Green federated learning empowered drug manufacturing mechanism for the pharmaceutical industry

The Internet of Medical Things (IoMT) emerged as a result of the close connection between the IoT which is the Internet of Things and the medical field. In the pharmaceutical industries, drug production is carried out by deploying IoMT by assessing the data gathered through smart devices by utilizin...

Full description

Saved in:
Bibliographic Details
Published inComputing Vol. 107; no. 3; p. 73
Main Authors Malathy, N., Lavanya, A., Shree, S. Pooja, Kumaripriya, R.
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.03.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0010-485X
1436-5057
DOI10.1007/s00607-025-01433-y

Cover

Loading…
Abstract The Internet of Medical Things (IoMT) emerged as a result of the close connection between the IoT which is the Internet of Things and the medical field. In the pharmaceutical industries, drug production is carried out by deploying IoMT by assessing the data gathered through smart devices by utilizing AI-powered systems. However, the inherent design weaknesses of conventional AI technology could result in the leakage of drugs’ private information. A privacy-preserved global model can be produced through federated learning(FL). Despite this, FL continues to be susceptible to inference attacks, and energy consumption is a further concern. For this constraint, we could use green federated learning a novel and crucial research area where carbon footprint is an evaluation criterion for AI, alongside accuracy, convergence, speed, and other necessary metrics. In this paper, to address the above-mentioned consequences, an energy-conserved and privacy-enhanced technique incorporating Green FL which involves optimizing FL features by Walrus optimization algorithm(WaOA) and making design choices to minimize the carbon emissions consistent with competitive performance for IoMT is proposed. The proposed work shows improved performance with 91% global model accuracy, reduced carbon emissions, and better privacy in drug manufacturing. Furthermore, participants received rewards based on data quality, similarity, and richness, as validated through simulation trials. The findings indicate a convergence accuracy of up to 90% for local models and an increase in participant incentives proportional to data quality. These results confirm the effectiveness of the approach in balancing privacy, accuracy, and energy efficiency in the drug manufacturing Industry.
AbstractList The Internet of Medical Things (IoMT) emerged as a result of the close connection between the IoT which is the Internet of Things and the medical field. In the pharmaceutical industries, drug production is carried out by deploying IoMT by assessing the data gathered through smart devices by utilizing AI-powered systems. However, the inherent design weaknesses of conventional AI technology could result in the leakage of drugs’ private information. A privacy-preserved global model can be produced through federated learning(FL). Despite this, FL continues to be susceptible to inference attacks, and energy consumption is a further concern. For this constraint, we could use green federated learning a novel and crucial research area where carbon footprint is an evaluation criterion for AI, alongside accuracy, convergence, speed, and other necessary metrics. In this paper, to address the above-mentioned consequences, an energy-conserved and privacy-enhanced technique incorporating Green FL which involves optimizing FL features by Walrus optimization algorithm(WaOA) and making design choices to minimize the carbon emissions consistent with competitive performance for IoMT is proposed. The proposed work shows improved performance with 91% global model accuracy, reduced carbon emissions, and better privacy in drug manufacturing. Furthermore, participants received rewards based on data quality, similarity, and richness, as validated through simulation trials. The findings indicate a convergence accuracy of up to 90% for local models and an increase in participant incentives proportional to data quality. These results confirm the effectiveness of the approach in balancing privacy, accuracy, and energy efficiency in the drug manufacturing Industry.
ArticleNumber 73
Author Shree, S. Pooja
Kumaripriya, R.
Malathy, N.
Lavanya, A.
Author_xml – sequence: 1
  givenname: N.
  surname: Malathy
  fullname: Malathy, N.
  email: malathy@mepcoeng.ac.in
  organization: Department of Information Technology, Mepco Schlenk Engineering College
– sequence: 2
  givenname: A.
  surname: Lavanya
  fullname: Lavanya, A.
  organization: Department of Information Technology, Mepco Schlenk Engineering College
– sequence: 3
  givenname: S. Pooja
  surname: Shree
  fullname: Shree, S. Pooja
  organization: Department of Information Technology, Mepco Schlenk Engineering College
– sequence: 4
  givenname: R.
  surname: Kumaripriya
  fullname: Kumaripriya, R.
  organization: Department of Information Technology, Mepco Schlenk Engineering College
BookMark eNp9kEFLxDAQhYOs4K76BzwVPEcnTdq0R1l0FRa8KHgL2WSy22Wb1qRF-u_NuoI3TzPMvDfD-xZk5juPhNwwuGMA8j4ClCAp5AUFJjin0xmZp6akBRRyRuYADKioio8LsohxDwA5r-o5UauA6DOHFoMe0GYH1ME3fpth23dfGNLIhnGbtdqPTpthDMdli2anfRPbzHUhG3aY9TsdWm1wHBqjD1nj7RiHMF2Rc6cPEa9_6yV5f3p8Wz7T9evqZfmwpiaXMFArBOOohbEgC1lWUG-MLPIqZWNgXIml0UngcGOtFELUjlXGCcil5HVVAb8kt6e7feg-R4yD2ndj8Oml4qyUsqoLXiRVflKZ0MUY0Kk-NK0Ok2KgjiDVCaRKINUPSDUlEz-ZYn_MjuHv9D-ub1wdeaA
Cites_doi 10.1109/TII.2021.3098306
10.1109/JIOT.2021.3067876
10.1007/978-3-030-59824-2_9
10.1007/s11042-024-18379-6
10.1016/j.artmed.2024.102779
10.1109/WCNCW49093.2021.9420026
10.1007/s42979-024-03597-4
10.1109/TII.2022.3210597
10.1007/s41666-020-00082-4
10.1145/3442381.3449847
10.1016/j.compbiomed.2021.105141
10.1016/j.compeleceng.2021.107060
10.1038/s41598-023-35863-5
10.1002/ett.4969
10.1007/s00521-022-07424-w
10.1109/JIOT.2020.2977383
10.1109/JIOT.2022.3150363
10.1109/TII.2021.3119038
10.1007/s00521-023-09366-3
10.1145/3428152
10.1016/j.ins.2019.01.070
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Mar 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Mar 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s00607-025-01433-y
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1436-5057
ExternalDocumentID 10_1007_s00607_025_01433_y
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAS
LLZTM
M0C
M2O
M4Y
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
~8M
~EX
AAYXX
ABBRH
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
CITATION
PHGZM
7SC
8FD
ABRTQ
AFKWF
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c270t-d4413ea4cd07576809bc752800710cf6e6ca13efebdd74449f18cf40277398803
IEDL.DBID AGYKE
ISSN 0010-485X
IngestDate Sat Aug 16 18:42:29 EDT 2025
Tue Jul 01 05:16:08 EDT 2025
Wed Mar 26 01:23:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Internet of medical things
68P27
Federated learning
Machine learning
68T09
Walrus optimization algorithm
Green federated learning
Pharmaceutical industry
Artificial intelligence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-d4413ea4cd07576809bc752800710cf6e6ca13efebdd74449f18cf40277398803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3167789535
PQPubID 48322
ParticipantIDs proquest_journals_3167789535
crossref_primary_10_1007_s00607_025_01433_y
springer_journals_10_1007_s00607_025_01433_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250300
2025-03-00
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 3
  year: 2025
  text: 20250300
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Computing
PublicationTitleAbbrev Computing
PublicationYear 2025
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References YS Can (1433_CR1) 2021; 21
A Heidari (1433_CR25) 2022; 141
X Yuan (1433_CR5) 2022; 18
R Hamza (1433_CR18) 2020; 527
B Ghimire (1433_CR17) 2022; 9
Z Amiri (1433_CR20) 2024; 36
R Zhou (1433_CR27) 2019; 19
1433_CR13
X Wang (1433_CR9) 2023; 19
1433_CR12
A Heidari (1433_CR22) 2022; 34
MN Alraja (1433_CR3) 2021; 91
1433_CR11
P Zhang (1433_CR16) 2022; 9
Y Zhao (1433_CR23) 2020; 34
M Alazab (1433_CR2) 2022; 18
Y Qu (1433_CR15) 2020; 7
1433_CR8
1433_CR7
S Aminizadeh (1433_CR10) 2024; 149
P Trojovský (1433_CR14) 2023; 13
N Malathy (1433_CR4) 2024; 83
1433_CR24
Z Amiri (1433_CR21) 2024; 35
1433_CR26
J Xu (1433_CR6) 2021; 5
N Malathy (1433_CR19) 2025; 6
References_xml – volume: 18
  start-page: 2032
  issue: 3
  year: 2022
  ident: 1433_CR5
  publication-title: IEEE Trans Ind Informat
  doi: 10.1109/TII.2021.3098306
– volume: 9
  start-page: 14563
  issue: 16
  year: 2022
  ident: 1433_CR16
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2021.3067876
– ident: 1433_CR24
  doi: 10.1007/978-3-030-59824-2_9
– volume: 34
  year: 2020
  ident: 1433_CR23
  publication-title: Concurrency Comput: Pract Exp.
– volume: 83
  start-page: 57913
  year: 2024
  ident: 1433_CR4
  publication-title: Multimed Tools Appl.
  doi: 10.1007/s11042-024-18379-6
– volume: 149
  year: 2024
  ident: 1433_CR10
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2024.102779
– ident: 1433_CR11
– ident: 1433_CR26
  doi: 10.1109/WCNCW49093.2021.9420026
– volume: 6
  start-page: 66
  year: 2025
  ident: 1433_CR19
  publication-title: SN COMPUT SCI
  doi: 10.1007/s42979-024-03597-4
– volume: 19
  start-page: 506
  issue: 4
  year: 2019
  ident: 1433_CR27
  publication-title: Int J Comput Sci Eng
– volume: 19
  start-page: 7905
  issue: 7
  year: 2023
  ident: 1433_CR9
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2022.3210597
– ident: 1433_CR7
– volume: 5
  start-page: 1
  issue: 1
  year: 2021
  ident: 1433_CR6
  publication-title: J Healthcare Informat Res
  doi: 10.1007/s41666-020-00082-4
– ident: 1433_CR13
  doi: 10.1145/3442381.3449847
– volume: 141
  year: 2022
  ident: 1433_CR25
  publication-title: Computers Biol Med
  doi: 10.1016/j.compbiomed.2021.105141
– volume: 91
  year: 2021
  ident: 1433_CR3
  publication-title: Comput Elect Eng
  doi: 10.1016/j.compeleceng.2021.107060
– volume: 13
  start-page: 8775
  year: 2023
  ident: 1433_CR14
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-35863-5
– volume: 35
  issue: 6
  year: 2024
  ident: 1433_CR21
  publication-title: Trans Emerging Tel Tech
  doi: 10.1002/ett.4969
– volume: 34
  start-page: 15313
  year: 2022
  ident: 1433_CR22
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-022-07424-w
– ident: 1433_CR12
– volume: 7
  start-page: 5171
  issue: 6
  year: 2020
  ident: 1433_CR15
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.2977383
– volume: 9
  start-page: 8229
  issue: 11
  year: 2022
  ident: 1433_CR17
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2022.3150363
– volume: 18
  start-page: 3501
  issue: 5
  year: 2022
  ident: 1433_CR2
  publication-title: IEEE Trans. Ind. Informat.
  doi: 10.1109/TII.2021.3119038
– volume: 36
  start-page: 1
  issue: 11
  year: 2024
  ident: 1433_CR20
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-023-09366-3
– volume: 21
  start-page: 1
  issue: 1
  year: 2021
  ident: 1433_CR1
  publication-title: ACM Trans Internet Technol
  doi: 10.1145/3428152
– volume: 527
  start-page: 493
  year: 2020
  ident: 1433_CR18
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.01.070
– ident: 1433_CR8
SSID ssj0002389
Score 2.3731616
Snippet The Internet of Medical Things (IoMT) emerged as a result of the close connection between the IoT which is the Internet of Things and the medical field. In the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 73
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Carbon
Clean energy
Computer Appl. in Administrative Data Processing
Computer Communication Networks
Computer Science
Convergence
Design optimization
Emissions
Energy consumption
Federated learning
Information Systems Applications (incl.Internet)
Internet of medical things
Internet of Things
Machine learning
Manufacturing
Pharmaceutical industry
Pharmaceuticals
Privacy
Regular Article
Software Engineering
Title Green federated learning empowered drug manufacturing mechanism for the pharmaceutical industry
URI https://link.springer.com/article/10.1007/s00607-025-01433-y
https://www.proquest.com/docview/3167789535
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4RuOhBFDWiSHrwpiWwdVt7JAY0Gjy5BE_L-mNIDEgYxOBfb9ttoEQPnLc0W1_73rf1fd8HcE2Uw2hbSExin2PiigAzTjn2ZUd6PmecWC-CwbP_EJLHoTfMSWFp0e1eHEnaTL0muxnpkAAb-1WjSefiVQkqXocyWoZK9_71qbfOwLoMZbBX5xhCvWFOlvl7lN8FaYMytw5Gbb3pVyEsnjRrM3lvLRe8Jb62RBx3fZUjOMwBKOpmK-YY9tS0BtXC3AHle70GB4O1oGt6ApHtz0GJkZ7Q6FSi3G1ihIy01acx_ERyvhyhSTxdGrKEZT-iiTLE4nE6QRobIz0emr39_IeOxplzyOoUwn7v5e4B594MWDhBe4GlhlGuiomQGnPoT5Y24yLwHGohi0h85YtY35AoLmVACGFJh4qEmBNjl-mc4Z5BefoxVeeAiBsQP3ZZrMGiziC6PEo_cZJ2HGh0xBxah5siQNEsk-CI1mLLdiYjPZORncloVYdGEcMo345pZOj-AWWe69XhtgjJ5vL_o13sdvsl7Ds2qqZHrQHlxXyprjRoWfBmvkabUAqd7jcSouPY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG1hqEyexxwpRFWg7tVI3K7GT0qGhalqh_nvOzgcfgoE1tjxcfL6XnN97ALcsdgRvKU1Z6EeUuSqgIuIR9XVbe34kIma9CAZDvzdmzxNvUpDCsvK2e9mStCd1RXYz0iEBNfarRpPOpZtt2EEwwI1vwdjpVOcvPspBL54wjHuTgirz-xrfy9EnxvzRFrXVpnsEBwVMJJ38vR7DVpzW4bC0YCBFRtZhf1DJrmYnIO0tGpIYgQjEkJoUnhBTYgSo3o0tJ9HL9ZTMw3RtKA2Wo0jmsaH_zrI5QQRLcD2yeP36p5vMcn-PzSmMu4-jhx4tHBSocoLWimoEO24cMqURGeCHRUtEKvAcboGFSvzYVyFOSOJI64AxJpI2VwkzfV1XYGa7Z1BL39L4HAhzA-aHrggR0mGeYxHTfuIkrTBADCMc3oC7MpBykQtlyEoS2YZdYtilDbvcNKBZxloWSZNJQ8oPuPBcrwH3Zfw_h_9e7eJ_029gtzca9GX_afhyCXuO3Q7mVlkTaqvlOr5CmLGKru2u-gBRRMic
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsJAFL1RTIwufKBGFHUW7nQCdKaPWRKV4APiQhJ2k7bTIgsqgRLD33tn-gCNLlx3Movb-zjtzDkH4JpHlvCaoaLcdwLKWehSEXgBdVRL2U4gAm68CHp9pzvgT0N7uMbiN7fdiyPJjNOgVZqStDFVcaMkvmkZEZdqK1atT8fochO2sB23dKYPrHbZi3EgZQAYuw337GFOm_l9j--jaYU3fxyRmsnTOYC9HDKSdvaOD2EjSqqwX9gxkLw6q7DbKyVY50cgzY0aEmuxCMSTiuT-ECOixag-tUUnUbPFiEz8ZKHpDYavSCaRpgKP5xOCaJbgfmT6vv7Xm4wzr4_lMQw6D293XZq7KdDQcpspVQh8WOTzUCFKwI-MpghC17Y8AzLC2Imc0McFcRQo5XLORdzywpjrM14msMrZCVSSjyQ6BcKZyx2fCR_hHdY8DjTlxFbc9F3EM8LyanBTBFJOM9EMWcojm7BLDLs0YZfLGtSLWMu8gOZSE_RdT9jMrsFtEf_V4793O_vf8ivYfr3vyJfH_vM57FgmGxi2jjpU0tkiukDEkQaXJqm-ACCKzNk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Green+federated+learning+empowered+drug+manufacturing+mechanism+for+the+pharmaceutical+industry&rft.jtitle=Computing&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=107&rft.issue=3&rft.spage=73&rft_id=info:doi/10.1007%2Fs00607-025-01433-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon