Green federated learning empowered drug manufacturing mechanism for the pharmaceutical industry
The Internet of Medical Things (IoMT) emerged as a result of the close connection between the IoT which is the Internet of Things and the medical field. In the pharmaceutical industries, drug production is carried out by deploying IoMT by assessing the data gathered through smart devices by utilizin...
Saved in:
Published in | Computing Vol. 107; no. 3; p. 73 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.03.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0010-485X 1436-5057 |
DOI | 10.1007/s00607-025-01433-y |
Cover
Loading…
Abstract | The Internet of Medical Things (IoMT) emerged as a result of the close connection between the IoT which is the Internet of Things and the medical field. In the pharmaceutical industries, drug production is carried out by deploying IoMT by assessing the data gathered through smart devices by utilizing AI-powered systems. However, the inherent design weaknesses of conventional AI technology could result in the leakage of drugs’ private information. A privacy-preserved global model can be produced through federated learning(FL). Despite this, FL continues to be susceptible to inference attacks, and energy consumption is a further concern. For this constraint, we could use green federated learning a novel and crucial research area where carbon footprint is an evaluation criterion for AI, alongside accuracy, convergence, speed, and other necessary metrics. In this paper, to address the above-mentioned consequences, an energy-conserved and privacy-enhanced technique incorporating Green FL which involves optimizing FL features by Walrus optimization algorithm(WaOA) and making design choices to minimize the carbon emissions consistent with competitive performance for IoMT is proposed. The proposed work shows improved performance with 91% global model accuracy, reduced carbon emissions, and better privacy in drug manufacturing. Furthermore, participants received rewards based on data quality, similarity, and richness, as validated through simulation trials. The findings indicate a convergence accuracy of up to 90% for local models and an increase in participant incentives proportional to data quality. These results confirm the effectiveness of the approach in balancing privacy, accuracy, and energy efficiency in the drug manufacturing Industry. |
---|---|
AbstractList | The Internet of Medical Things (IoMT) emerged as a result of the close connection between the IoT which is the Internet of Things and the medical field. In the pharmaceutical industries, drug production is carried out by deploying IoMT by assessing the data gathered through smart devices by utilizing AI-powered systems. However, the inherent design weaknesses of conventional AI technology could result in the leakage of drugs’ private information. A privacy-preserved global model can be produced through federated learning(FL). Despite this, FL continues to be susceptible to inference attacks, and energy consumption is a further concern. For this constraint, we could use green federated learning a novel and crucial research area where carbon footprint is an evaluation criterion for AI, alongside accuracy, convergence, speed, and other necessary metrics. In this paper, to address the above-mentioned consequences, an energy-conserved and privacy-enhanced technique incorporating Green FL which involves optimizing FL features by Walrus optimization algorithm(WaOA) and making design choices to minimize the carbon emissions consistent with competitive performance for IoMT is proposed. The proposed work shows improved performance with 91% global model accuracy, reduced carbon emissions, and better privacy in drug manufacturing. Furthermore, participants received rewards based on data quality, similarity, and richness, as validated through simulation trials. The findings indicate a convergence accuracy of up to 90% for local models and an increase in participant incentives proportional to data quality. These results confirm the effectiveness of the approach in balancing privacy, accuracy, and energy efficiency in the drug manufacturing Industry. |
ArticleNumber | 73 |
Author | Shree, S. Pooja Kumaripriya, R. Malathy, N. Lavanya, A. |
Author_xml | – sequence: 1 givenname: N. surname: Malathy fullname: Malathy, N. email: malathy@mepcoeng.ac.in organization: Department of Information Technology, Mepco Schlenk Engineering College – sequence: 2 givenname: A. surname: Lavanya fullname: Lavanya, A. organization: Department of Information Technology, Mepco Schlenk Engineering College – sequence: 3 givenname: S. Pooja surname: Shree fullname: Shree, S. Pooja organization: Department of Information Technology, Mepco Schlenk Engineering College – sequence: 4 givenname: R. surname: Kumaripriya fullname: Kumaripriya, R. organization: Department of Information Technology, Mepco Schlenk Engineering College |
BookMark | eNp9kEFLxDAQhYOs4K76BzwVPEcnTdq0R1l0FRa8KHgL2WSy22Wb1qRF-u_NuoI3TzPMvDfD-xZk5juPhNwwuGMA8j4ClCAp5AUFJjin0xmZp6akBRRyRuYADKioio8LsohxDwA5r-o5UauA6DOHFoMe0GYH1ME3fpth23dfGNLIhnGbtdqPTpthDMdli2anfRPbzHUhG3aY9TsdWm1wHBqjD1nj7RiHMF2Rc6cPEa9_6yV5f3p8Wz7T9evqZfmwpiaXMFArBOOohbEgC1lWUG-MLPIqZWNgXIml0UngcGOtFELUjlXGCcil5HVVAb8kt6e7feg-R4yD2ndj8Oml4qyUsqoLXiRVflKZ0MUY0Kk-NK0Ok2KgjiDVCaRKINUPSDUlEz-ZYn_MjuHv9D-ub1wdeaA |
Cites_doi | 10.1109/TII.2021.3098306 10.1109/JIOT.2021.3067876 10.1007/978-3-030-59824-2_9 10.1007/s11042-024-18379-6 10.1016/j.artmed.2024.102779 10.1109/WCNCW49093.2021.9420026 10.1007/s42979-024-03597-4 10.1109/TII.2022.3210597 10.1007/s41666-020-00082-4 10.1145/3442381.3449847 10.1016/j.compbiomed.2021.105141 10.1016/j.compeleceng.2021.107060 10.1038/s41598-023-35863-5 10.1002/ett.4969 10.1007/s00521-022-07424-w 10.1109/JIOT.2020.2977383 10.1109/JIOT.2022.3150363 10.1109/TII.2021.3119038 10.1007/s00521-023-09366-3 10.1145/3428152 10.1016/j.ins.2019.01.070 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Mar 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Mar 2025 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s00607-025-01433-y |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1436-5057 |
ExternalDocumentID | 10_1007_s00607_025_01433_y |
GroupedDBID | -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BKOMP BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW LAS LLZTM M0C M2O M4Y MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZL0 ZMTXR ~8M ~EX AAYXX ABBRH ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR CITATION PHGZM 7SC 8FD ABRTQ AFKWF JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c270t-d4413ea4cd07576809bc752800710cf6e6ca13efebdd74449f18cf40277398803 |
IEDL.DBID | AGYKE |
ISSN | 0010-485X |
IngestDate | Sat Aug 16 18:42:29 EDT 2025 Tue Jul 01 05:16:08 EDT 2025 Wed Mar 26 01:23:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Internet of medical things 68P27 Federated learning Machine learning 68T09 Walrus optimization algorithm Green federated learning Pharmaceutical industry Artificial intelligence |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-d4413ea4cd07576809bc752800710cf6e6ca13efebdd74449f18cf40277398803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3167789535 |
PQPubID | 48322 |
ParticipantIDs | proquest_journals_3167789535 crossref_primary_10_1007_s00607_025_01433_y springer_journals_10_1007_s00607_025_01433_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250300 2025-03-00 20250301 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 3 year: 2025 text: 20250300 |
PublicationDecade | 2020 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna – name: Wien |
PublicationTitle | Computing |
PublicationTitleAbbrev | Computing |
PublicationYear | 2025 |
Publisher | Springer Vienna Springer Nature B.V |
Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
References | YS Can (1433_CR1) 2021; 21 A Heidari (1433_CR25) 2022; 141 X Yuan (1433_CR5) 2022; 18 R Hamza (1433_CR18) 2020; 527 B Ghimire (1433_CR17) 2022; 9 Z Amiri (1433_CR20) 2024; 36 R Zhou (1433_CR27) 2019; 19 1433_CR13 X Wang (1433_CR9) 2023; 19 1433_CR12 A Heidari (1433_CR22) 2022; 34 MN Alraja (1433_CR3) 2021; 91 1433_CR11 P Zhang (1433_CR16) 2022; 9 Y Zhao (1433_CR23) 2020; 34 M Alazab (1433_CR2) 2022; 18 Y Qu (1433_CR15) 2020; 7 1433_CR8 1433_CR7 S Aminizadeh (1433_CR10) 2024; 149 P Trojovský (1433_CR14) 2023; 13 N Malathy (1433_CR4) 2024; 83 1433_CR24 Z Amiri (1433_CR21) 2024; 35 1433_CR26 J Xu (1433_CR6) 2021; 5 N Malathy (1433_CR19) 2025; 6 |
References_xml | – volume: 18 start-page: 2032 issue: 3 year: 2022 ident: 1433_CR5 publication-title: IEEE Trans Ind Informat doi: 10.1109/TII.2021.3098306 – volume: 9 start-page: 14563 issue: 16 year: 2022 ident: 1433_CR16 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2021.3067876 – ident: 1433_CR24 doi: 10.1007/978-3-030-59824-2_9 – volume: 34 year: 2020 ident: 1433_CR23 publication-title: Concurrency Comput: Pract Exp. – volume: 83 start-page: 57913 year: 2024 ident: 1433_CR4 publication-title: Multimed Tools Appl. doi: 10.1007/s11042-024-18379-6 – volume: 149 year: 2024 ident: 1433_CR10 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2024.102779 – ident: 1433_CR11 – ident: 1433_CR26 doi: 10.1109/WCNCW49093.2021.9420026 – volume: 6 start-page: 66 year: 2025 ident: 1433_CR19 publication-title: SN COMPUT SCI doi: 10.1007/s42979-024-03597-4 – volume: 19 start-page: 506 issue: 4 year: 2019 ident: 1433_CR27 publication-title: Int J Comput Sci Eng – volume: 19 start-page: 7905 issue: 7 year: 2023 ident: 1433_CR9 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2022.3210597 – ident: 1433_CR7 – volume: 5 start-page: 1 issue: 1 year: 2021 ident: 1433_CR6 publication-title: J Healthcare Informat Res doi: 10.1007/s41666-020-00082-4 – ident: 1433_CR13 doi: 10.1145/3442381.3449847 – volume: 141 year: 2022 ident: 1433_CR25 publication-title: Computers Biol Med doi: 10.1016/j.compbiomed.2021.105141 – volume: 91 year: 2021 ident: 1433_CR3 publication-title: Comput Elect Eng doi: 10.1016/j.compeleceng.2021.107060 – volume: 13 start-page: 8775 year: 2023 ident: 1433_CR14 publication-title: Sci Rep doi: 10.1038/s41598-023-35863-5 – volume: 35 issue: 6 year: 2024 ident: 1433_CR21 publication-title: Trans Emerging Tel Tech doi: 10.1002/ett.4969 – volume: 34 start-page: 15313 year: 2022 ident: 1433_CR22 publication-title: Neural Comput Applic doi: 10.1007/s00521-022-07424-w – ident: 1433_CR12 – volume: 7 start-page: 5171 issue: 6 year: 2020 ident: 1433_CR15 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2020.2977383 – volume: 9 start-page: 8229 issue: 11 year: 2022 ident: 1433_CR17 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2022.3150363 – volume: 18 start-page: 3501 issue: 5 year: 2022 ident: 1433_CR2 publication-title: IEEE Trans. Ind. Informat. doi: 10.1109/TII.2021.3119038 – volume: 36 start-page: 1 issue: 11 year: 2024 ident: 1433_CR20 publication-title: Neural Comput Appl doi: 10.1007/s00521-023-09366-3 – volume: 21 start-page: 1 issue: 1 year: 2021 ident: 1433_CR1 publication-title: ACM Trans Internet Technol doi: 10.1145/3428152 – volume: 527 start-page: 493 year: 2020 ident: 1433_CR18 publication-title: Inf Sci doi: 10.1016/j.ins.2019.01.070 – ident: 1433_CR8 |
SSID | ssj0002389 |
Score | 2.3731616 |
Snippet | The Internet of Medical Things (IoMT) emerged as a result of the close connection between the IoT which is the Internet of Things and the medical field. In the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 73 |
SubjectTerms | Accuracy Algorithms Artificial Intelligence Carbon Clean energy Computer Appl. in Administrative Data Processing Computer Communication Networks Computer Science Convergence Design optimization Emissions Energy consumption Federated learning Information Systems Applications (incl.Internet) Internet of medical things Internet of Things Machine learning Manufacturing Pharmaceutical industry Pharmaceuticals Privacy Regular Article Software Engineering |
Title | Green federated learning empowered drug manufacturing mechanism for the pharmaceutical industry |
URI | https://link.springer.com/article/10.1007/s00607-025-01433-y https://www.proquest.com/docview/3167789535 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4RuOhBFDWiSHrwpiWwdVt7JAY0Gjy5BE_L-mNIDEgYxOBfb9ttoEQPnLc0W1_73rf1fd8HcE2Uw2hbSExin2PiigAzTjn2ZUd6PmecWC-CwbP_EJLHoTfMSWFp0e1eHEnaTL0muxnpkAAb-1WjSefiVQkqXocyWoZK9_71qbfOwLoMZbBX5xhCvWFOlvl7lN8FaYMytw5Gbb3pVyEsnjRrM3lvLRe8Jb62RBx3fZUjOMwBKOpmK-YY9tS0BtXC3AHle70GB4O1oGt6ApHtz0GJkZ7Q6FSi3G1ihIy01acx_ERyvhyhSTxdGrKEZT-iiTLE4nE6QRobIz0emr39_IeOxplzyOoUwn7v5e4B594MWDhBe4GlhlGuiomQGnPoT5Y24yLwHGohi0h85YtY35AoLmVACGFJh4qEmBNjl-mc4Z5BefoxVeeAiBsQP3ZZrMGiziC6PEo_cZJ2HGh0xBxah5siQNEsk-CI1mLLdiYjPZORncloVYdGEcMo345pZOj-AWWe69XhtgjJ5vL_o13sdvsl7Ds2qqZHrQHlxXyprjRoWfBmvkabUAqd7jcSouPY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG1hqEyexxwpRFWg7tVI3K7GT0qGhalqh_nvOzgcfgoE1tjxcfL6XnN97ALcsdgRvKU1Z6EeUuSqgIuIR9XVbe34kIma9CAZDvzdmzxNvUpDCsvK2e9mStCd1RXYz0iEBNfarRpPOpZtt2EEwwI1vwdjpVOcvPspBL54wjHuTgirz-xrfy9EnxvzRFrXVpnsEBwVMJJ38vR7DVpzW4bC0YCBFRtZhf1DJrmYnIO0tGpIYgQjEkJoUnhBTYgSo3o0tJ9HL9ZTMw3RtKA2Wo0jmsaH_zrI5QQRLcD2yeP36p5vMcn-PzSmMu4-jhx4tHBSocoLWimoEO24cMqURGeCHRUtEKvAcboGFSvzYVyFOSOJI64AxJpI2VwkzfV1XYGa7Z1BL39L4HAhzA-aHrggR0mGeYxHTfuIkrTBADCMc3oC7MpBykQtlyEoS2YZdYtilDbvcNKBZxloWSZNJQ8oPuPBcrwH3Zfw_h_9e7eJ_029gtzca9GX_afhyCXuO3Q7mVlkTaqvlOr5CmLGKru2u-gBRRMic |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsJAFL1RTIwufKBGFHUW7nQCdKaPWRKV4APiQhJ2k7bTIgsqgRLD33tn-gCNLlx3Movb-zjtzDkH4JpHlvCaoaLcdwLKWehSEXgBdVRL2U4gAm68CHp9pzvgT0N7uMbiN7fdiyPJjNOgVZqStDFVcaMkvmkZEZdqK1atT8fochO2sB23dKYPrHbZi3EgZQAYuw337GFOm_l9j--jaYU3fxyRmsnTOYC9HDKSdvaOD2EjSqqwX9gxkLw6q7DbKyVY50cgzY0aEmuxCMSTiuT-ECOixag-tUUnUbPFiEz8ZKHpDYavSCaRpgKP5xOCaJbgfmT6vv7Xm4wzr4_lMQw6D293XZq7KdDQcpspVQh8WOTzUCFKwI-MpghC17Y8AzLC2Imc0McFcRQo5XLORdzywpjrM14msMrZCVSSjyQ6BcKZyx2fCR_hHdY8DjTlxFbc9F3EM8LyanBTBFJOM9EMWcojm7BLDLs0YZfLGtSLWMu8gOZSE_RdT9jMrsFtEf_V4793O_vf8ivYfr3vyJfH_vM57FgmGxi2jjpU0tkiukDEkQaXJqm-ACCKzNk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Green+federated+learning+empowered+drug+manufacturing+mechanism+for+the+pharmaceutical+industry&rft.jtitle=Computing&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=107&rft.issue=3&rft.spage=73&rft_id=info:doi/10.1007%2Fs00607-025-01433-y&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon |