Research on decoupled adaptive graph convolution networks based on skeleton data for action recognition

Graph convolutional network is apt for feature extraction in terms of non-Euclidian human skeleton data, but its adjacency matrix is fixed and the receptive field is small, which results in bias representation for skeleton intrinsic information. In addition, the operation of mean pooling on spatio-t...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 27; no. 4
Main Authors Deng, Haigang, Lin, Guocheng, Li, Chengwei, Wang, Chuanxu
Format Journal Article
LanguageEnglish
Published London Springer London 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1433-7541
1433-755X
DOI10.1007/s10044-024-01319-3

Cover

Loading…
Abstract Graph convolutional network is apt for feature extraction in terms of non-Euclidian human skeleton data, but its adjacency matrix is fixed and the receptive field is small, which results in bias representation for skeleton intrinsic information. In addition, the operation of mean pooling on spatio-temporal features in classification layer will result in losing information and degrade recognition accuracy. To this end, the Decoupled Adaptive Graph Convolutional Network (DAGCN) is proposed. Specifically, a multi-level adaptive adjacency matrix is designed, which can dynamically obtain the rich correlation information among the skeleton nodes by a non-local adaptive algorithm. Whereafter, a new Residual Multi-scale Temporal Convolution Network (RMTCN) is proposed to fully extract temporal feature of the above decoupled skeleton dada. For the second problem in classification, we decompose the spatio-temporal features into three parts as spatial, temporal, spatio-temporal information, they are averagely pooled respectively, and added together for classification, denoted as STMP (spatio-temporal mean pooling) module. Experimental results show that our algorithm achieves accuracy of 96.5%, 90.6%, 96.4% on NTU-RGB+D60, NTU-RGB+D120 and NW-UCLA data sets respectively.
AbstractList Graph convolutional network is apt for feature extraction in terms of non-Euclidian human skeleton data, but its adjacency matrix is fixed and the receptive field is small, which results in bias representation for skeleton intrinsic information. In addition, the operation of mean pooling on spatio-temporal features in classification layer will result in losing information and degrade recognition accuracy. To this end, the Decoupled Adaptive Graph Convolutional Network (DAGCN) is proposed. Specifically, a multi-level adaptive adjacency matrix is designed, which can dynamically obtain the rich correlation information among the skeleton nodes by a non-local adaptive algorithm. Whereafter, a new Residual Multi-scale Temporal Convolution Network (RMTCN) is proposed to fully extract temporal feature of the above decoupled skeleton dada. For the second problem in classification, we decompose the spatio-temporal features into three parts as spatial, temporal, spatio-temporal information, they are averagely pooled respectively, and added together for classification, denoted as STMP (spatio-temporal mean pooling) module. Experimental results show that our algorithm achieves accuracy of 96.5%, 90.6%, 96.4% on NTU-RGB+D60, NTU-RGB+D120 and NW-UCLA data sets respectively.
ArticleNumber 118
Author Deng, Haigang
Lin, Guocheng
Wang, Chuanxu
Li, Chengwei
Author_xml – sequence: 1
  givenname: Haigang
  surname: Deng
  fullname: Deng, Haigang
  organization: School of Instrument Science and Engineering, Harbin Institute of Technology
– sequence: 2
  givenname: Guocheng
  surname: Lin
  fullname: Lin, Guocheng
  organization: School of Information Science and Technology, Qingdao University of Science and Technology
– sequence: 3
  givenname: Chengwei
  surname: Li
  fullname: Li, Chengwei
  email: chengweili@hit.edu.cn
  organization: School of Instrument Science and Engineering, Harbin Institute of Technology
– sequence: 4
  givenname: Chuanxu
  surname: Wang
  fullname: Wang, Chuanxu
  email: wangchuanxu_qd@163.com
  organization: School of Information Science and Technology, Qingdao University of Science and Technology
BookMark eNp9kEtLxDAUhYMoODP6B1wFXFeTpq8sZfAFA4IouAu36W2nMzWpSTvivzczFd25SHII3zn3cubk2FiDhFxwdsUZy699uJMkYnE4XHAZiSMy44kQUZ6mb8e_OuGnZO79hjEhRFzMSPOMHsHpNbWGVqjt2HdYUaigH9od0sZBv6bamp3txqENkMHh07qtpyX4QIYfv8UOh70fBqC1dRT0AXUhrzHtXp-Rkxo6j-c_74K83t2-LB-i1dP94_JmFek4Z0NUyZwVZVHVpeaFTEFUIg2ba4myLlOdgdYQJ0khqyKTOWjMWM1BC4QyKVOUYkEup9ze2Y8R_aA2dnQmjFSCsyznIo1ZoOKJ0s5677BWvWvfwX0pztS-UDUVqkKh6lCoEsEkJpMPsGnQ_UX_4_oGGT187Q
Cites_doi 10.1007/978-3-030-58586-0_32
10.1109/TIP.2020.3028207
10.24963/ijcai.2018/109
10.1109/CVPR42600.2020.00119
10.1109/TPAMI.2022.3157033
10.1109/ACCESS.2024.3359234
10.1145/3394171.3413941
10.1109/CVPR.2019.00132
10.1109/TPAMI.2019.2916873
10.1016/j.engappai.2023.107210
10.1109/TIP.2017.2785279
10.1109/CVPR.2019.01230
10.1109/ICMEW.2017.8026285
10.1109/CVPR52729.2023.01022
10.1109/WACV45572.2020.9093598
10.1109/CVPR42600.2020.00026
10.1109/CVPR.2015.7298714
10.1109/CVPR52688.2022.01955
10.1109/ICCV51070.2023.00958
10.1109/ICIP.2017.8296249
10.1145/2964284.2967191
10.1109/ACPR.2015.7486569
10.1109/TMM.2019.2962304
10.1109/TMM.2020.2978637
10.1609/aaai.v32i1.12328
10.1016/j.patcog.2023.110188
10.1016/j.neucom.2020.07.068
10.1109/TVCG.2023.3247075
10.1007/978-981-99-8429-9_2
10.1109/CVPR.2018.00572
10.1016/j.patcog.2023.109540
10.3390/electronics12143156
10.12688/f1000research.73175.2
10.1109/CVPR.2016.115
10.1109/TPAMI.2013.198
10.1109/ICCV48922.2021.01311
10.1145/3394171.3413802
10.1016/j.cviu.2021.103219
10.1109/TCSVT.2024.3375512
10.1007/978-3-030-69541-5_3
10.1109/CVPR42600.2020.00022
10.1007/978-3-031-26316-3_10
10.1145/3474085.3475473
10.1109/ICPR48806.2021.9413189
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2024
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2024
DBID AAYXX
CITATION
DOI 10.1007/s10044-024-01319-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
ExternalDocumentID 10_1007_s10044_024_01319_3
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61672305; 61672305
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-d9708b8dfbc1895a3d35433c9e9fb5c6acca24489d8697ace60f1ac3eab4b5e93
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Sun Jul 13 04:56:26 EDT 2025
Tue Jul 01 01:15:19 EDT 2025
Fri Feb 21 02:36:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Skeleton based action recognition
Residual multi-scale temporal convolution network
Decoupled adaptive graph convolutional network
Decoupled head of classification lay
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-d9708b8dfbc1895a3d35433c9e9fb5c6acca24489d8697ace60f1ac3eab4b5e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3106713520
PQPubID 2043691
ParticipantIDs proquest_journals_3106713520
crossref_primary_10_1007_s10044_024_01319_3
springer_journals_10_1007_s10044_024_01319_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References 1319_CR12
1319_CR11
1319_CR14
1319_CR13
1319_CR52
1319_CR54
1319_CR53
1319_CR19
K Xu (1319_CR47) 2022; 36
I Lee (1319_CR51) 2021; 23
1319_CR16
1319_CR18
YF Ong (1319_CR41) 2023; 45
Y Jiang (1319_CR35) 2023; 12
X Yu (1319_CR36) 2024; 127
J Liu (1319_CR17) 2017; 27
1319_CR44
1319_CR46
A Vaswani (1319_CR9) 2017
1319_CR40
1319_CR49
1319_CR48
Y Liu (1319_CR42) 2023; 29
A Zhu (1319_CR5) 2020; 414
1319_CR34
1319_CR33
J Wang (1319_CR31) 2013; 36
Z Chen (1319_CR45) 2021; 35
1319_CR32
M Dai (1319_CR50) 2023; 140
1319_CR1
1319_CR2
1319_CR3
1319_CR38
K Zhu (1319_CR15) 2020; 22
1319_CR37
1319_CR39
1319_CR8
1319_CR4
L Shi (1319_CR26) 2020; 29
J Liu (1319_CR30) 2019; 42
1319_CR6
1319_CR7
C Plizzari (1319_CR10) 2021; 208
1319_CR23
1319_CR22
1319_CR25
1319_CR24
1319_CR21
1319_CR20
1319_CR27
1319_CR29
1319_CR28
H Qiu (1319_CR43) 2024; 148
References_xml – year: 2017
  ident: 1319_CR9
  publication-title: Adv Neural Inf Process Syst
  doi: 10.1007/978-3-030-58586-0_32
– volume: 29
  start-page: 9532
  year: 2020
  ident: 1319_CR26
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2020.3028207
– ident: 1319_CR33
  doi: 10.24963/ijcai.2018/109
– ident: 1319_CR34
  doi: 10.1109/CVPR42600.2020.00119
– volume: 45
  start-page: 1474
  year: 2023
  ident: 1319_CR41
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2022.3157033
– ident: 1319_CR52
  doi: 10.1109/ACCESS.2024.3359234
– ident: 1319_CR39
  doi: 10.1145/3394171.3413941
– ident: 1319_CR19
  doi: 10.1109/CVPR.2019.00132
– volume: 42
  start-page: 2684
  year: 2019
  ident: 1319_CR30
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2916873
– volume: 127
  start-page: 107210
  year: 2024
  ident: 1319_CR36
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.107210
– ident: 1319_CR24
– volume: 27
  start-page: 1586
  issue: 4
  year: 2017
  ident: 1319_CR17
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2785279
– ident: 1319_CR7
  doi: 10.1109/CVPR.2019.01230
– ident: 1319_CR4
  doi: 10.1109/ICMEW.2017.8026285
– ident: 1319_CR54
  doi: 10.1109/CVPR52729.2023.01022
– ident: 1319_CR1
  doi: 10.1109/WACV45572.2020.9093598
– ident: 1319_CR37
  doi: 10.1109/CVPR42600.2020.00026
– ident: 1319_CR16
  doi: 10.1109/CVPR.2015.7298714
– ident: 1319_CR49
  doi: 10.1109/CVPR52688.2022.01955
– ident: 1319_CR53
– ident: 1319_CR25
– ident: 1319_CR21
  doi: 10.1109/ICCV51070.2023.00958
– ident: 1319_CR11
– ident: 1319_CR8
  doi: 10.1007/978-3-030-58586-0_32
– ident: 1319_CR18
  doi: 10.1109/ICIP.2017.8296249
– ident: 1319_CR14
  doi: 10.1145/2964284.2967191
– ident: 1319_CR3
  doi: 10.1109/ACPR.2015.7486569
– ident: 1319_CR22
– volume: 35
  start-page: 1113
  issue: 2
  year: 2021
  ident: 1319_CR45
  publication-title: Proc AAAI Conf Artif Intell
– volume: 22
  start-page: 2977
  issue: 11
  year: 2020
  ident: 1319_CR15
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2019.2962304
– ident: 1319_CR13
  doi: 10.1109/ACPR.2015.7486569
– volume: 36
  start-page: 2866
  issue: 3
  year: 2022
  ident: 1319_CR47
  publication-title: Proc AAAI Conf Artif Intell
– volume: 23
  start-page: 415
  year: 2021
  ident: 1319_CR51
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2020.2978637
– ident: 1319_CR20
  doi: 10.1609/aaai.v32i1.12328
– volume: 148
  start-page: 110188
  year: 2024
  ident: 1319_CR43
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2023.110188
– volume: 414
  start-page: 90
  year: 2020
  ident: 1319_CR5
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.068
– volume: 29
  start-page: 2575
  issue: 5
  year: 2023
  ident: 1319_CR42
  publication-title: IEEE Trans Visual Comput Graph
  doi: 10.1109/TVCG.2023.3247075
– ident: 1319_CR40
  doi: 10.1007/978-981-99-8429-9_2
– ident: 1319_CR32
  doi: 10.1109/CVPR.2018.00572
– volume: 140
  start-page: 109540
  year: 2023
  ident: 1319_CR50
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2023.109540
– volume: 12
  start-page: 3156
  issue: 14
  year: 2023
  ident: 1319_CR35
  publication-title: Electronics
  doi: 10.3390/electronics12143156
– ident: 1319_CR2
– ident: 1319_CR12
  doi: 10.12688/f1000research.73175.2
– ident: 1319_CR29
  doi: 10.1109/CVPR.2016.115
– volume: 36
  start-page: 914
  issue: 5
  year: 2013
  ident: 1319_CR31
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.198
– ident: 1319_CR46
  doi: 10.1109/ICCV48922.2021.01311
– ident: 1319_CR38
  doi: 10.1145/3394171.3413802
– volume: 208
  start-page: 103219
  year: 2021
  ident: 1319_CR10
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2021.103219
– ident: 1319_CR44
  doi: 10.1109/TCSVT.2024.3375512
– ident: 1319_CR27
  doi: 10.1007/978-3-030-69541-5_3
– ident: 1319_CR28
  doi: 10.1109/CVPR42600.2020.00022
– ident: 1319_CR48
  doi: 10.1007/978-3-031-26316-3_10
– ident: 1319_CR23
  doi: 10.1145/3474085.3475473
– ident: 1319_CR6
  doi: 10.1109/ICPR48806.2021.9413189
SSID ssj0033328
Score 2.3713388
Snippet Graph convolutional network is apt for feature extraction in terms of non-Euclidian human skeleton data, but its adjacency matrix is fixed and the receptive...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Adaptive algorithms
Artificial neural networks
Classification
Computer Science
Convolution
Feature extraction
Feature recognition
Graphical representations
Original Article
Pattern Recognition
Spatiotemporal data
Title Research on decoupled adaptive graph convolution networks based on skeleton data for action recognition
URI https://link.springer.com/article/10.1007/s10044-024-01319-3
https://www.proquest.com/docview/3106713520
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXVh4Iwql8sAGlhI_knisUEsFgolKZYr8ZAClFUn_P3ZiU0AwsDo5D_7Od5_tewBwaahOsTUaaZlbRHFKEc8ERcqRc5p5jZH-vuPhMZvN6d2CLUJSWB2j3eOTZGupvyS7JZQi51OQrxHDEdkGfebP7k6L53gc7S8hpO2o6ogAQTmjaUiV-X2O7-5owzF_PIu23ma6D3YDTYTjDtcDsGWqQ7AXKCMMG7J2Q7ErQxw7Ai8xmA4uK6jd6XK9enMyQouVN22wLVENfbR50DpYdaHgNfQuTXux-tV5o8bLi0ZAx2thl_8AP-ONltUxmE8nTzczFNopIIXzpEGa50khC22lSgvOBNGEuTVS3HArmcqEA9M5-4LrIuO5UCZLbCoUMUJSyQwnJ6BXLStzCiDOZOqvjhRThlqRSMqdqKHEWkwsxwNwFVe1XHVVM8pNfWSPQekwKFsMSjIAw7jwZdhBdUl8bbvU0cNkAK4jGJvPf8929r_fz8EO9vrQRqgMQa95X5sLxzMaOQL98e3z_WTUqtcHbRDMVw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRpSnBzawlNjOw2OFqAq0nVqpm-UnAyitSPr_sVObAoKB1c558J3vvtjf3QFwY6hOsTUaaVlYRHFKEcsFRcqBc5p7i5H-vmM0zgdT-jTLZiEprI5s9_gk2XrqL8luCaXIxRTka8QwRDbBlgMDpSdyTXEv-l9CSNtR1QEBgoqMpiFV5vc1voejNcb88SzaRpv-PtgNMBH2Vno9ABumOgR7ATLCcCBrNxS7MsSxI_ASyXRwXkHt_i6XizcnI7RYeNcG2xLV0LPNg9XBakUFr6EPadqL1a8uGjVeXjQCOlwLV_kP8JNvNK-OwbT_MLkfoNBOASlcJA3SrEhKWWorVVqyTBBNMrdHihlmZaZy4ZTpgn3JdJmzQiiTJzYVihghqcwMIyegU80rcwogzmXqr45Upgy1IpGUOVFDibWYWIa74DbuKl-sqmbwdX1krwPudMBbHXDSBRdx43k4QTUnvrZd6uBh0gV3URnr6b9XO_vf59dgezAZDfnwcfx8Dnawt42WrXIBOs370lw6zNHIq9bEPgDIeM22
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSIiFN6JQwAMbWCS28_BYAVV5VQxU6mb5yQBKI5r-f-wkpgXBwBY5OQ93Z98X-7s7AM4N1TG2RiMtM4sojiliqaBIOXBOU-8x0p93PI3S4ZjeT5LJUhZ_zXYPV5JNToOv0lRUV6W2V0uJbxGlyMUX5OvFMERWwRr1T86jx7gf9mJCSN1d1YECgrKExm3azO9zfA9NC7z544q0jjyDbbDZQkbYb2y8A1ZMsQu2WvgI28U5c0OhQ0MY2wOvgVgHpwXU7k9zXr47GaFF6bc5WJerhp553nogLBpa-Az68Ka92OzNRabKy4tKQIdxYZMLAb-4R9NiH4wHty_XQ9S2VkAKZ1GFNMuiXObaShXnLBFEk8TpSDHDrExUKpxhXeDPmc5Tlgll0sjGQhEjJJWJYeQAdIppYQ4BxKmM_TGSSpShVkSSMidqKLEWE8twF1wErfKyqaDBF7WSvQ24swGvbcBJF_SC4nm7mmac-Dp3sYOKURdcBmMsXv8929H_Pj8D6883A_54N3o4BhvYu0ZNXOmBTvUxNycOflTytPawT8xl0fI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+decoupled+adaptive+graph+convolution+networks+based+on+skeleton+data+for+action+recognition&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=27&rft.issue=4&rft_id=info:doi/10.1007%2Fs10044-024-01319-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon