Research on decoupled adaptive graph convolution networks based on skeleton data for action recognition
Graph convolutional network is apt for feature extraction in terms of non-Euclidian human skeleton data, but its adjacency matrix is fixed and the receptive field is small, which results in bias representation for skeleton intrinsic information. In addition, the operation of mean pooling on spatio-t...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 27; no. 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7541 1433-755X |
DOI | 10.1007/s10044-024-01319-3 |
Cover
Loading…
Abstract | Graph convolutional network is apt for feature extraction in terms of non-Euclidian human skeleton data, but its adjacency matrix is fixed and the receptive field is small, which results in bias representation for skeleton intrinsic information. In addition, the operation of mean pooling on spatio-temporal features in classification layer will result in losing information and degrade recognition accuracy. To this end, the Decoupled Adaptive Graph Convolutional Network (DAGCN) is proposed. Specifically, a multi-level adaptive adjacency matrix is designed, which can dynamically obtain the rich correlation information among the skeleton nodes by a non-local adaptive algorithm. Whereafter, a new Residual Multi-scale Temporal Convolution Network (RMTCN) is proposed to fully extract temporal feature of the above decoupled skeleton dada. For the second problem in classification, we decompose the spatio-temporal features into three parts as spatial, temporal, spatio-temporal information, they are averagely pooled respectively, and added together for classification, denoted as STMP (spatio-temporal mean pooling) module. Experimental results show that our algorithm achieves accuracy of 96.5%, 90.6%, 96.4% on NTU-RGB+D60, NTU-RGB+D120 and NW-UCLA data sets respectively. |
---|---|
AbstractList | Graph convolutional network is apt for feature extraction in terms of non-Euclidian human skeleton data, but its adjacency matrix is fixed and the receptive field is small, which results in bias representation for skeleton intrinsic information. In addition, the operation of mean pooling on spatio-temporal features in classification layer will result in losing information and degrade recognition accuracy. To this end, the Decoupled Adaptive Graph Convolutional Network (DAGCN) is proposed. Specifically, a multi-level adaptive adjacency matrix is designed, which can dynamically obtain the rich correlation information among the skeleton nodes by a non-local adaptive algorithm. Whereafter, a new Residual Multi-scale Temporal Convolution Network (RMTCN) is proposed to fully extract temporal feature of the above decoupled skeleton dada. For the second problem in classification, we decompose the spatio-temporal features into three parts as spatial, temporal, spatio-temporal information, they are averagely pooled respectively, and added together for classification, denoted as STMP (spatio-temporal mean pooling) module. Experimental results show that our algorithm achieves accuracy of 96.5%, 90.6%, 96.4% on NTU-RGB+D60, NTU-RGB+D120 and NW-UCLA data sets respectively. |
ArticleNumber | 118 |
Author | Deng, Haigang Lin, Guocheng Wang, Chuanxu Li, Chengwei |
Author_xml | – sequence: 1 givenname: Haigang surname: Deng fullname: Deng, Haigang organization: School of Instrument Science and Engineering, Harbin Institute of Technology – sequence: 2 givenname: Guocheng surname: Lin fullname: Lin, Guocheng organization: School of Information Science and Technology, Qingdao University of Science and Technology – sequence: 3 givenname: Chengwei surname: Li fullname: Li, Chengwei email: chengweili@hit.edu.cn organization: School of Instrument Science and Engineering, Harbin Institute of Technology – sequence: 4 givenname: Chuanxu surname: Wang fullname: Wang, Chuanxu email: wangchuanxu_qd@163.com organization: School of Information Science and Technology, Qingdao University of Science and Technology |
BookMark | eNp9kEtLxDAUhYMoODP6B1wFXFeTpq8sZfAFA4IouAu36W2nMzWpSTvivzczFd25SHII3zn3cubk2FiDhFxwdsUZy699uJMkYnE4XHAZiSMy44kQUZ6mb8e_OuGnZO79hjEhRFzMSPOMHsHpNbWGVqjt2HdYUaigH9od0sZBv6bamp3txqENkMHh07qtpyX4QIYfv8UOh70fBqC1dRT0AXUhrzHtXp-Rkxo6j-c_74K83t2-LB-i1dP94_JmFek4Z0NUyZwVZVHVpeaFTEFUIg2ba4myLlOdgdYQJ0khqyKTOWjMWM1BC4QyKVOUYkEup9ze2Y8R_aA2dnQmjFSCsyznIo1ZoOKJ0s5677BWvWvfwX0pztS-UDUVqkKh6lCoEsEkJpMPsGnQ_UX_4_oGGT187Q |
Cites_doi | 10.1007/978-3-030-58586-0_32 10.1109/TIP.2020.3028207 10.24963/ijcai.2018/109 10.1109/CVPR42600.2020.00119 10.1109/TPAMI.2022.3157033 10.1109/ACCESS.2024.3359234 10.1145/3394171.3413941 10.1109/CVPR.2019.00132 10.1109/TPAMI.2019.2916873 10.1016/j.engappai.2023.107210 10.1109/TIP.2017.2785279 10.1109/CVPR.2019.01230 10.1109/ICMEW.2017.8026285 10.1109/CVPR52729.2023.01022 10.1109/WACV45572.2020.9093598 10.1109/CVPR42600.2020.00026 10.1109/CVPR.2015.7298714 10.1109/CVPR52688.2022.01955 10.1109/ICCV51070.2023.00958 10.1109/ICIP.2017.8296249 10.1145/2964284.2967191 10.1109/ACPR.2015.7486569 10.1109/TMM.2019.2962304 10.1109/TMM.2020.2978637 10.1609/aaai.v32i1.12328 10.1016/j.patcog.2023.110188 10.1016/j.neucom.2020.07.068 10.1109/TVCG.2023.3247075 10.1007/978-981-99-8429-9_2 10.1109/CVPR.2018.00572 10.1016/j.patcog.2023.109540 10.3390/electronics12143156 10.12688/f1000research.73175.2 10.1109/CVPR.2016.115 10.1109/TPAMI.2013.198 10.1109/ICCV48922.2021.01311 10.1145/3394171.3413802 10.1016/j.cviu.2021.103219 10.1109/TCSVT.2024.3375512 10.1007/978-3-030-69541-5_3 10.1109/CVPR42600.2020.00022 10.1007/978-3-031-26316-3_10 10.1145/3474085.3475473 10.1109/ICPR48806.2021.9413189 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2024 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2024 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-024-01319-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
ExternalDocumentID | 10_1007_s10044_024_01319_3 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61672305; 61672305 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c270t-d9708b8dfbc1895a3d35433c9e9fb5c6acca24489d8697ace60f1ac3eab4b5e93 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Sun Jul 13 04:56:26 EDT 2025 Tue Jul 01 01:15:19 EDT 2025 Fri Feb 21 02:36:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Skeleton based action recognition Residual multi-scale temporal convolution network Decoupled adaptive graph convolutional network Decoupled head of classification lay |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-d9708b8dfbc1895a3d35433c9e9fb5c6acca24489d8697ace60f1ac3eab4b5e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3106713520 |
PQPubID | 2043691 |
ParticipantIDs | proquest_journals_3106713520 crossref_primary_10_1007_s10044_024_01319_3 springer_journals_10_1007_s10044_024_01319_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2024 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | 1319_CR12 1319_CR11 1319_CR14 1319_CR13 1319_CR52 1319_CR54 1319_CR53 1319_CR19 K Xu (1319_CR47) 2022; 36 I Lee (1319_CR51) 2021; 23 1319_CR16 1319_CR18 YF Ong (1319_CR41) 2023; 45 Y Jiang (1319_CR35) 2023; 12 X Yu (1319_CR36) 2024; 127 J Liu (1319_CR17) 2017; 27 1319_CR44 1319_CR46 A Vaswani (1319_CR9) 2017 1319_CR40 1319_CR49 1319_CR48 Y Liu (1319_CR42) 2023; 29 A Zhu (1319_CR5) 2020; 414 1319_CR34 1319_CR33 J Wang (1319_CR31) 2013; 36 Z Chen (1319_CR45) 2021; 35 1319_CR32 M Dai (1319_CR50) 2023; 140 1319_CR1 1319_CR2 1319_CR3 1319_CR38 K Zhu (1319_CR15) 2020; 22 1319_CR37 1319_CR39 1319_CR8 1319_CR4 L Shi (1319_CR26) 2020; 29 J Liu (1319_CR30) 2019; 42 1319_CR6 1319_CR7 C Plizzari (1319_CR10) 2021; 208 1319_CR23 1319_CR22 1319_CR25 1319_CR24 1319_CR21 1319_CR20 1319_CR27 1319_CR29 1319_CR28 H Qiu (1319_CR43) 2024; 148 |
References_xml | – year: 2017 ident: 1319_CR9 publication-title: Adv Neural Inf Process Syst doi: 10.1007/978-3-030-58586-0_32 – volume: 29 start-page: 9532 year: 2020 ident: 1319_CR26 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.3028207 – ident: 1319_CR33 doi: 10.24963/ijcai.2018/109 – ident: 1319_CR34 doi: 10.1109/CVPR42600.2020.00119 – volume: 45 start-page: 1474 year: 2023 ident: 1319_CR41 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2022.3157033 – ident: 1319_CR52 doi: 10.1109/ACCESS.2024.3359234 – ident: 1319_CR39 doi: 10.1145/3394171.3413941 – ident: 1319_CR19 doi: 10.1109/CVPR.2019.00132 – volume: 42 start-page: 2684 year: 2019 ident: 1319_CR30 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2019.2916873 – volume: 127 start-page: 107210 year: 2024 ident: 1319_CR36 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.107210 – ident: 1319_CR24 – volume: 27 start-page: 1586 issue: 4 year: 2017 ident: 1319_CR17 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2785279 – ident: 1319_CR7 doi: 10.1109/CVPR.2019.01230 – ident: 1319_CR4 doi: 10.1109/ICMEW.2017.8026285 – ident: 1319_CR54 doi: 10.1109/CVPR52729.2023.01022 – ident: 1319_CR1 doi: 10.1109/WACV45572.2020.9093598 – ident: 1319_CR37 doi: 10.1109/CVPR42600.2020.00026 – ident: 1319_CR16 doi: 10.1109/CVPR.2015.7298714 – ident: 1319_CR49 doi: 10.1109/CVPR52688.2022.01955 – ident: 1319_CR53 – ident: 1319_CR25 – ident: 1319_CR21 doi: 10.1109/ICCV51070.2023.00958 – ident: 1319_CR11 – ident: 1319_CR8 doi: 10.1007/978-3-030-58586-0_32 – ident: 1319_CR18 doi: 10.1109/ICIP.2017.8296249 – ident: 1319_CR14 doi: 10.1145/2964284.2967191 – ident: 1319_CR3 doi: 10.1109/ACPR.2015.7486569 – ident: 1319_CR22 – volume: 35 start-page: 1113 issue: 2 year: 2021 ident: 1319_CR45 publication-title: Proc AAAI Conf Artif Intell – volume: 22 start-page: 2977 issue: 11 year: 2020 ident: 1319_CR15 publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2019.2962304 – ident: 1319_CR13 doi: 10.1109/ACPR.2015.7486569 – volume: 36 start-page: 2866 issue: 3 year: 2022 ident: 1319_CR47 publication-title: Proc AAAI Conf Artif Intell – volume: 23 start-page: 415 year: 2021 ident: 1319_CR51 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2020.2978637 – ident: 1319_CR20 doi: 10.1609/aaai.v32i1.12328 – volume: 148 start-page: 110188 year: 2024 ident: 1319_CR43 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2023.110188 – volume: 414 start-page: 90 year: 2020 ident: 1319_CR5 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.068 – volume: 29 start-page: 2575 issue: 5 year: 2023 ident: 1319_CR42 publication-title: IEEE Trans Visual Comput Graph doi: 10.1109/TVCG.2023.3247075 – ident: 1319_CR40 doi: 10.1007/978-981-99-8429-9_2 – ident: 1319_CR32 doi: 10.1109/CVPR.2018.00572 – volume: 140 start-page: 109540 year: 2023 ident: 1319_CR50 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2023.109540 – volume: 12 start-page: 3156 issue: 14 year: 2023 ident: 1319_CR35 publication-title: Electronics doi: 10.3390/electronics12143156 – ident: 1319_CR2 – ident: 1319_CR12 doi: 10.12688/f1000research.73175.2 – ident: 1319_CR29 doi: 10.1109/CVPR.2016.115 – volume: 36 start-page: 914 issue: 5 year: 2013 ident: 1319_CR31 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2013.198 – ident: 1319_CR46 doi: 10.1109/ICCV48922.2021.01311 – ident: 1319_CR38 doi: 10.1145/3394171.3413802 – volume: 208 start-page: 103219 year: 2021 ident: 1319_CR10 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2021.103219 – ident: 1319_CR44 doi: 10.1109/TCSVT.2024.3375512 – ident: 1319_CR27 doi: 10.1007/978-3-030-69541-5_3 – ident: 1319_CR28 doi: 10.1109/CVPR42600.2020.00022 – ident: 1319_CR48 doi: 10.1007/978-3-031-26316-3_10 – ident: 1319_CR23 doi: 10.1145/3474085.3475473 – ident: 1319_CR6 doi: 10.1109/ICPR48806.2021.9413189 |
SSID | ssj0033328 |
Score | 2.3713388 |
Snippet | Graph convolutional network is apt for feature extraction in terms of non-Euclidian human skeleton data, but its adjacency matrix is fixed and the receptive... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Adaptive algorithms Artificial neural networks Classification Computer Science Convolution Feature extraction Feature recognition Graphical representations Original Article Pattern Recognition Spatiotemporal data |
Title | Research on decoupled adaptive graph convolution networks based on skeleton data for action recognition |
URI | https://link.springer.com/article/10.1007/s10044-024-01319-3 https://www.proquest.com/docview/3106713520 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXVh4Iwql8sAGlhI_knisUEsFgolKZYr8ZAClFUn_P3ZiU0AwsDo5D_7Od5_tewBwaahOsTUaaZlbRHFKEc8ERcqRc5p5jZH-vuPhMZvN6d2CLUJSWB2j3eOTZGupvyS7JZQi51OQrxHDEdkGfebP7k6L53gc7S8hpO2o6ogAQTmjaUiV-X2O7-5owzF_PIu23ma6D3YDTYTjDtcDsGWqQ7AXKCMMG7J2Q7ErQxw7Ai8xmA4uK6jd6XK9enMyQouVN22wLVENfbR50DpYdaHgNfQuTXux-tV5o8bLi0ZAx2thl_8AP-ONltUxmE8nTzczFNopIIXzpEGa50khC22lSgvOBNGEuTVS3HArmcqEA9M5-4LrIuO5UCZLbCoUMUJSyQwnJ6BXLStzCiDOZOqvjhRThlqRSMqdqKHEWkwsxwNwFVe1XHVVM8pNfWSPQekwKFsMSjIAw7jwZdhBdUl8bbvU0cNkAK4jGJvPf8929r_fz8EO9vrQRqgMQa95X5sLxzMaOQL98e3z_WTUqtcHbRDMVw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRpSnBzawlNjOw2OFqAq0nVqpm-UnAyitSPr_sVObAoKB1c558J3vvtjf3QFwY6hOsTUaaVlYRHFKEcsFRcqBc5p7i5H-vmM0zgdT-jTLZiEprI5s9_gk2XrqL8luCaXIxRTka8QwRDbBlgMDpSdyTXEv-l9CSNtR1QEBgoqMpiFV5vc1voejNcb88SzaRpv-PtgNMBH2Vno9ABumOgR7ATLCcCBrNxS7MsSxI_ASyXRwXkHt_i6XizcnI7RYeNcG2xLV0LPNg9XBakUFr6EPadqL1a8uGjVeXjQCOlwLV_kP8JNvNK-OwbT_MLkfoNBOASlcJA3SrEhKWWorVVqyTBBNMrdHihlmZaZy4ZTpgn3JdJmzQiiTJzYVihghqcwMIyegU80rcwogzmXqr45Upgy1IpGUOVFDibWYWIa74DbuKl-sqmbwdX1krwPudMBbHXDSBRdx43k4QTUnvrZd6uBh0gV3URnr6b9XO_vf59dgezAZDfnwcfx8Dnawt42WrXIBOs370lw6zNHIq9bEPgDIeM22 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMbWCS28_BYAVV5VQxU6mb5yQBKI5r-f-wkpgXBwBY5OQ93Z98X-7s7AM4N1TG2RiMtM4sojiliqaBIOXBOU-8x0p93PI3S4ZjeT5LJUhZ_zXYPV5JNToOv0lRUV6W2V0uJbxGlyMUX5OvFMERWwRr1T86jx7gf9mJCSN1d1YECgrKExm3azO9zfA9NC7z544q0jjyDbbDZQkbYb2y8A1ZMsQu2WvgI28U5c0OhQ0MY2wOvgVgHpwXU7k9zXr47GaFF6bc5WJerhp553nogLBpa-Az68Ka92OzNRabKy4tKQIdxYZMLAb-4R9NiH4wHty_XQ9S2VkAKZ1GFNMuiXObaShXnLBFEk8TpSDHDrExUKpxhXeDPmc5Tlgll0sjGQhEjJJWJYeQAdIppYQ4BxKmM_TGSSpShVkSSMidqKLEWE8twF1wErfKyqaDBF7WSvQ24swGvbcBJF_SC4nm7mmac-Dp3sYOKURdcBmMsXv8929H_Pj8D6883A_54N3o4BhvYu0ZNXOmBTvUxNycOflTytPawT8xl0fI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+decoupled+adaptive+graph+convolution+networks+based+on+skeleton+data+for+action+recognition&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=27&rft.issue=4&rft_id=info:doi/10.1007%2Fs10044-024-01319-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |