (10306_CR40) 2007; 69
C Wang (10306_CR37) 2022; 41
D Zucker (10306_CR48) 2006; 25
T Cai (10306_CR4) 2004; 91
X Song (10306_CR33) 2009; 52
T Banerjee (10306_CR2) 2007; 13
D Finkelstein (10306_CR8) 2002; 58
R Vasan (10306_CR34) 2005; 143
Q Zhou (10306_CR47) 2021; 40
L Liu (10306_CR21) 2004; 60
L Ma (10306_CR22) 2016; 103
R Nelsen (10306_CR23) 2006
J Kalbfleisch (10306_CR13) 2002
P Hougaard (10306_CR11) 2000
R Betensky (10306_CR3) 2002; 58
F Gao (10306_CR9) 2017; 73
X Song (10306_CR32) 2012; 22
D Xu (10306_CR39) 2019; 31
D Scharfstein (10306_CR29) 2002; 89
J Li (10306_CR19) 2012; 24
Y Wu (10306_CR38) 2019; 25
W Gilks (10306_CR10) 1995; 44
J Kim (10306_CR14) 2003; 65
D Pan (10306_CR25) 2015; 110
C Pan (10306_CR26) 2020; 29
L Wang (10306_CR35) 2010; 20
M Zheng (10306_CR46) 1995; 82
S Lee (10306_CR16) 2007
X Lin (10306_CR20) 2015; 21
S Zhao (10306_CR45) 2015; 8
J Ramsay (10306_CR28) 1988; 3
J Li (10306_CR17) 2019; 137
T Park (10306_CR27) 2008; 103
B Aljawadi (10306_CR1) 2017; 11
J Kim (10306_CR15) 2016; 45
D Zeng (10306_CR41) 2006; 101
J Li (10306_CR18) 2020; 29
B Cai (10306_CR5) 2011; 55
J Huang (10306_CR12) 1999; 9
L Wang (10306_CR36) 2016; 72
Z Zhang (10306_CR43) 2007; 26
D Dabrowska (10306_CR6) 1988; 15
P Odell (10306_CR24) 1992; 48
10306_CR44
X Song (10306_CR31) 2012
D Zeng (10306_CR42) 2016; 103
References_xml – year: 2012
  ident: CR31
  publication-title: Basic and Advanced Bayesian Structural Equation Modeling: With Applications in the Medical and Behavioral Sciences
– volume: 52
  start-page: 1543
  issue: 8
  year: 2009
  end-page: 1553
  ident: CR33
  article-title: Phenotype-genotype interactions on renal function in type2 diabetes: an analysis using structural equation modelling
  publication-title: Diabetologia
– volume: 26
  start-page: 2533
  issue: 12
  year: 2007
  end-page: 2546
  ident: CR43
  article-title: Regression analysis of failure time data with informative interval censoring
  publication-title: Stat. Med.
– volume: 13
  start-page: 241
  issue: 2
  year: 2007
  end-page: 260
  ident: CR2
  article-title: Bayesian analysis of generalized odds-rate hazards models for survival data
  publication-title: Lifetime Data Anal.
– volume: 110
  start-page: 1148
  issue: 511
  year: 2015
  end-page: 1159
  ident: CR25
  article-title: Regression analysis of additive hazards model with latent variables
  publication-title: J. Am. Stat. Assoc.
– volume: 143
  start-page: 473
  issue: 7
  year: 2005
  end-page: 480
  ident: CR34
  article-title: Estimated risks for developing obesity in the Framingham heart study
  publication-title: Ann. Intern. Med.
– volume: 103
  start-page: 681
  issue: 482
  year: 2008
  end-page: 686
  ident: CR27
  article-title: The Bayesian lasso
  publication-title: J. Am. Stat. Assoc.
– volume: 25
  start-page: 995
  issue: 6
  year: 2006
  end-page: 1014
  ident: CR48
  article-title: Inference for a family of survival models encompassing the proportional hazards and proportional odds models
  publication-title: Stat. Med.
– year: 2007
  ident: CR16
  publication-title: Structural Equation Modeling: A Bayesian Approach
– volume: 3
  start-page: 425
  issue: 4
  year: 1988
  end-page: 461
  ident: CR28
  article-title: Monotone regression splines in action
  publication-title: Stat. Sci.
– volume: 44
  start-page: 455
  issue: 4
  year: 1995
  end-page: 472
  ident: CR10
  article-title: Adaptive rejection metropolis sampling within Gibbs sampling
  publication-title: Appl. Stat.
– volume: 20
  start-page: 1709
  issue: 4
  year: 2010
  end-page: 1723
  ident: CR35
  article-title: Regression analysis of case ii interval-censored failure time data with the additive hazards model
  publication-title: Stat. Sin.
– volume: 91
  start-page: 277
  issue: 2
  year: 2004
  end-page: 290
  ident: CR4
  article-title: Semiparametric regression analysis for doubly censored data
  publication-title: Biometrika
– year: 2002
  ident: CR13
  publication-title: The Statistical Analysis of Failure Time Data
– volume: 4
  start-page: 355
  issue: 4
  year: 1998
  end-page: 391
  ident: CR30
  article-title: Semiparametric efficient estimation in the generalized odds-rate class of regression models for right-censored time-to-event data
  publication-title: Lifetime Data Anal.
– volume: 103
  start-page: 253
  issue: 2
  year: 2016
  end-page: 271
  ident: CR42
  article-title: Maximum likelihood estimation for semiparametric transformation models with interval-censored data
  publication-title: Biometrika
– volume: 137
  start-page: 170
  issue: 9
  year: 2019
  end-page: 180
  ident: CR17
  article-title: Maximum penalized likelihood estimation of additive hazards models with partly interval censoring
  publication-title: Comput. Stat. Data Anal.
– volume: 60
  start-page: 747
  issue: 3
  year: 2004
  end-page: 756
  ident: CR21
  article-title: Shared frailty models for recurrent events and a terminal event
  publication-title: Biometrics
– year: 2006
  ident: CR23
  publication-title: An Introduction to Copulas
– volume: 29
  start-page: 3804
  issue: 12
  year: 2020
  end-page: 3817
  ident: CR18
  article-title: On hazard-based penalized likelihood estimation of accelerated failure time model with partly interval censoring
  publication-title: Stat. Methods Med. Res.
– volume: 21
  start-page: 470
  issue: 3
  year: 2015
  end-page: 490
  ident: CR20
  article-title: A Bayesian proportional hazards model for general interval-censored data
  publication-title: Lifetime Data Anal.
– volume: 103
  start-page: 79
  issue: 9
  year: 2016
  end-page: 90
  ident: CR22
  article-title: Cox regression analysis of dependent interval-censored failure time data
  publication-title: Comput. Stat. Data Anal.
– volume: 55
  start-page: 2644
  issue: 9
  year: 2011
  end-page: 2651
  ident: CR5
  article-title: Bayesian proportional hazards model for current status data with monotone splines
  publication-title: Comput. Stat. Data Anal.
– volume: 73
  start-page: 1161
  issue: 4
  year: 2017
  end-page: 1168
  ident: CR9
  article-title: Semiparametric estimation of the accelerated failure time model with partly interval-censored data
  publication-title: Biometrics
– volume: 9
  start-page: 501
  issue: 2
  year: 1999
  end-page: 519
  ident: CR12
  article-title: Asymptotic properties of nonparametric estimation based on partly interval-censored data
  publication-title: Stat. Sin.
– volume: 72
  start-page: 222
  issue: 1
  year: 2016
  end-page: 231
  ident: CR36
  article-title: A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data
  publication-title: Biometrics
– volume: 31
  start-page: 663
  issue: 3/4
  year: 2019
  end-page: 679
  ident: CR39
  article-title: Regression analysis of informatively interval-censored failure time data with semiparametric linear transformation model
  publication-title: J. Nonparametr. Stat.
– ident: CR44
– volume: 22
  start-page: 1085
  year: 2012
  end-page: 1098
  ident: CR32
  article-title: Semiparametric transformation models with Bayesian p-splines
  publication-title: Stat. Comput.
– volume: 69
  start-page: 507
  issue: 4
  year: 2007
  end-page: 564
  ident: CR40
  article-title: Maximum likelihood estimation in semiparametric regression models with censored data
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
– volume: 25
  start-page: 507
  issue: 3
  year: 2019
  end-page: 528
  ident: CR38
  article-title: Semiparametric sieve maximum likelihood estimation under cure model with partly interval censored and left truncated data for application to spontaneous abortion
  publication-title: Lifetime Data Anal.
– volume: 8
  start-page: 367
  issue: 3
  year: 2015
  end-page: 377
  ident: CR45
  article-title: Regression analysis of interval-censored failure time data with the additive hazards model in the presence of informative censoring
  publication-title: Stat. Interface
– volume: 48
  start-page: 951
  issue: 3
  year: 1992
  end-page: 959
  ident: CR24
  article-title: Maximum likelihood estimation for interval-censored data using a Weibull-based accelerated failure time model
  publication-title: Biometrics
– volume: 11
  start-page: 303
  issue: 3
  year: 2017
  end-page: 315
  ident: CR1
  article-title: Approximation of survival function by Taylor series for general partly interval censored data
  publication-title: Malays. J. Math. Sci.
– volume: 101
  start-page: 670
  issue: 474
  year: 2006
  end-page: 684
  ident: CR41
  article-title: Semiparametric transformation models for survival data with a cure fraction
  publication-title: J. Am. Stat. Assoc.
– volume: 58
  start-page: 298
  issue: 2
  year: 2002
  end-page: 304
  ident: CR8
  article-title: Analysis of failure time data with dependent interval censoring
  publication-title: Biometrics
– volume: 29
  start-page: 3192
  issue: 11
  year: 2020
  end-page: 3204
  ident: CR26
  article-title: A bayesian approach for analyzing partly interval-censored data under the proportional hazards model
  publication-title: Stat. Methods Med. Res.
– volume: 15
  start-page: 1
  issue: 1
  year: 1988
  end-page: 23
  ident: CR6
  article-title: Partial likelihood in transformation models with censored data
  publication-title: Scand. J. Stat.
– volume: 41
  start-page: 1263
  issue: 7
  year: 2022
  end-page: 1279
  ident: CR37
  article-title: Bayesian transformation models with partly interval-censored data
  publication-title: Stat. Med.
– year: 2000
  ident: CR11
  publication-title: Analysis of Multivariate Survival Data
– volume: 89
  start-page: 617
  issue: 3
  year: 2002
  end-page: 634
  ident: CR29
  article-title: Estimation of the failure time distribution in the presence of informative censoring
  publication-title: Biometrika
– volume: 58
  start-page: 58
  issue: 1
  year: 2002
  end-page: 63
  ident: CR3
  article-title: Testing for dependence between failure time and visit compliance with interval-censored data
  publication-title: Biometrics
– volume: 48
  start-page: 846
  issue: 5
  year: 2021
  end-page: 865
  ident: CR7
  article-title: Regression analysis of case-cohort studies in the presence of dependent interval censoring
  publication-title: J. Appl. Stat.
– volume: 65
  start-page: 489
  issue: 2
  year: 2003
  end-page: 502
  ident: CR14
  article-title: Maximum likelihood estimation for the proportional hazards model with partly interval-censored data
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
– volume: 24
  start-page: 1041
  issue: 4
  year: 2012
  end-page: 1050
  ident: CR19
  article-title: Regression analysis of clustered interval-censored failure time data with the additive hazards model
  publication-title: J. Nonparametr. Stat.
– volume: 82
  start-page: 127
  issue: 1
  year: 1995
  end-page: 138
  ident: CR46
  article-title: Estimates of marginal survival for dependent competing risk based on an assumed copula
  publication-title: Biometrika
– volume: 40
  start-page: 4376
  issue: 20
  year: 2021
  end-page: 4394
  ident: CR47
  article-title: Semiparametric regression analysis of partly interval-censored failure time data with application to an aids clinical trial
  publication-title: Stat. Med.
– volume: 45
  start-page: 156
  issue: 1
  year: 2016
  end-page: 165
  ident: CR15
  article-title: Frailty model approach for the clustered interval-censored data with informative censoring
  publication-title: J. Korean Stat. Soc.
– volume: 40
  start-page: 4376
  issue: 20
  year: 2021
  ident: 10306_CR47
  publication-title: Stat. Med.
  doi: 10.1002/sim.9035
– volume: 25
  start-page: 507
  issue: 3
  year: 2019
  ident: 10306_CR38
  publication-title: Lifetime Data Anal.
  doi: 10.1007/s10985-018-9445-4
– ident: 10306_CR44
  doi: 10.1002/bimj.200710419
– volume: 110
  start-page: 1148
  issue: 511
  year: 2015
  ident: 10306_CR25
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2014.950083
– volume: 82
  start-page: 127
  issue: 1
  year: 1995
  ident: 10306_CR46
  publication-title: Biometrika
  doi: 10.1093/biomet/82.1.127
– volume: 55
  start-page: 2644
  issue: 9
  year: 2011
  ident: 10306_CR5
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2011.03.013
– volume: 20
  start-page: 1709
  issue: 4
  year: 2010
  ident: 10306_CR35
  publication-title: Stat. Sin.
– volume: 11
  start-page: 303
  issue: 3
  year: 2017
  ident: 10306_CR1
  publication-title: Malays. J. Math. Sci.
– volume: 22
  start-page: 1085
  year: 2012
  ident: 10306_CR32
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-011-9280-x
– volume: 13
  start-page: 241
  issue: 2
  year: 2007
  ident: 10306_CR2
  publication-title: Lifetime Data Anal.
  doi: 10.1007/s10985-007-9035-3
– volume: 24
  start-page: 1041
  issue: 4
  year: 2012
  ident: 10306_CR19
  publication-title: J. Nonparametr. Stat.
  doi: 10.1080/10485252.2012.720256
– volume: 65
  start-page: 489
  issue: 2
  year: 2003
  ident: 10306_CR14
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
  doi: 10.1111/1467-9868.00398
– volume: 72
  start-page: 222
  issue: 1
  year: 2016
  ident: 10306_CR36
  publication-title: Biometrics
  doi: 10.1111/biom.12389
– volume: 103
  start-page: 681
  issue: 482
  year: 2008
  ident: 10306_CR27
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214508000000337
– volume: 103
  start-page: 79
  issue: 9
  year: 2016
  ident: 10306_CR22
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2016.04.011
– volume: 143
  start-page: 473
  issue: 7
  year: 2005
  ident: 10306_CR34
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-143-7-200510040-00005
– volume: 103
  start-page: 253
  issue: 2
  year: 2016
  ident: 10306_CR42
  publication-title: Biometrika
  doi: 10.1093/biomet/asw013
– volume-title: The Statistical Analysis of Failure Time Data
  year: 2002
  ident: 10306_CR13
  doi: 10.1002/9781118032985
– volume: 91
  start-page: 277
  issue: 2
  year: 2004
  ident: 10306_CR4
  publication-title: Biometrika
  doi: 10.1093/biomet/91.2.277
– volume: 137
  start-page: 170
  issue: 9
  year: 2019
  ident: 10306_CR17
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2019.02.010
– volume-title: An Introduction to Copulas
  year: 2006
  ident: 10306_CR23
– volume: 29
  start-page: 3192
  issue: 11
  year: 2020
  ident: 10306_CR26
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280220921552
– volume-title: Basic and Advanced Bayesian Structural Equation Modeling: With Applications in the Medical and Behavioral Sciences
  year: 2012
  ident: 10306_CR31
  doi: 10.1002/9781118358887
– volume-title: Structural Equation Modeling: A Bayesian Approach
  year: 2007
  ident: 10306_CR16
  doi: 10.1002/9780470024737
– volume: 26
  start-page: 2533
  issue: 12
  year: 2007
  ident: 10306_CR43
  publication-title: Stat. Med.
  doi: 10.1002/sim.2721
– volume: 52
  start-page: 1543
  issue: 8
  year: 2009
  ident: 10306_CR33
  publication-title: Diabetologia
  doi: 10.1007/s00125-009-1400-1
– volume: 4
  start-page: 355
  issue: 4
  year: 1998
  ident: 10306_CR30
  publication-title: Lifetime Data Anal.
  doi: 10.1023/A:1009634103154
– volume: 60
  start-page: 747
  issue: 3
  year: 2004
  ident: 10306_CR21
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2004.00225.x
– volume: 69
  start-page: 507
  issue: 4
  year: 2007
  ident: 10306_CR40
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
  doi: 10.1111/j.1369-7412.2007.00606.x
– volume: 89
  start-page: 617
  issue: 3
  year: 2002
  ident: 10306_CR29
  publication-title: Biometrika
  doi: 10.1093/biomet/89.3.617
– volume: 48
  start-page: 951
  issue: 3
  year: 1992
  ident: 10306_CR24
  publication-title: Biometrics
  doi: 10.2307/2532360
– volume: 41
  start-page: 1263
  issue: 7
  year: 2022
  ident: 10306_CR37
  publication-title: Stat. Med.
  doi: 10.1002/sim.9271
– volume: 101
  start-page: 670
  issue: 474
  year: 2006
  ident: 10306_CR41
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214505000001122
– volume: 73
  start-page: 1161
  issue: 4
  year: 2017
  ident: 10306_CR9
  publication-title: Biometrics
  doi: 10.1111/biom.12700
– volume-title: Analysis of Multivariate Survival Data
  year: 2000
  ident: 10306_CR11
  doi: 10.1007/978-1-4612-1304-8
– volume: 44
  start-page: 455
  issue: 4
  year: 1995
  ident: 10306_CR10
  publication-title: Appl. Stat.
  doi: 10.2307/2986138
– volume: 58
  start-page: 58
  issue: 1
  year: 2002
  ident: 10306_CR3
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2002.00058.x
– volume: 29
  start-page: 3804
  issue: 12
  year: 2020
  ident: 10306_CR18
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280220942555
– volume: 58
  start-page: 298
  issue: 2
  year: 2002
  ident: 10306_CR8
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2002.00298.x
– volume: 21
  start-page: 470
  issue: 3
  year: 2015
  ident: 10306_CR20
  publication-title: Lifetime Data Anal.
  doi: 10.1007/s10985-014-9305-9
– volume: 15
  start-page: 1
  issue: 1
  year: 1988
  ident: 10306_CR6
  publication-title: Scand. J. Stat.
– volume: 48
  start-page: 846
  issue: 5
  year: 2021
  ident: 10306_CR7
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2020.1752633
– volume: 25
  start-page: 995
  issue: 6
  year: 2006
  ident: 10306_CR48
  publication-title: Stat. Med.
  doi: 10.1002/sim.2255
– volume: 8
  start-page: 367
  issue: 3
  year: 2015
  ident: 10306_CR45
  publication-title: Stat. Interface
  doi: 10.4310/SII.2015.v8.n3.a10
– volume: 9
  start-page: 501
  issue: 2
  year: 1999
  ident: 10306_CR12
  publication-title: Stat. Sin.
– volume: 45
  start-page: 156
  issue: 1
  year: 2016
  ident: 10306_CR15
  publication-title: J. Korean Stat. Soc.
  doi: 10.1016/j.jkss.2015.09.002
– volume: 31
  start-page: 663
  issue: 3/4
  year: 2019
  ident: 10306_CR39
  publication-title: J. Nonparametr. Stat.
  doi: 10.1080/10485252.2019.1626383
– volume: 3
  start-page: 425
  issue: 4
  year: 1988
  ident: 10306_CR28
  publication-title: Stat. Sci.
SSID ssj0011634
Score 2.3542597
Snippet Partly interval censoring is frequently encountered in clinical trials when the failure time of an event is observed exactly for some subjects but is only...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Artificial Intelligence
Bayesian analysis
Censored data (mathematics)
Computer Science
Data augmentation
Data structures
Factor analysis
Failure times
Markov chains
Original Paper
Probability and Statistics in Computer Science
Statistical models
Statistical Theory and Methods
Statistics and Computing/Statistics Programs
Stochastic processes
Survival analysis
Title Transformation models with informative partly interval-censored data
URI https://link.springer.com/article/10.1007/s11222-023-10306-3
https://www.proquest.com/docview/2879581292
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu5SBjwKiUCoPbGApjRM7GSugVCCYWqlMkR3bElKVVk0Z-Pec89EAgoE5lod3Z99z7u4dwBW3QsaBYFSkSN8CT3k0ioVPMVYy7emUKVlU-b7wySx4nIfzqiksr6vd65RkcVM3zW5DjGUUYwx1o7E4ZbvQDt3bHb145o-2uQNkGIVoFHJzvGFEULXK_L7H93DUcMwfadEi2owPYb-iiWRU2vUIdkzWhYN6BAOpTmQX9p63sqt5FzqOOpbKy8dwN_3CSZcZKWbe5MT9eCWVXKq76sgKnWfxQd6K4ke5oCk-bJdro4krHj2B2fh-ejuh1cwEmvrC21BEV8Tak9yaQFqXE_OViBhaZGhjJy6GJolNqAKh8WGnDOOpJ6W0npBWKavYKbSyZWbOgPi-QDIwHBpPR4EJpeLMCBtyo7RiOuI9uK6hS1alNEbSiCA7oBMEOimATlgP-jW6SXVM8sR3o86RYsR-D25qxJvPf-92_r_lF9BBRwnKaus-tDbrd3OJZGKjBtAePbw-3Q8KH_oEnIfByw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG1hK7CROxgqoCrSdWqmbZSeOhFSlVVMG_j3nfDSAYGCO5eGdffecu3sHcBukQkWe4FTESN88Rzs0jASjGCt54iQx16qo8h0Hg6n3MvNnVVNYXle71ynJwlM3zW4uxjKKMYba0VgB5duwg2QgtIVcU9bb5A6QYRSiUcjN0cMIr2qV-X2P7-Go4Zg_0qJFtOkfwUFFE0mvtOsxbJmsDYf1CAZS3cg27I82sqt5G_YsdSyVl0_gcfKFky4yUsy8yYn98UoquVTr6sgSD8_8g7wVxY9qTmN82C5WJiG2ePQUpv2nycOAVjMTaMyEs6aIrogSRwWp8VRqc2JMi5CjRdw0suJiaJLI-NoTCT7stOFB7CilUkeoVOtU8zNoZYvMnANhTCAZcF3jJKFnfKUDbkTqB0Ynmidh0IG7Gjq5LKUxZCOCbIGWCLQsgJa8A90aXVldk1wyO-ocKUbEOnBfI958_nu3i_8tv4HdwWQ0lMPn8esl7DEkJmXldRda69W7uUJisdbXxTn6BMzYwyo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oJgYPPlAjitqDN23YbZcteyQiwRfxAAm3TbttExOyEMCD_97pPgCNHjxv08M37czXnZlvAG5CK2QUCE5FgvQt8JRH25FgFGMl155OuJJZle8g7I-Cp3FrvNHFn1W7lynJvKfBqTSly-ZM2-a68c3HuEYx3lA3JiukfBt20B377lyPWGeVR0C2kQlIIU9HbyOCom3m9z2-h6Y13_yRIs0iT-8Q9gvKSDq5jY9gy6Q1OCjHMZDidtZg73UlwbqoQdXRyFyF-Ri6ww1-Ok1JNv9mQdxPWFJIpzq3R2Z4kCaf5D0rhJQTmuAjdzo3mrhC0hMY9R6G931azE-gCRPekiLSItKeDK0JpHX5MaZEm6N1fBs5oTE0T2RaKhAaH3nK8DDxpJTWE9IqZRU_hUo6Tc0ZEMYEEgPfN55uB6YlVciNsK3QKK24bod1uC2hi2e5TEa8FkR2QMcIdJwBHfM6NEp04-LKLGLmxp4j3YhYHe5KxNef_97t_H_Lr2H3rduLXx4HzxdQZchR8iLsBlSW8w9ziRxjqa6yY_QFWlzHZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformation+models+with+informative+partly+interval-censored+data&rft.jtitle=Statistics+and+computing&rft.au=Jiang+Jingjing&rft.au=Wang%2C+Chunjie&rft.au=Deng%2C+Pan&rft.au=Song%2C+Xinyuan&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=34&rft.issue=1&rft_id=info:doi/10.1007%2Fs11222-023-10306-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon