Interactive aggregate message authentication equipped with detecting functionality from adaptive group testing
In this paper, we propose a formal security model and a construction methodology of interactive aggregate message authentication codes with detecting functionality (IAMDs). The IAMD is an interactive aggregate MAC protocol which can identify invalid messages with a small amount of tag-size. Several...
Saved in:
Published in | Designs, codes, and cryptography Vol. 92; no. 12; pp. 4423 - 4451 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose a formal security model and a construction methodology of interactive aggregate message authentication codes with detecting functionality (IAMDs). The IAMD is an interactive aggregate MAC protocol which can identify invalid messages with a small amount of tag-size. Several aggregate MAC schemes that can detect invalid messages have been proposed so far by using non-adaptive group testing in the prior work. In this paper, we utilize adaptive group testing to construct IAMD scheme, and we show that the resulting IAMD scheme can identify invalid messages with a small amount of tag-size compared to the previous schemes. To this end, we give the formalization of adaptive group testing and IAMD, and propose a generic construction starting from any aggregate MAC and any adaptive group testing method. In addition, we compare instantiations of our generic constructions, in terms of total tag-size and several properties. Furthermore, we show advantages of IAMD by implementing constructions of (non-)adaptive aggregate message authentication with detecting functionality and comparing these ones in terms of the data-size and running time of verification algorithms. |
---|---|
AbstractList | In this paper, we propose a formal security model and a construction methodology of interactive aggregate message authentication codes with detecting functionality (IAMDs). The IAMD is an interactive aggregate MAC protocol which can identify invalid messages with a small amount of tag-size. Several aggregate MAC schemes that can detect invalid messages have been proposed so far by using non-adaptive group testing in the prior work. In this paper, we utilize adaptive group testing to construct IAMD scheme, and we show that the resulting IAMD scheme can identify invalid messages with a small amount of tag-size compared to the previous schemes. To this end, we give the formalization of adaptive group testing and IAMD, and propose a generic construction starting from any aggregate MAC and any adaptive group testing method. In addition, we compare instantiations of our generic constructions, in terms of total tag-size and several properties. Furthermore, we show advantages of IAMD by implementing constructions of (non-)adaptive aggregate message authentication with detecting functionality and comparing these ones in terms of the data-size and running time of verification algorithms. |
Author | Minematsu, Kazuhiko Shikata, Junji Sato, Shingo |
Author_xml | – sequence: 1 givenname: Kazuhiko surname: Minematsu fullname: Minematsu, Kazuhiko organization: Institute of Advanced Sciences, Yokohama National University – sequence: 2 givenname: Shingo orcidid: 0000-0003-4565-1213 surname: Sato fullname: Sato, Shingo email: sato-shingo-zk@ynu.ac.jp organization: Institute of Advanced Sciences, Yokohama National University – sequence: 3 givenname: Junji surname: Shikata fullname: Shikata, Junji organization: Institute of Advanced Sciences, Yokohama National University, Graduate School of Environment and Information Sciences, Yokohama National University |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6uTZLvZPYr4BQUveg7T7GS7pc2uSVbpv3fbCt48BYbneSfzztjEd54YuxZwKwD0XRRQSJWBzDMQeVVm-RmbioVWmV6UxYRNoZKLTICUF2wW4wYAhAI5Zf7VJwpoU_tFHJsmUIOJ-I5ixGacDGlNPrUWU9t5Tp9D2_dU8-82rXlNiUbRN9wN3h4A3LZpz13odhxr7I-hTeiGnieKB_KSnTvcRrr6fefs4-nx_eElW749vz7cLzMrNaSsBrtAdHlVu1WlViXWWlChXClrgaBdZXNwSoEtLBZ6JYtK6BxXjmqnS42VmrObU24fus9h3G023RDG_0WjhJLj7UodKHmibOhiDORMH9odhr0RYA69mlOvZuzVHHs1-SipkxRH2DcU_qL_sX4AMQGAcg |
Cites_doi | 10.1007/978-3-642-15317-4_20 10.1109/TIFS.2024.3354188 10.1214/aoms/1177731363 10.1109/ACCESS.2020.3041638 10.1137/050631847 10.1142/9789812798107 10.1109/TSP.2021.3137026 10.1109/ISIT54713.2023.10206776 10.1080/01621459.1962.10480672 10.1007/978-3-030-29959-0_29 10.1109/ISIT.2019.8849702 10.1109/TIT.2020.3046113 10.1109/TIT.2022.3141244 10.1007/978-3-642-27660-6_18 10.1017/S096354832100002X 10.1007/978-3-319-99807-7_22 10.1007/978-3-540-70575-8_61 10.1007/978-3-319-24174-6_10 10.1109/TIT.2016.2614726 10.1007/978-3-540-79263-5_10 10.1080/01621459.1972.10481257 10.1109/TIT.2018.2883604 10.1186/1471-2105-7-28 10.1137/1.9781611973075.91 10.1007/978-3-030-15032-7_110 10.1007/978-3-030-36938-5_23 10.1109/TIT.2022.3140604 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10623-024-01498-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Computer Science |
EISSN | 1573-7586 |
EndPage | 4451 |
ExternalDocumentID | 10_1007_s10623_024_01498_4 |
GrantInformation_xml | – fundername: JSPS KAKENHI grantid: 18H03238 – fundername: The Ministry of Internal Affairs and Communications, Japan |
GroupedDBID | -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ZY4 ~EX AAYXX CITATION |
ID | FETCH-LOGICAL-c270t-d0c5aaf49dfb93b8ad71e63f82d1a07f9c40f330c6ca67b269174abfedf787a93 |
IEDL.DBID | U2A |
ISSN | 0925-1022 |
IngestDate | Fri Jul 25 10:57:06 EDT 2025 Tue Jul 01 01:18:23 EDT 2025 Mon Jul 21 06:07:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Message authentication code 68 Aggregate message authentication Adaptive group testing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-d0c5aaf49dfb93b8ad71e63f82d1a07f9c40f330c6ca67b269174abfedf787a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4565-1213 |
PQID | 3132130339 |
PQPubID | 2043752 |
PageCount | 29 |
ParticipantIDs | proquest_journals_3132130339 crossref_primary_10_1007_s10623_024_01498_4 springer_journals_10_1007_s10623_024_01498_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241200 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Designs, codes, and cryptography |
PublicationTitleAbbrev | Des. Codes Cryptogr |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | ShangguanCGeGNew bounds on the number of tests for disjunct matricesIEEE Trans. Inf. Theory2016126275187521359909810.1109/TIT.2016.2614726 International Telecommunication UnionRecommendation ITU-T X.1366: Aggregate Message Authentication Schemes for Internet of Things Environment2020GenevaITU TeoBScarlettJNoisy adaptive group testing via noisy binary searchIEEE Trans. Inf. Theory202268533403353443322410.1109/TIT.2022.3140604 HwangFKA method for detecting all defective members in a population by group testingJ. Am. Stat. Assoc.19726733960560810.1080/01621459.1972.10481257 Indyk P., Ngo H.Q., Rudra A.: Efficiently decodable non-adaptive group testing. In: SODA, 2010, pp. 1126–1142. SIAM (2010). EppsteinDGoodrichMTHirschbergDSImproved combinatorial group testing algorithms for real-world problem sizesSIAM J. Comput.200736513601375228408510.1137/050631847 BondorfSChenBScarlettJYuHZhaoYSublinear-time non-adaptive group testing with o(k log n) tests via bit-mixing codingIEEE Trans. Inf. Theory20216731559157010.1109/TIT.2020.3046113 CohenACohenAGurewitzOSecure adaptive group testingIEEE Trans. Inf. Forensics Secur.2024192786279910.1109/TIFS.2024.3354188 Du D.-Z., Hwang F.K.: Combinatorial Group Testing and Its Applications, Series on Applied Mathematics, 2nd edn, vol. 12. World Scientific, Singapore (2000). Sato S., Shikata J.: Interactive aggregate message authentication scheme with detecting functionality. In: AINA, Advances in Intelligent Systems and Computing, 2019, vol. 926, pp. 1316–1328. Springer (2019). Minematsu K., Kamiya N.: Symmetric-key corruption detection: when XOR-MACs meet combinatorial group testing. In: ESORICS 2019, Part I, LNCS, 2019, vol. 11735, pp. 595–615. Springer (2019). HiroseSShikataJAggregate message authentication code capable of non-adaptive group-testingIEEE Access2020821611621612610.1109/ACCESS.2020.3041638 SihagSTajerAMitraUAdaptive graph-constrained group testingIEEE Trans. Signal Process.202270381396437235210.1109/TSP.2021.3137026 Thierry-MiegNA new pooling strategy for high-throughput screening: the shifted transversal designBMC Bioinform.200672810.1186/1471-2105-7-28 Coja-OghlanAGebhardOHahn-KlimrothMLoickPOptimal group testingComb. Probab. Comput.2021306811848432835110.1017/S096354832100002X Eikemeier O., Fischlin M., Götzmann J., Lehmann A., Schröder D., Schröder P., Wagner D.: History-free aggregate message authentication codes. In: SCN: LNCS, 2010, vol. 6280, pp. 309–328. Springer (2010). Porat E., Rothschild A.: Explicit non-adaptive combinatorial group testing schemes. In: ICALP (1), LNCS, 2008, vol. 5125, pp. 748–759. Springer (2008). DorfmanRThe detection of defective members of large populationsAnn. Math. Stat.194314443644010.1214/aoms/1177731363 Damaschke P., Muhammad A.S.: Randomized group testing both query-optimal and minimal adaptive. In: SOFSEM: LNCS, 2012, vol. 7147, pp. 214–225. Springer (2012). Ahn S., Chen W., Özgür A.: Noisy adaptive group testing for community-oriented models. In: ISIT, 2023, pp. 1621–1626. IEEE (2023). GebhardOHahn-KlimrothMParczykOPenschuckMRolvienMScarlettJTanNNear-optimal sparsity-constrained group testing: improved bounds and algorithmsIEEE Trans. Inf. Theory202268532533280443322010.1109/TIT.2022.3141244 National Institute of Standards and Technology: Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication. Special Publication 800-38B. NIST (2005). https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf. Sato S., Hirose S., Shikata J.: Sequential aggregate MACs with detecting functionality revisited. In: Network and System Security (NSS 2019), LNCS, 2019, vol. 11928, pp. 387–407. Springer (2019). LiCHA sequential method for screening experimental variablesJ. Am. Stat. Assoc.19625729845547713923810.1080/01621459.1962.10480672 Hirose S., Shikata J.: Non-adaptive group-testing aggregate MAC scheme. In: The 14th International Conference on Information Security Practice and Experience (ISPEC 2018), LNCS, 2018, vol. 11125, pp. 357–372. Springer (2018). Cheraghchi M., Ribeiro J.L.: Simple codes and sparse recovery with fast decoding. In: ISIT, 2019, pp. 156–160. IEEE (2019). ScarlettJNoisy adaptive group testing: bounds and algorithmsIEEE Trans. Inf. Theory201965636463661395901010.1109/TIT.2018.2883604 Minematsu K.: Efficient message authentication codes with combinatorial group testing. In: ESORICS (1), LNCS, 2015, vol. 9326, pp. 185–202. Springer (2015). Katz J., Lindell A.Y.: Aggregate message authentication codes. In: CT-RSA, LNCS, 2008, vol. 4964, pp. 155–169. Springer (2008). J Scarlett (1498_CR25) 2019; 65 1498_CR3 N Thierry-Mieg (1498_CR29) 2006; 7 1498_CR1 1498_CR21 1498_CR6 1498_CR20 1498_CR24 1498_CR9 1498_CR23 1498_CR8 1498_CR22 CH Li (1498_CR18) 1962; 57 S Bondorf (1498_CR2) 2021; 67 International Telecommunication Union (1498_CR16) 2020 B Teo (1498_CR28) 2022; 68 D Eppstein (1498_CR10) 2007; 36 S Sihag (1498_CR27) 2022; 70 S Hirose (1498_CR13) 2020; 8 1498_CR12 R Dorfman (1498_CR7) 1943; 14 O Gebhard (1498_CR11) 2022; 68 1498_CR17 C Shangguan (1498_CR26) 2016; 12 A Cohen (1498_CR4) 2024; 19 1498_CR15 1498_CR19 FK Hwang (1498_CR14) 1972; 67 A Coja-Oghlan (1498_CR5) 2021; 30 |
References_xml | – reference: International Telecommunication UnionRecommendation ITU-T X.1366: Aggregate Message Authentication Schemes for Internet of Things Environment2020GenevaITU – reference: Coja-OghlanAGebhardOHahn-KlimrothMLoickPOptimal group testingComb. Probab. Comput.2021306811848432835110.1017/S096354832100002X – reference: LiCHA sequential method for screening experimental variablesJ. Am. Stat. Assoc.19625729845547713923810.1080/01621459.1962.10480672 – reference: HiroseSShikataJAggregate message authentication code capable of non-adaptive group-testingIEEE Access2020821611621612610.1109/ACCESS.2020.3041638 – reference: DorfmanRThe detection of defective members of large populationsAnn. Math. Stat.194314443644010.1214/aoms/1177731363 – reference: Katz J., Lindell A.Y.: Aggregate message authentication codes. In: CT-RSA, LNCS, 2008, vol. 4964, pp. 155–169. Springer (2008). – reference: ScarlettJNoisy adaptive group testing: bounds and algorithmsIEEE Trans. Inf. Theory201965636463661395901010.1109/TIT.2018.2883604 – reference: CohenACohenAGurewitzOSecure adaptive group testingIEEE Trans. Inf. Forensics Secur.2024192786279910.1109/TIFS.2024.3354188 – reference: SihagSTajerAMitraUAdaptive graph-constrained group testingIEEE Trans. Signal Process.202270381396437235210.1109/TSP.2021.3137026 – reference: Du D.-Z., Hwang F.K.: Combinatorial Group Testing and Its Applications, Series on Applied Mathematics, 2nd edn, vol. 12. World Scientific, Singapore (2000). – reference: TeoBScarlettJNoisy adaptive group testing via noisy binary searchIEEE Trans. Inf. Theory202268533403353443322410.1109/TIT.2022.3140604 – reference: Minematsu K., Kamiya N.: Symmetric-key corruption detection: when XOR-MACs meet combinatorial group testing. In: ESORICS 2019, Part I, LNCS, 2019, vol. 11735, pp. 595–615. Springer (2019). – reference: Porat E., Rothschild A.: Explicit non-adaptive combinatorial group testing schemes. In: ICALP (1), LNCS, 2008, vol. 5125, pp. 748–759. Springer (2008). – reference: Cheraghchi M., Ribeiro J.L.: Simple codes and sparse recovery with fast decoding. In: ISIT, 2019, pp. 156–160. IEEE (2019). – reference: Sato S., Shikata J.: Interactive aggregate message authentication scheme with detecting functionality. In: AINA, Advances in Intelligent Systems and Computing, 2019, vol. 926, pp. 1316–1328. Springer (2019). – reference: ShangguanCGeGNew bounds on the number of tests for disjunct matricesIEEE Trans. Inf. Theory2016126275187521359909810.1109/TIT.2016.2614726 – reference: Thierry-MiegNA new pooling strategy for high-throughput screening: the shifted transversal designBMC Bioinform.200672810.1186/1471-2105-7-28 – reference: HwangFKA method for detecting all defective members in a population by group testingJ. Am. Stat. Assoc.19726733960560810.1080/01621459.1972.10481257 – reference: GebhardOHahn-KlimrothMParczykOPenschuckMRolvienMScarlettJTanNNear-optimal sparsity-constrained group testing: improved bounds and algorithmsIEEE Trans. Inf. Theory202268532533280443322010.1109/TIT.2022.3141244 – reference: National Institute of Standards and Technology: Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication. Special Publication 800-38B. NIST (2005). https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf. – reference: Sato S., Hirose S., Shikata J.: Sequential aggregate MACs with detecting functionality revisited. In: Network and System Security (NSS 2019), LNCS, 2019, vol. 11928, pp. 387–407. Springer (2019). – reference: Eikemeier O., Fischlin M., Götzmann J., Lehmann A., Schröder D., Schröder P., Wagner D.: History-free aggregate message authentication codes. In: SCN: LNCS, 2010, vol. 6280, pp. 309–328. Springer (2010). – reference: BondorfSChenBScarlettJYuHZhaoYSublinear-time non-adaptive group testing with o(k log n) tests via bit-mixing codingIEEE Trans. Inf. Theory20216731559157010.1109/TIT.2020.3046113 – reference: Ahn S., Chen W., Özgür A.: Noisy adaptive group testing for community-oriented models. In: ISIT, 2023, pp. 1621–1626. IEEE (2023). – reference: EppsteinDGoodrichMTHirschbergDSImproved combinatorial group testing algorithms for real-world problem sizesSIAM J. Comput.200736513601375228408510.1137/050631847 – reference: Damaschke P., Muhammad A.S.: Randomized group testing both query-optimal and minimal adaptive. In: SOFSEM: LNCS, 2012, vol. 7147, pp. 214–225. Springer (2012). – reference: Minematsu K.: Efficient message authentication codes with combinatorial group testing. In: ESORICS (1), LNCS, 2015, vol. 9326, pp. 185–202. Springer (2015). – reference: Hirose S., Shikata J.: Non-adaptive group-testing aggregate MAC scheme. In: The 14th International Conference on Information Security Practice and Experience (ISPEC 2018), LNCS, 2018, vol. 11125, pp. 357–372. Springer (2018). – reference: Indyk P., Ngo H.Q., Rudra A.: Efficiently decodable non-adaptive group testing. In: SODA, 2010, pp. 1126–1142. SIAM (2010). – ident: 1498_CR9 doi: 10.1007/978-3-642-15317-4_20 – volume: 19 start-page: 2786 year: 2024 ident: 1498_CR4 publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2024.3354188 – volume: 14 start-page: 436 issue: 4 year: 1943 ident: 1498_CR7 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177731363 – volume: 8 start-page: 216116 year: 2020 ident: 1498_CR13 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041638 – volume: 36 start-page: 1360 issue: 5 year: 2007 ident: 1498_CR10 publication-title: SIAM J. Comput. doi: 10.1137/050631847 – ident: 1498_CR8 doi: 10.1142/9789812798107 – volume: 70 start-page: 381 year: 2022 ident: 1498_CR27 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2021.3137026 – ident: 1498_CR1 doi: 10.1109/ISIT54713.2023.10206776 – volume: 57 start-page: 455 issue: 298 year: 1962 ident: 1498_CR18 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1962.10480672 – ident: 1498_CR20 doi: 10.1007/978-3-030-29959-0_29 – ident: 1498_CR3 doi: 10.1109/ISIT.2019.8849702 – volume: 67 start-page: 1559 issue: 3 year: 2021 ident: 1498_CR2 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2020.3046113 – volume: 68 start-page: 3253 issue: 5 year: 2022 ident: 1498_CR11 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2022.3141244 – ident: 1498_CR6 doi: 10.1007/978-3-642-27660-6_18 – volume: 30 start-page: 811 issue: 6 year: 2021 ident: 1498_CR5 publication-title: Comb. Probab. Comput. doi: 10.1017/S096354832100002X – ident: 1498_CR12 doi: 10.1007/978-3-319-99807-7_22 – ident: 1498_CR22 doi: 10.1007/978-3-540-70575-8_61 – ident: 1498_CR19 doi: 10.1007/978-3-319-24174-6_10 – volume: 12 start-page: 7518 issue: 62 year: 2016 ident: 1498_CR26 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2016.2614726 – ident: 1498_CR17 doi: 10.1007/978-3-540-79263-5_10 – ident: 1498_CR21 – volume: 67 start-page: 605 issue: 339 year: 1972 ident: 1498_CR14 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1972.10481257 – volume: 65 start-page: 3646 issue: 6 year: 2019 ident: 1498_CR25 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2018.2883604 – volume: 7 start-page: 28 year: 2006 ident: 1498_CR29 publication-title: BMC Bioinform. doi: 10.1186/1471-2105-7-28 – ident: 1498_CR15 doi: 10.1137/1.9781611973075.91 – ident: 1498_CR24 doi: 10.1007/978-3-030-15032-7_110 – volume-title: Recommendation ITU-T X.1366: Aggregate Message Authentication Schemes for Internet of Things Environment year: 2020 ident: 1498_CR16 – ident: 1498_CR23 doi: 10.1007/978-3-030-36938-5_23 – volume: 68 start-page: 3340 issue: 5 year: 2022 ident: 1498_CR28 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2022.3140604 |
SSID | ssj0001302 |
Score | 2.3683991 |
Snippet | In this paper, we propose a formal security model and a construction methodology of interactive aggregate message authentication codes with detecting... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4423 |
SubjectTerms | Adaptive algorithms Authentication Coding and Information Theory Computer Science Cryptology Discrete Mathematics in Computer Science Messages |
Title | Interactive aggregate message authentication equipped with detecting functionality from adaptive group testing |
URI | https://link.springer.com/article/10.1007/s10623-024-01498-4 https://www.proquest.com/docview/3132130339 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsQwEB1xNFBwI5ZLLujAUtZ2DpcrxCEQVKwEVeQrKwrCwmb_nxlvwgKCgjJONEWePW8843kGOJG5C7nLNPe2yLjCAJZb6VPuZeK09MJUmhqc7-6z66G6eUwf26awSXfavStJRk_9pdkNqZojp3AK6wuuFmE5pb07zuKhGHz6XyrFRYU9QRqbQrStMr_b-E5H8xjzR1k0ss3lBqy1YSIbzHDdhIVQb8F6dwUDa1fkFqx-0RPEp7tPEdbJNtQx22eiQ2NmhBtrSpmxF7r0ZIQjdLa9btqcHQtv0-fxOHhGmVnmAxUX0Cgj4pvlCzFeZ9SNwow342g0toSwhoQ66tEODC8vHs6veXu9AnciTxruE5caUyntK6ulLYzP-yGTVSF83yR5pZ1KKomYZc5kuRUZ7uyUsVXwFa5yo-UuLNWvddgDJlKnDAaOfWuCcoXQSIE40s9zm6IT8T047f5yOZ6paJRzvWTCpERMyohJqXpw2AFRtitqUpLEJPGt1D0468CZv_7b2v7_Pj-AFUHzI55YOYSl5n0ajjDuaOwxLA-unm4vjuN0-wAOtdME |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6V9FB66CMFNRDaPXCjKzm768ceowoUIOFEpNysfTnigAnE_H9mNjahCA49em3NwbMz8-08vgU4lrkLucs097bIuEIAy630KfcycVp6YSpNA86zq2wyVxeLdNEOha27bveuJBk99YthNwzVHGMKJ1hfcLUDHxEMFNTINRfjZ_9LpbjIsCeIY1OIdlTmbRn_hqMtxnxVFo3R5uwbfGlhIhtv9PodPoS6D1-7KxhYa5F9-PyCTxCfZs8krOsfUMdsn4kOjZklHqwpZcZu6dKTJa5Qb3vdtDk7Fu4fb1ar4BllZpkPVFxAoYwC3yZfiHid0TQKM96sotA4EsIaIuqol3swPzu9_jvh7fUK3Ik8abhPXGpMpbSvrJa2MD4fhUxWhfAjk-SVdiqpJOoscybLrcjwZKeMrYKv0MqNlvvQq-_q8BOYSJ0yCBxH1gTlCqExBOLKKM9tik7ED-Ck-8vlasOiUW75kkknJeqkjDop1QCGnSLK1qLWJVFMUryVegB_OuVsX78v7eD_Pv8NnybXs2k5Pb-6PIRdQXsldq8Modc8PIYjxCCN_RW33BOFYdRj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkSp6ALqAurBQH7iBtYntPHysgFWhD3Fgpb1Ffq56aAg0_f_MeJPuFsGBY5xoDhl75vOMv88A72TlQuVKzb2tS64QwHIrfcG9zJyWXpioieB8cVmeLtXXVbHaYfGn0-5jS3LDaSCVprafdz7Od4hvmLY55hdOEL_m6iE8wnCc07xeipO7WExtuaS2J0hvU4iBNvN3G_dT0xZv_tEiTZln8QyeDJCRnWx8fAgPQjuBp-N1DGxYnRM42NEWxKeLO0HWm-fQpsqfScGNmTVusql8xq7pApQ1jtA597Yf6ncs_Ly96rrgGVVpmQ_UaECjjJLgpnaI2J0RM4UZb7pkNNFDWE-iHe36BSwXn79_POXDVQvciSrruc9cYUxU2kerpa2Nr_JQylgLn5usitqpLEr0X-lMWVlR4i5PGRuDj7jijZYvYa_90YYjYKJwyiCIzK0JytVCYzrEkbyqbIEBxU_h_fiXm26jqNFstZPJJw36pEk-adQUZqMjmmF13TQkN0m5V-opfBids339b2uv_u_zY9j_9mnRnH-5PHsNjwVNlXSQZQZ7_a_b8AbhSG_fphn3G9EB2J8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interactive+aggregate+message+authentication+equipped+with+detecting+functionality+from+adaptive+group+testing&rft.jtitle=Designs%2C+codes%2C+and+cryptography&rft.au=Minematsu%2C+Kazuhiko&rft.au=Sato%2C+Shingo&rft.au=Shikata%2C+Junji&rft.date=2024-12-01&rft.issn=0925-1022&rft.eissn=1573-7586&rft.volume=92&rft.issue=12&rft.spage=4423&rft.epage=4451&rft_id=info:doi/10.1007%2Fs10623-024-01498-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10623_024_01498_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-1022&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-1022&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-1022&client=summon |