Phase Function Methods for Second Order Inhomogeneous Linear Ordinary Differential Equations

It has long been known that second order linear homogeneous ordinary differential equations with nonoscillatory coefficients admit nonoscillatory phase functions. This observation is the basis of many techniques for the asymptotic approximation of the solutions of such equations, as well as several...

Full description

Saved in:
Bibliographic Details
Published inJournal of scientific computing Vol. 98; no. 1; p. 14
Main Authors Serkh, Kirill, Bremer, James
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It has long been known that second order linear homogeneous ordinary differential equations with nonoscillatory coefficients admit nonoscillatory phase functions. This observation is the basis of many techniques for the asymptotic approximation of the solutions of such equations, as well as several schemes for their numerical solution. However, it was only relatively recently exploited to develop the first high-accuracy numerical solver for second order linear homogeneous ordinary differential equations which runs in time independent of frequency. Here, we introduce the first high-accuracy, frequency-independent method for the numerical solution of second order linear inhomogeneous ordinary differential equations. Our algorithm operates by constructing a nonoscillatory phase function representing the solutions of the corresponding homogeneous equation. Then, it uses an adaptive Levin scheme to construct a collection of auxiliary nonoscillatory functions that efficiently represent a highly oscillatory indefinite integral giving a particular solution of the inhomogeneous differential equation. Once the phase function and these auxiliary functions have been constructed, the inhomogeneous equation can be solved subject to essentially any reasonable boundary conditions. The results of numerical experiments illustrating the properties of our scheme are discussed.
AbstractList It has long been known that second order linear homogeneous ordinary differential equations with nonoscillatory coefficients admit nonoscillatory phase functions. This observation is the basis of many techniques for the asymptotic approximation of the solutions of such equations, as well as several schemes for their numerical solution. However, it was only relatively recently exploited to develop the first high-accuracy numerical solver for second order linear homogeneous ordinary differential equations which runs in time independent of frequency. Here, we introduce the first high-accuracy, frequency-independent method for the numerical solution of second order linear inhomogeneous ordinary differential equations. Our algorithm operates by constructing a nonoscillatory phase function representing the solutions of the corresponding homogeneous equation. Then, it uses an adaptive Levin scheme to construct a collection of auxiliary nonoscillatory functions that efficiently represent a highly oscillatory indefinite integral giving a particular solution of the inhomogeneous differential equation. Once the phase function and these auxiliary functions have been constructed, the inhomogeneous equation can be solved subject to essentially any reasonable boundary conditions. The results of numerical experiments illustrating the properties of our scheme are discussed.
It has long been known that second order linear homogeneous ordinary differential equations with nonoscillatory coefficients admit nonoscillatory phase functions. This observation is the basis of many techniques for the asymptotic approximation of the solutions of such equations, as well as several schemes for their numerical solution. However, it was only relatively recently exploited to develop the first high-accuracy numerical solver for second order linear homogeneous ordinary differential equations which runs in time independent of frequency. Here, we introduce the first high-accuracy, frequency-independent method for the numerical solution of second order linear inhomogeneous ordinary differential equations. Our algorithm operates by constructing a nonoscillatory phase function representing the solutions of the corresponding homogeneous equation. Then, it uses an adaptive Levin scheme to construct a collection of auxiliary nonoscillatory functions that efficiently represent a highly oscillatory indefinite integral giving a particular solution of the inhomogeneous differential equation. Once the phase function and these auxiliary functions have been constructed, the inhomogeneous equation can be solved subject to essentially any reasonable boundary conditions. The results of numerical experiments illustrating the properties of our scheme are discussed.
ArticleNumber 14
Author Serkh, Kirill
Bremer, James
Author_xml – sequence: 1
  givenname: Kirill
  surname: Serkh
  fullname: Serkh, Kirill
  organization: Department of Mathematics and Department of Computer Science, University of Toronto
– sequence: 2
  givenname: James
  orcidid: 0000-0001-5654-198X
  surname: Bremer
  fullname: Bremer, James
  email: bremer@math.toronto.edu
  organization: Department of Mathematics, University of Toronto
BookMark eNp9kE9LAzEQxYNUsFa_gKeA59X82TTJUWqrhUoF9SaEdHfSbmmTNtk9-O1NXcGbMDM5zHtvwu8SDXzwgNANJXeUEHmfKNFUFITx3CVhBT9DQyokL-RY0wEaEqVEIUtZXqDLlLaEEK00G6LP141NgGedr9omePwC7SbUCbsQ8RtUwdd4GWuIeO43YR_W4CF0CS8aDzaeVo238Qs_Ns5BBN82doenx86ewtIVOnd2l-D69x2hj9n0ffJcLJZP88nDoqiYJG1RrxTU5RgIl4ILCkKvWGlhBc4SwS2w2rlVpWSl8hRUSmVLkNqCU2POrOYjdNvnHmI4dpBasw1d9PmkYZoqnovLrGK9qoohpQjOHGKzz783lJgTRdNTNJmi-aFoeDbx3pSy2K8h_kX_4_oGDXx4Iw
Cites_doi 10.1016/j.acha.2016.05.002
10.1007/s00211-011-0441-9
10.1090/S0025-5718-1982-0645668-7
10.1098/rsta.1999.0362
10.1016/j.apnum.2010.04.009
10.1016/j.jmaa.2018.03.027
10.1002/cpa.3160070404
10.1016/j.acha.2023.02.005
10.1023/A:1022049814688
10.3934/dcds.2016.36.4101
10.1090/S0025-5718-1990-1035945-7
10.1007/s11432-008-0121-2
10.1142/9789812834300_0038
10.1201/9781439864548
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10915-023-02402-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
ExternalDocumentID 10_1007_s10915_023_02402_3
GrantInformation_xml – fundername: National Sciences and Research Council of Canada
  grantid: RGPIN-2021-02613
– fundername: National Sciences and Research Council of Canada
  grantid: DGECR-2020-00356; RGPIN-2020-06022
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c270t-db8ed46e0375351e59b24aebefa053ae2dffbc87c8bc851778a4e79aef8632a93
IEDL.DBID U2A
ISSN 0885-7474
IngestDate Fri Jul 25 09:01:42 EDT 2025
Tue Jul 01 00:51:48 EDT 2025
Fri Feb 21 02:41:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Ordinary differential equations
Phase functions
Fast algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-db8ed46e0375351e59b24aebefa053ae2dffbc87c8bc851778a4e79aef8632a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5654-198X
PQID 2918318337
PQPubID 2043771
ParticipantIDs proquest_journals_2918318337
crossref_primary_10_1007_s10915_023_02402_3
springer_journals_10_1007_s10915_023_02402_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240100
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 1
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Levin (CR8) 1982; 38
Bremer (CR2) 2023; 65
CR4
CR7
Iserles, Nørsett (CR6) 1999; 357
Li, Wang, Wang, Xiao (CR10) 2010; 60
Magnus (CR11) 1954; 7
Spigler, Vianello (CR16) 2012; 121
CR13
CR12
Spigler (CR14) 2018; 463
Bremer, Rokhlin (CR3) 2016; 36
Iserles (CR5) 2002; 32
Bremer (CR1) 2018; 44
Li, Wang, Wang (CR9) 2008; 51
Spigler, Vianello (CR15) 1990; 55
J Bremer (2402_CR1) 2018; 44
R Spigler (2402_CR16) 2012; 121
A Iserles (2402_CR6) 1999; 357
R Spigler (2402_CR14) 2018; 463
W Magnus (2402_CR11) 1954; 7
J Li (2402_CR10) 2010; 60
R Spigler (2402_CR15) 1990; 55
J Bremer (2402_CR3) 2016; 36
J Li (2402_CR9) 2008; 51
2402_CR7
2402_CR12
J Bremer (2402_CR2) 2023; 65
D Levin (2402_CR8) 1982; 38
A Iserles (2402_CR5) 2002; 32
2402_CR4
2402_CR13
References_xml – volume: 44
  start-page: 312
  year: 2018
  end-page: 349
  ident: CR1
  article-title: On the numerical solution of second order differential equations in the high-frequency regime
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2016.05.002
– volume: 121
  start-page: 565
  year: 2012
  end-page: 586
  ident: CR16
  article-title: The phase function method to solve second-order asymptotically polynomial differential equations
  publication-title: Numerische Mathematik
  doi: 10.1007/s00211-011-0441-9
– volume: 38
  start-page: 531
  year: 1982
  end-page: 5538
  ident: CR8
  article-title: Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1982-0645668-7
– ident: CR4
– volume: 357
  start-page: 983
  issue: 1754
  year: 1999
  end-page: 1019
  ident: CR6
  article-title: On the solution of linear differential equations in lie groups
  publication-title: Philos. Trans. Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.1999.0362
– volume: 60
  start-page: 833
  issue: 8
  year: 2010
  end-page: 842
  ident: CR10
  article-title: An improved Levin quadrature method for highly oscillatory integrals
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2010.04.009
– ident: CR12
– ident: CR13
– volume: 463
  start-page: 318
  year: 2018
  end-page: 344
  ident: CR14
  article-title: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method
  publication-title: J. Math. Ana. Appl.
  doi: 10.1016/j.jmaa.2018.03.027
– volume: 7
  start-page: 649
  year: 1954
  end-page: 673
  ident: CR11
  article-title: On the exponential solution of differential equations for a linear operator
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160070404
– volume: 65
  start-page: 137
  year: 2023
  end-page: 169
  ident: CR2
  article-title: Phase function methods for second order linear ordinary differential equations with turning points
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2023.02.005
– ident: CR7
– volume: 32
  start-page: 561
  year: 2002
  end-page: 599
  ident: CR5
  article-title: On the global error of discretization methods for highly-oscillatory ordinary differential equations
  publication-title: BIT
  doi: 10.1023/A:1022049814688
– volume: 36
  start-page: 4101
  year: 2016
  end-page: 4131
  ident: CR3
  article-title: Improved estimates for nonoscillatory phase functions
  publication-title: Discr. Contin. Dyn. Syst. Ser. A
  doi: 10.3934/dcds.2016.36.4101
– volume: 55
  start-page: 591
  year: 1990
  end-page: 612
  ident: CR15
  article-title: A numerical method for evaluating the zeros of solutions of second-order linear differential equations
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1990-1035945-7
– volume: 51
  start-page: 1614
  year: 2008
  end-page: 1622
  ident: CR9
  article-title: A universal solution to one-dimensional oscillatory integrals
  publication-title: Sci. China Ser. F Inf. Sci.
  doi: 10.1007/s11432-008-0121-2
– volume: 357
  start-page: 983
  issue: 1754
  year: 1999
  ident: 2402_CR6
  publication-title: Philos. Trans. Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.1999.0362
– ident: 2402_CR12
  doi: 10.1142/9789812834300_0038
– volume: 121
  start-page: 565
  year: 2012
  ident: 2402_CR16
  publication-title: Numerische Mathematik
  doi: 10.1007/s00211-011-0441-9
– volume: 60
  start-page: 833
  issue: 8
  year: 2010
  ident: 2402_CR10
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2010.04.009
– volume: 32
  start-page: 561
  year: 2002
  ident: 2402_CR5
  publication-title: BIT
  doi: 10.1023/A:1022049814688
– volume: 7
  start-page: 649
  year: 1954
  ident: 2402_CR11
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160070404
– volume: 65
  start-page: 137
  year: 2023
  ident: 2402_CR2
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2023.02.005
– volume: 55
  start-page: 591
  year: 1990
  ident: 2402_CR15
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1990-1035945-7
– volume: 38
  start-page: 531
  year: 1982
  ident: 2402_CR8
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1982-0645668-7
– volume: 463
  start-page: 318
  year: 2018
  ident: 2402_CR14
  publication-title: J. Math. Ana. Appl.
  doi: 10.1016/j.jmaa.2018.03.027
– ident: 2402_CR7
– volume: 51
  start-page: 1614
  year: 2008
  ident: 2402_CR9
  publication-title: Sci. China Ser. F Inf. Sci.
  doi: 10.1007/s11432-008-0121-2
– ident: 2402_CR4
– volume: 36
  start-page: 4101
  year: 2016
  ident: 2402_CR3
  publication-title: Discr. Contin. Dyn. Syst. Ser. A
  doi: 10.3934/dcds.2016.36.4101
– volume: 44
  start-page: 312
  year: 2018
  ident: 2402_CR1
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2016.05.002
– ident: 2402_CR13
  doi: 10.1201/9781439864548
SSID ssj0009892
Score 2.3692734
Snippet It has long been known that second order linear homogeneous ordinary differential equations with nonoscillatory coefficients admit nonoscillatory phase...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 14
SubjectTerms Accuracy
Algorithms
Boundary conditions
Computational Mathematics and Numerical Analysis
Differential equations
Integrals
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical functions
Mathematics
Mathematics and Statistics
Methods
Ordinary differential equations
Theoretical
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XbyI8wOnU3LwoGhwTdomPYkfG1PYHOrAg1CSJmUHbTc7_39f2pSioFB6Scnh5f3eV_p-D6ETLZj2dN8QzYKEgMEzRDGjiKIegEmnXJW0i-NJOJr5D6_Bqyu4Fe63ytomloZa54mtkV_SCJQPHsavFktip0bZ21U3QmMdtcEEC0i-2jeDyfSpod0V5VhkgFJAIHD2XduMa56LPNudbO8xIYsi7KdrauLNX1ekpecZbqFNFzLi6-qMO2jNZNuo40BZ4FPHHH22g96mc3BKeAi-ysobj8vx0AWGwBQ_28xX40dLtYnvs3n-kYPuGEj8MeSjoO92qWzOxXduaAqA_x0PlhUZeLGLZsPBy-2IuPEJJKG8vyJaCaP90NgptyzwTBAp6ks4tFQC8qShOk1VIngi4B14nAvpGx5Jk4qQURmxPdTK8szsI6yNtMgPaar7fppoaUlyIuOrhHEjAtFF57Xk4kXFkhE3fMhWzjHIOS7lHLMu6tXCjR1iirg53y66qAXeLP-928H_ux2iDQpfVlWTHmqtPr_MEcQRK3XslOUb3k7GBg
  priority: 102
  providerName: ProQuest
Title Phase Function Methods for Second Order Inhomogeneous Linear Ordinary Differential Equations
URI https://link.springer.com/article/10.1007/s10915-023-02402-3
https://www.proquest.com/docview/2918318337
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8CAaAFRKJUHBhBYauJ8OGOBtAXUUgGVioQUxbGjDpACKf-fcz4IIBiQomRw5OH5nu8uzr0DOJScSUN2FZXMjihueIoKpgQVpoFkkrErMtnF0dgZTq2rmT0risLS8m_38kgy26m_FLt5hq4m1ueOmPVQtgp1W-fuaMVTs1dJ7fKsFTLSx6YYLFtFqczvc3x3R1WM-eNYNPM2_U3YKMJE0svXtQErKmnC-uhTYzVtQqOgZUqOCu3o4y14nMzRLZE-eiuNOBllDaJTgqEpudO5ryQ3WmyTXCbzxfMCrUdh6k8wI0WL10NZeS65KNqmIP2fiP-ay4Gn2zDt-_fnQ1o0UKCR6XaXVAqupOUo3eeW2YayPWFaIS5bHCL3QmXKOBYRdyOOd9twXR5ayvVCFXOHmaHHdqCWLBK1C0SqUHPfMWPZteJIhlomx1OWiJiruM1bcFLiGLzkOhlBpYisUQ8Q9SBDPWAtaJdQBwVn0sD0cHvBi7ktOC3hr4b_nm3vf6_vwxpajZV_R2lDbfn2rg4wsliKDqzy_qAD9d7g4drH55k_ntx2MvP6AEZcyg0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5ED3oRn7g-c1BQNLhN2m16EBF13VVXBRU8CLVppuxBt2pXxD_lb3TSB0VBb0LpJTTQL9880nS-AVg3ShrHNJEb6cWcHB5yLVFzLRwyJpP4Opdd7F20Orfu6Z13NwKfVS2M_a2y8om5ozZpbL-R74qAyEeX9PefX7jtGmVPV6sWGgUtzvDjnbZs2V73iNZ3Q4j28c1hh5ddBXgs_OaQG63QuC20zV-l56AXaOFG9C5JRISMUJgk0bHyY0V3z_F9FbnoBxEmqiVFZMWXyOWPuVIG1qJU-6QW-VV5E2YyXI9Tmu6WRTplqV7g2Fpoe2pKezYuvwfCOrv9cSCbx7n2FEyWCSo7KBg1DSM4mIHp0gVkbLPUqd6ahfurPoVA1qbIaFeX9fJm1BmjNJhd2322YZdW2JN1B_30KSWmYvqWMdr9Eox2KC8FZkdlixZyNY_s-KWQHs_m4PZfYJ2H0UE6wAVgBiPrZ1oiMU03iU1kJXkCdHUsfVSeasB2hVz4XGhyhLX6ssU5JJzDHOdQNmC5Ajcs7TMLazY1YKcCvB7-fbbFv2dbg_HOTe88PO9enC3BhKCniu81yzA6fH3DFcpghno1pw2Dh__m6RcjOwNb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RTIwejKBGFLUHDxptZO3GuiMRCKggiZJwMFnWtQsHHejG_-_rNgSNHkyWHdalh6_v597e9wDOleDKUnVNFXdCigZPU8m1pJJZqEwqcmVGu9gfNLoj-27sjFe6-LO_3RclybynwbA0xenNTEU3K41vnmU6i00NEjMgytdhA82xZeR6xJpL2l2RjUVGVXIoBs520Tbz-x7fXdMy3vxRIs08T2cXdoqQkTTzMy7Dmo4rsN3_4ltNKlAuVDQhFwWP9OUevAwn6KJIBz2XQZ_0s2HRCcEwlTyZPFiRR0O8SXrxZPo2RUnS03lCMDtF6TdLWasuaRUjVNAUvJL2e04NnuzDqNN-vu3SYpgCDZlbT6mSQiu7oc3MW-5Y2vEkswM8wihAPQw0U1EkQ-GGAu-O5boisLXrBToSDc4Cjx9AKZ7G-hCI0oGxAw0WqbodhSowlDmetmXIXS0cUYWrBY7-LOfM8JfsyAZ1H1H3M9R9XoXaAmq_0J_EZx6aGry4W4XrBfzL5b93O_rf62ewOWx1_Ife4P4Ythg-zT-v1KCUfsz1CQYcqTzNZOoTalPNKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Function+Methods+for+Second+Order+Inhomogeneous+Linear+Ordinary+Differential+Equations&rft.jtitle=Journal+of+scientific+computing&rft.au=Serkh%2C+Kirill&rft.au=Bremer%2C+James&rft.date=2024-01-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=98&rft.issue=1&rft_id=info:doi/10.1007%2Fs10915-023-02402-3&rft.externalDocID=10_1007_s10915_023_02402_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon