Phase Function Methods for Second Order Inhomogeneous Linear Ordinary Differential Equations
It has long been known that second order linear homogeneous ordinary differential equations with nonoscillatory coefficients admit nonoscillatory phase functions. This observation is the basis of many techniques for the asymptotic approximation of the solutions of such equations, as well as several...
Saved in:
Published in | Journal of scientific computing Vol. 98; no. 1; p. 14 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It has long been known that second order linear homogeneous ordinary differential equations with nonoscillatory coefficients admit nonoscillatory phase functions. This observation is the basis of many techniques for the asymptotic approximation of the solutions of such equations, as well as several schemes for their numerical solution. However, it was only relatively recently exploited to develop the first high-accuracy numerical solver for second order linear homogeneous ordinary differential equations which runs in time independent of frequency. Here, we introduce the first high-accuracy, frequency-independent method for the numerical solution of second order linear
inhomogeneous
ordinary differential equations. Our algorithm operates by constructing a nonoscillatory phase function representing the solutions of the corresponding homogeneous equation. Then, it uses an adaptive Levin scheme to construct a collection of auxiliary nonoscillatory functions that efficiently represent a highly oscillatory indefinite integral giving a particular solution of the inhomogeneous differential equation. Once the phase function and these auxiliary functions have been constructed, the inhomogeneous equation can be solved subject to essentially any reasonable boundary conditions. The results of numerical experiments illustrating the properties of our scheme are discussed. |
---|---|
AbstractList | It has long been known that second order linear homogeneous ordinary differential equations with nonoscillatory coefficients admit nonoscillatory phase functions. This observation is the basis of many techniques for the asymptotic approximation of the solutions of such equations, as well as several schemes for their numerical solution. However, it was only relatively recently exploited to develop the first high-accuracy numerical solver for second order linear homogeneous ordinary differential equations which runs in time independent of frequency. Here, we introduce the first high-accuracy, frequency-independent method for the numerical solution of second order linear
inhomogeneous
ordinary differential equations. Our algorithm operates by constructing a nonoscillatory phase function representing the solutions of the corresponding homogeneous equation. Then, it uses an adaptive Levin scheme to construct a collection of auxiliary nonoscillatory functions that efficiently represent a highly oscillatory indefinite integral giving a particular solution of the inhomogeneous differential equation. Once the phase function and these auxiliary functions have been constructed, the inhomogeneous equation can be solved subject to essentially any reasonable boundary conditions. The results of numerical experiments illustrating the properties of our scheme are discussed. It has long been known that second order linear homogeneous ordinary differential equations with nonoscillatory coefficients admit nonoscillatory phase functions. This observation is the basis of many techniques for the asymptotic approximation of the solutions of such equations, as well as several schemes for their numerical solution. However, it was only relatively recently exploited to develop the first high-accuracy numerical solver for second order linear homogeneous ordinary differential equations which runs in time independent of frequency. Here, we introduce the first high-accuracy, frequency-independent method for the numerical solution of second order linear inhomogeneous ordinary differential equations. Our algorithm operates by constructing a nonoscillatory phase function representing the solutions of the corresponding homogeneous equation. Then, it uses an adaptive Levin scheme to construct a collection of auxiliary nonoscillatory functions that efficiently represent a highly oscillatory indefinite integral giving a particular solution of the inhomogeneous differential equation. Once the phase function and these auxiliary functions have been constructed, the inhomogeneous equation can be solved subject to essentially any reasonable boundary conditions. The results of numerical experiments illustrating the properties of our scheme are discussed. |
ArticleNumber | 14 |
Author | Serkh, Kirill Bremer, James |
Author_xml | – sequence: 1 givenname: Kirill surname: Serkh fullname: Serkh, Kirill organization: Department of Mathematics and Department of Computer Science, University of Toronto – sequence: 2 givenname: James orcidid: 0000-0001-5654-198X surname: Bremer fullname: Bremer, James email: bremer@math.toronto.edu organization: Department of Mathematics, University of Toronto |
BookMark | eNp9kE9LAzEQxYNUsFa_gKeA59X82TTJUWqrhUoF9SaEdHfSbmmTNtk9-O1NXcGbMDM5zHtvwu8SDXzwgNANJXeUEHmfKNFUFITx3CVhBT9DQyokL-RY0wEaEqVEIUtZXqDLlLaEEK00G6LP141NgGedr9omePwC7SbUCbsQ8RtUwdd4GWuIeO43YR_W4CF0CS8aDzaeVo238Qs_Ns5BBN82doenx86ewtIVOnd2l-D69x2hj9n0ffJcLJZP88nDoqiYJG1RrxTU5RgIl4ILCkKvWGlhBc4SwS2w2rlVpWSl8hRUSmVLkNqCU2POrOYjdNvnHmI4dpBasw1d9PmkYZoqnovLrGK9qoohpQjOHGKzz783lJgTRdNTNJmi-aFoeDbx3pSy2K8h_kX_4_oGDXx4Iw |
Cites_doi | 10.1016/j.acha.2016.05.002 10.1007/s00211-011-0441-9 10.1090/S0025-5718-1982-0645668-7 10.1098/rsta.1999.0362 10.1016/j.apnum.2010.04.009 10.1016/j.jmaa.2018.03.027 10.1002/cpa.3160070404 10.1016/j.acha.2023.02.005 10.1023/A:1022049814688 10.3934/dcds.2016.36.4101 10.1090/S0025-5718-1990-1035945-7 10.1007/s11432-008-0121-2 10.1142/9789812834300_0038 10.1201/9781439864548 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s10915-023-02402-3 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1573-7691 |
ExternalDocumentID | 10_1007_s10915_023_02402_3 |
GrantInformation_xml | – fundername: National Sciences and Research Council of Canada grantid: RGPIN-2021-02613 – fundername: National Sciences and Research Council of Canada grantid: DGECR-2020-00356; RGPIN-2020-06022 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z92 ZMTXR ZWQNP ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c270t-db8ed46e0375351e59b24aebefa053ae2dffbc87c8bc851778a4e79aef8632a93 |
IEDL.DBID | U2A |
ISSN | 0885-7474 |
IngestDate | Fri Jul 25 09:01:42 EDT 2025 Tue Jul 01 00:51:48 EDT 2025 Fri Feb 21 02:41:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Ordinary differential equations Phase functions Fast algorithms |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-db8ed46e0375351e59b24aebefa053ae2dffbc87c8bc851778a4e79aef8632a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5654-198X |
PQID | 2918318337 |
PQPubID | 2043771 |
ParticipantIDs | proquest_journals_2918318337 crossref_primary_10_1007_s10915_023_02402_3 springer_journals_10_1007_s10915_023_02402_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240100 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 1 year: 2024 text: 20240100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of scientific computing |
PublicationTitleAbbrev | J Sci Comput |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Levin (CR8) 1982; 38 Bremer (CR2) 2023; 65 CR4 CR7 Iserles, Nørsett (CR6) 1999; 357 Li, Wang, Wang, Xiao (CR10) 2010; 60 Magnus (CR11) 1954; 7 Spigler, Vianello (CR16) 2012; 121 CR13 CR12 Spigler (CR14) 2018; 463 Bremer, Rokhlin (CR3) 2016; 36 Iserles (CR5) 2002; 32 Bremer (CR1) 2018; 44 Li, Wang, Wang (CR9) 2008; 51 Spigler, Vianello (CR15) 1990; 55 J Bremer (2402_CR1) 2018; 44 R Spigler (2402_CR16) 2012; 121 A Iserles (2402_CR6) 1999; 357 R Spigler (2402_CR14) 2018; 463 W Magnus (2402_CR11) 1954; 7 J Li (2402_CR10) 2010; 60 R Spigler (2402_CR15) 1990; 55 J Bremer (2402_CR3) 2016; 36 J Li (2402_CR9) 2008; 51 2402_CR7 2402_CR12 J Bremer (2402_CR2) 2023; 65 D Levin (2402_CR8) 1982; 38 A Iserles (2402_CR5) 2002; 32 2402_CR4 2402_CR13 |
References_xml | – volume: 44 start-page: 312 year: 2018 end-page: 349 ident: CR1 article-title: On the numerical solution of second order differential equations in the high-frequency regime publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2016.05.002 – volume: 121 start-page: 565 year: 2012 end-page: 586 ident: CR16 article-title: The phase function method to solve second-order asymptotically polynomial differential equations publication-title: Numerische Mathematik doi: 10.1007/s00211-011-0441-9 – volume: 38 start-page: 531 year: 1982 end-page: 5538 ident: CR8 article-title: Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations publication-title: Math. Comput. doi: 10.1090/S0025-5718-1982-0645668-7 – ident: CR4 – volume: 357 start-page: 983 issue: 1754 year: 1999 end-page: 1019 ident: CR6 article-title: On the solution of linear differential equations in lie groups publication-title: Philos. Trans. Math. Phys. Eng. Sci. doi: 10.1098/rsta.1999.0362 – volume: 60 start-page: 833 issue: 8 year: 2010 end-page: 842 ident: CR10 article-title: An improved Levin quadrature method for highly oscillatory integrals publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2010.04.009 – ident: CR12 – ident: CR13 – volume: 463 start-page: 318 year: 2018 end-page: 344 ident: CR14 article-title: Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method publication-title: J. Math. Ana. Appl. doi: 10.1016/j.jmaa.2018.03.027 – volume: 7 start-page: 649 year: 1954 end-page: 673 ident: CR11 article-title: On the exponential solution of differential equations for a linear operator publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160070404 – volume: 65 start-page: 137 year: 2023 end-page: 169 ident: CR2 article-title: Phase function methods for second order linear ordinary differential equations with turning points publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2023.02.005 – ident: CR7 – volume: 32 start-page: 561 year: 2002 end-page: 599 ident: CR5 article-title: On the global error of discretization methods for highly-oscillatory ordinary differential equations publication-title: BIT doi: 10.1023/A:1022049814688 – volume: 36 start-page: 4101 year: 2016 end-page: 4131 ident: CR3 article-title: Improved estimates for nonoscillatory phase functions publication-title: Discr. Contin. Dyn. Syst. Ser. A doi: 10.3934/dcds.2016.36.4101 – volume: 55 start-page: 591 year: 1990 end-page: 612 ident: CR15 article-title: A numerical method for evaluating the zeros of solutions of second-order linear differential equations publication-title: Math. Comput. doi: 10.1090/S0025-5718-1990-1035945-7 – volume: 51 start-page: 1614 year: 2008 end-page: 1622 ident: CR9 article-title: A universal solution to one-dimensional oscillatory integrals publication-title: Sci. China Ser. F Inf. Sci. doi: 10.1007/s11432-008-0121-2 – volume: 357 start-page: 983 issue: 1754 year: 1999 ident: 2402_CR6 publication-title: Philos. Trans. Math. Phys. Eng. Sci. doi: 10.1098/rsta.1999.0362 – ident: 2402_CR12 doi: 10.1142/9789812834300_0038 – volume: 121 start-page: 565 year: 2012 ident: 2402_CR16 publication-title: Numerische Mathematik doi: 10.1007/s00211-011-0441-9 – volume: 60 start-page: 833 issue: 8 year: 2010 ident: 2402_CR10 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2010.04.009 – volume: 32 start-page: 561 year: 2002 ident: 2402_CR5 publication-title: BIT doi: 10.1023/A:1022049814688 – volume: 7 start-page: 649 year: 1954 ident: 2402_CR11 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160070404 – volume: 65 start-page: 137 year: 2023 ident: 2402_CR2 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2023.02.005 – volume: 55 start-page: 591 year: 1990 ident: 2402_CR15 publication-title: Math. Comput. doi: 10.1090/S0025-5718-1990-1035945-7 – volume: 38 start-page: 531 year: 1982 ident: 2402_CR8 publication-title: Math. Comput. doi: 10.1090/S0025-5718-1982-0645668-7 – volume: 463 start-page: 318 year: 2018 ident: 2402_CR14 publication-title: J. Math. Ana. Appl. doi: 10.1016/j.jmaa.2018.03.027 – ident: 2402_CR7 – volume: 51 start-page: 1614 year: 2008 ident: 2402_CR9 publication-title: Sci. China Ser. F Inf. Sci. doi: 10.1007/s11432-008-0121-2 – ident: 2402_CR4 – volume: 36 start-page: 4101 year: 2016 ident: 2402_CR3 publication-title: Discr. Contin. Dyn. Syst. Ser. A doi: 10.3934/dcds.2016.36.4101 – volume: 44 start-page: 312 year: 2018 ident: 2402_CR1 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2016.05.002 – ident: 2402_CR13 doi: 10.1201/9781439864548 |
SSID | ssj0009892 |
Score | 2.3692734 |
Snippet | It has long been known that second order linear homogeneous ordinary differential equations with nonoscillatory coefficients admit nonoscillatory phase... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 14 |
SubjectTerms | Accuracy Algorithms Boundary conditions Computational Mathematics and Numerical Analysis Differential equations Integrals Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical functions Mathematics Mathematics and Statistics Methods Ordinary differential equations Theoretical |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XbyI8wOnU3LwoGhwTdomPYkfG1PYHOrAg1CSJmUHbTc7_39f2pSioFB6Scnh5f3eV_p-D6ETLZj2dN8QzYKEgMEzRDGjiKIegEmnXJW0i-NJOJr5D6_Bqyu4Fe63ytomloZa54mtkV_SCJQPHsavFktip0bZ21U3QmMdtcEEC0i-2jeDyfSpod0V5VhkgFJAIHD2XduMa56LPNudbO8xIYsi7KdrauLNX1ekpecZbqFNFzLi6-qMO2jNZNuo40BZ4FPHHH22g96mc3BKeAi-ysobj8vx0AWGwBQ_28xX40dLtYnvs3n-kYPuGEj8MeSjoO92qWzOxXduaAqA_x0PlhUZeLGLZsPBy-2IuPEJJKG8vyJaCaP90NgptyzwTBAp6ks4tFQC8qShOk1VIngi4B14nAvpGx5Jk4qQURmxPdTK8szsI6yNtMgPaar7fppoaUlyIuOrhHEjAtFF57Xk4kXFkhE3fMhWzjHIOS7lHLMu6tXCjR1iirg53y66qAXeLP-928H_ux2iDQpfVlWTHmqtPr_MEcQRK3XslOUb3k7GBg priority: 102 providerName: ProQuest |
Title | Phase Function Methods for Second Order Inhomogeneous Linear Ordinary Differential Equations |
URI | https://link.springer.com/article/10.1007/s10915-023-02402-3 https://www.proquest.com/docview/2918318337 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8CAaAFRKJUHBhBYauJ8OGOBtAXUUgGVioQUxbGjDpACKf-fcz4IIBiQomRw5OH5nu8uzr0DOJScSUN2FZXMjihueIoKpgQVpoFkkrErMtnF0dgZTq2rmT0risLS8m_38kgy26m_FLt5hq4m1ueOmPVQtgp1W-fuaMVTs1dJ7fKsFTLSx6YYLFtFqczvc3x3R1WM-eNYNPM2_U3YKMJE0svXtQErKmnC-uhTYzVtQqOgZUqOCu3o4y14nMzRLZE-eiuNOBllDaJTgqEpudO5ryQ3WmyTXCbzxfMCrUdh6k8wI0WL10NZeS65KNqmIP2fiP-ay4Gn2zDt-_fnQ1o0UKCR6XaXVAqupOUo3eeW2YayPWFaIS5bHCL3QmXKOBYRdyOOd9twXR5ayvVCFXOHmaHHdqCWLBK1C0SqUHPfMWPZteJIhlomx1OWiJiruM1bcFLiGLzkOhlBpYisUQ8Q9SBDPWAtaJdQBwVn0sD0cHvBi7ktOC3hr4b_nm3vf6_vwxpajZV_R2lDbfn2rg4wsliKDqzy_qAD9d7g4drH55k_ntx2MvP6AEZcyg0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5ED3oRn7g-c1BQNLhN2m16EBF13VVXBRU8CLVppuxBt2pXxD_lb3TSB0VBb0LpJTTQL9880nS-AVg3ShrHNJEb6cWcHB5yLVFzLRwyJpP4Opdd7F20Orfu6Z13NwKfVS2M_a2y8om5ozZpbL-R74qAyEeX9PefX7jtGmVPV6sWGgUtzvDjnbZs2V73iNZ3Q4j28c1hh5ddBXgs_OaQG63QuC20zV-l56AXaOFG9C5JRISMUJgk0bHyY0V3z_F9FbnoBxEmqiVFZMWXyOWPuVIG1qJU-6QW-VV5E2YyXI9Tmu6WRTplqV7g2Fpoe2pKezYuvwfCOrv9cSCbx7n2FEyWCSo7KBg1DSM4mIHp0gVkbLPUqd6ahfurPoVA1qbIaFeX9fJm1BmjNJhd2322YZdW2JN1B_30KSWmYvqWMdr9Eox2KC8FZkdlixZyNY_s-KWQHs_m4PZfYJ2H0UE6wAVgBiPrZ1oiMU03iU1kJXkCdHUsfVSeasB2hVz4XGhyhLX6ssU5JJzDHOdQNmC5Ajcs7TMLazY1YKcCvB7-fbbFv2dbg_HOTe88PO9enC3BhKCniu81yzA6fH3DFcpghno1pw2Dh__m6RcjOwNb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RTIwejKBGFLUHDxptZO3GuiMRCKggiZJwMFnWtQsHHejG_-_rNgSNHkyWHdalh6_v597e9wDOleDKUnVNFXdCigZPU8m1pJJZqEwqcmVGu9gfNLoj-27sjFe6-LO_3RclybynwbA0xenNTEU3K41vnmU6i00NEjMgytdhA82xZeR6xJpL2l2RjUVGVXIoBs520Tbz-x7fXdMy3vxRIs08T2cXdoqQkTTzMy7Dmo4rsN3_4ltNKlAuVDQhFwWP9OUevAwn6KJIBz2XQZ_0s2HRCcEwlTyZPFiRR0O8SXrxZPo2RUnS03lCMDtF6TdLWasuaRUjVNAUvJL2e04NnuzDqNN-vu3SYpgCDZlbT6mSQiu7oc3MW-5Y2vEkswM8wihAPQw0U1EkQ-GGAu-O5boisLXrBToSDc4Cjx9AKZ7G-hCI0oGxAw0WqbodhSowlDmetmXIXS0cUYWrBY7-LOfM8JfsyAZ1H1H3M9R9XoXaAmq_0J_EZx6aGry4W4XrBfzL5b93O_rf62ewOWx1_Ife4P4Ythg-zT-v1KCUfsz1CQYcqTzNZOoTalPNKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Function+Methods+for+Second+Order+Inhomogeneous+Linear+Ordinary+Differential+Equations&rft.jtitle=Journal+of+scientific+computing&rft.au=Serkh%2C+Kirill&rft.au=Bremer%2C+James&rft.date=2024-01-01&rft.pub=Springer+US&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=98&rft.issue=1&rft_id=info:doi/10.1007%2Fs10915-023-02402-3&rft.externalDocID=10_1007_s10915_023_02402_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |