A blind source separation algorithm for decoding the mechanical spatiotemporal responses of motor units
Skeletal muscles are essential parts of the human motor system and are mainly regulated by motor units (MUs) through the nervous system. As a widely used noninvasive measurement of MUs, surface EMG cannot obtain in-depth spatial information on MUs. Ultrafast ultrasound (UUS) can measure the mechanic...
Saved in:
Published in | Science China. Technological sciences Vol. 68; no. 5 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Science China Press
01.05.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1674-7321 1869-1900 |
DOI | 10.1007/s11431-024-2907-y |
Cover
Loading…
Abstract | Skeletal muscles are essential parts of the human motor system and are mainly regulated by motor units (MUs) through the nervous system. As a widely used noninvasive measurement of MUs, surface EMG cannot obtain in-depth spatial information on MUs. Ultrafast ultrasound (UUS) can measure the mechanical response of MUs from muscle morphology with image sequences. This research proposed a blind source separation method with enhanced interpretability for decoding ultrasound image sequences to obtain the mechanical response of MUs. In particular, the spatiotemporal data were decomposed using non-negative matrix factorization (NMF). Then, the spatial components’ multiple probability density functions were obtained using a parametric self-fitting function. The proposed algorithm, called NMF-stICA, was validated on ten groups of computational simulation datasets. The accuracies of the obtained spatial and temporal components were 87.26% ± 2.18% and 85.13% ± 1.83%, respectively. Further, a dynamic ultrasound phantom experiment was performed, and all the potential spatial components were correctly decoded. Additionally, isometric contraction human experiments were conducted on the biceps muscle of eight subjects with simultaneous acquisition of UUS and intramuscular electromyography (iEMG). The results showed that the rate of agreement was 58.71%, comparing the decoded components with the firing pattern of iEMG. The proposed decoding method can get precise spatial position and the firing pattern of the MUs in the skeletal muscle. This might help to study the neuromechanical properties of MUs and localize disease in specific muscle regions. |
---|---|
AbstractList | Skeletal muscles are essential parts of the human motor system and are mainly regulated by motor units (MUs) through the nervous system. As a widely used noninvasive measurement of MUs, surface EMG cannot obtain in-depth spatial information on MUs. Ultrafast ultrasound (UUS) can measure the mechanical response of MUs from muscle morphology with image sequences. This research proposed a blind source separation method with enhanced interpretability for decoding ultrasound image sequences to obtain the mechanical response of MUs. In particular, the spatiotemporal data were decomposed using non-negative matrix factorization (NMF). Then, the spatial components’ multiple probability density functions were obtained using a parametric self-fitting function. The proposed algorithm, called NMF-stICA, was validated on ten groups of computational simulation datasets. The accuracies of the obtained spatial and temporal components were 87.26% ± 2.18% and 85.13% ± 1.83%, respectively. Further, a dynamic ultrasound phantom experiment was performed, and all the potential spatial components were correctly decoded. Additionally, isometric contraction human experiments were conducted on the biceps muscle of eight subjects with simultaneous acquisition of UUS and intramuscular electromyography (iEMG). The results showed that the rate of agreement was 58.71%, comparing the decoded components with the firing pattern of iEMG. The proposed decoding method can get precise spatial position and the firing pattern of the MUs in the skeletal muscle. This might help to study the neuromechanical properties of MUs and localize disease in specific muscle regions. |
ArticleNumber | 1520303 |
Author | Zhu, Xiangyang Yin, Zongtian Chen, Chen Ding, Han Kang, Yiming Meng, Jianjun |
Author_xml | – sequence: 1 givenname: Zongtian surname: Yin fullname: Yin, Zongtian organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University – sequence: 2 givenname: Chen surname: Chen fullname: Chen, Chen organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University – sequence: 3 givenname: Yiming surname: Kang fullname: Kang, Yiming organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University – sequence: 4 givenname: Han surname: Ding fullname: Ding, Han organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University – sequence: 5 givenname: Xiangyang surname: Zhu fullname: Zhu, Xiangyang organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University – sequence: 6 givenname: Jianjun surname: Meng fullname: Meng, Jianjun email: mengjianjunxs008@sjtu.edu.cn organization: State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University |
BookMark | eNp1kD1rwzAQhkVJoWmaH9BN0FmtZDmWNYbQLwh0aWchyyfHwZZcSRny76vgQqfecnfwvvfx3KKF8w4Qumf0kVEqniJjJWeEFiUpJBXkfIWWrK4kYZLSRa4rURLBC3aD1jEeaQ5eS8rKJeq2uBl61-LoT8EAjjDpoFPvHdZD50OfDiO2PuAWjG971-F0ADyCOWjXGz3gOF3UCcbJh9wGiJN3ESL2Fo8-ZefJ9SneoWurhwjr37xCXy_Pn7s3sv94fd9t98QUgiZibGupNfk2WtGi1rotKlHZ2rZl0wgjoKa1lVJDK6GSQmwaYSXdgOBWy6rWfIUe5rlT8N8niEkd82Mur1Q80-BswyuWVWxWmeBjDGDVFPpRh7NiVF2QqhmpykjVBak6Z08xe2LWug7C3-T_TT8Ntn2I |
Cites_doi | 10.1007/s11831-021-09694-4 10.1016/j.jelekin.2008.09.002 10.1152/japplphysiol.00090.2013 10.1038/44565 10.1016/j.bspc.2019.101637 10.1016/j.clinph.2009.01.016 10.1186/1471-2342-10-9 10.1007/s10439-020-02536-7 10.1109/TUFFC.2009.1067 10.1109/TNSRE.2010.2041593 10.1002/cphy.c100087 10.1016/j.jelekin.2023.102825 10.1515/jacsm-2017-0002 10.1016/0734-189X(83)90108-1 10.1109/ACCESS.2020.3023495 10.1109/TBME.2019.2914966 10.1016/S1050-6411(98)00026-1 10.3390/e17063989 10.1007/s40141-021-00337-0 10.1109/TBME.2023.3340019 10.1109/ACCESS.2021.3067162 10.1109/TBME.2021.3104621 10.1088/1741-2552/ac8c6c 10.1088/1741-2560/8/6/066002 10.1109/58.393110 10.1016/0013-4694(84)90031-2 10.1142/S0129065717500253 10.1109/TBME.2024.3436053 10.1002/advs.202302345 10.1007/s00500-016-2474-6 10.1007/s11596-012-0023-9 10.1038/s41598-020-79863-1 10.1007/s10278-007-9044-5 10.1109/JBHI.2022.3203084 10.1186/s13104-022-06093-1 10.1121/1.390734 10.1109/ACCESS.2020.2980053 10.1038/s41598-022-12999-4 10.1006/nimg.2001.0986 10.1109/TNNLS.2021.3110109 10.1088/0967-3334/35/7/R143 10.1177/016173469902100402 10.1109/TUFFC.2012.2508 10.1088/1741-2552/aaf4c3 10.1016/B978-1-4831-7818-9.50017-4 10.1016/S1567-4231(09)70121-2 10.1088/1741-2560/13/2/026027 10.1038/srep42011 |
ContentType | Journal Article |
Copyright | Science China Press 2025 Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Science China Press 2025 – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11431-024-2907-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1869-1900 |
ExternalDocumentID | 10_1007_s11431_024_2907_y |
GroupedDBID | -SC -S~ -Y2 .VR 06D 0R~ 0VY 1N0 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 40D 40E 5VR 5VS 8TC 8UJ 92E 92I 95- 95. 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABDBE ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFDZB AFLOW AFOHR AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN B-. BDATZ BSONS CAG CAJEC CCEZO CEKLB CHBEP CJPJV COF CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 H13 HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~Z J-C JBSCW JZLTJ KOV LLZTM MA- N2Q NB0 NPVJJ NQJWS O9J P9P PF0 PT4 Q-- QOS R89 RIG ROL RSV S16 S3B SAP SCL SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TCJ TGP TR2 TSG TUC U1G U2A U5M UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~A9 AAYXX ABRTQ CITATION |
ID | FETCH-LOGICAL-c270t-cfdf0fc90106028aad2676f8fd4bb7c7e808f99aed9e69775b7f905e73fa968a3 |
IEDL.DBID | U2A |
ISSN | 1674-7321 |
IngestDate | Fri Jul 25 09:22:19 EDT 2025 Tue Aug 05 12:06:55 EDT 2025 Sun Jun 15 01:10:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | ultrafast ultrasound blind source separation spatiotemporal ICA motor units mechanical response |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-cfdf0fc90106028aad2676f8fd4bb7c7e808f99aed9e69775b7f905e73fa968a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3190315361 |
PQPubID | 2043625 |
ParticipantIDs | proquest_journals_3190315361 crossref_primary_10_1007_s11431_024_2907_y springer_journals_10_1007_s11431_024_2907_y |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Science China. Technological sciences |
PublicationTitleAbbrev | Sci. China Technol. Sci |
PublicationYear | 2025 |
Publisher | Science China Press Springer Nature B.V |
Publisher_xml | – name: Science China Press – name: Springer Nature B.V |
References | T Loupas (2907_CR33) 1995; 42 T Yu (2907_CR12) 2020; 67 Y Liu (2907_CR46) 2012; 32 Z Sheng (2907_CR21) 2022; 10 Z Yin (2907_CR17) 2022; 26 S Karimimehr (2907_CR4) 2017; 27 D Lemonnier (2907_CR23) 2024; 45 V G Biju (2907_CR45) 2017; 9 A Holobar (2907_CR10) 2014; 35 M Peolsson (2907_CR15) 2010; 10 F Negro (2907_CR44) 2016; 13 M Carbonaro (2907_CR47) 2022; 12 L Sandrin (2907_CR19) 1999; 21 R Rohlén (2907_CR30) 2023; 73 E Lubel (2907_CR27) 2024; 71 R Rohlén (2907_CR52) 2020; 10 A Mohammad-Djafari (2907_CR40) 2015; 17 A V Dieterich (2907_CR49) 2017; 7 G D Finlayson (2907_CR37) 2004 B Mambrito (2907_CR2) 1984; 58 H Huang (2907_CR22) 2023; 10 R Rohlén (2907_CR29) 2022; 15 A Botter (2907_CR48) 2013; 115 S F Burch (2907_CR36) 1983; 23 D Y Tsai (2907_CR39) 2008; 21 Z Sheng (2907_CR51) 2025; 72 R Merletti (2907_CR7) 2008; 18 E Lubel (2907_CR26) 2022; 19 C Disselhorst-Klug (2907_CR6) 1999; 9 D P Shattuck (2907_CR18) 1984; 75 R Waasdorp (2907_CR24) 2021; 9 C J Heckman (2907_CR1) 2012 S Pillen (2907_CR16) 2009; 120 H R Marateb (2907_CR9) 2011; 8 G Montaldo (2907_CR20) 2009; 56 H Zhang (2907_CR38) 2003 E Stålberg (2907_CR11) 2003 O Couture (2907_CR32) 2012; 59 D D Lee (2907_CR35) 1999; 401 S J Myers (2907_CR3) 1994 J V Stone (2907_CR28) 2002; 15 T Yu (2907_CR5) 2022; 69 R Rohlén (2907_CR25) 2020; 8 C Chen (2907_CR13) 2019; 16 A Holobar (2907_CR8) 2010; 18 H Ali (2907_CR31) 2020; 8 C Chen (2907_CR14) 2020; 55 X Wu (2907_CR41) 2023; 34 Z Sheng (2907_CR50) 2021; 49 A G Gad (2907_CR43) 2022; 29 T Rasheed (2907_CR34) 2009 D Wang (2907_CR42) 2018; 22 |
References_xml | – volume: 29 start-page: 2531 year: 2022 ident: 2907_CR43 publication-title: Arch Computat Methods Eng doi: 10.1007/s11831-021-09694-4 – volume: 18 start-page: 879 year: 2008 ident: 2907_CR7 publication-title: J Electromyography Kinesiology doi: 10.1016/j.jelekin.2008.09.002 – volume: 115 start-page: 1203 year: 2013 ident: 2907_CR48 publication-title: J Appl Physiol doi: 10.1152/japplphysiol.00090.2013 – volume: 401 start-page: 788 year: 1999 ident: 2907_CR35 publication-title: Nature doi: 10.1038/44565 – volume: 55 start-page: 101637 year: 2020 ident: 2907_CR14 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2019.101637 – volume: 120 start-page: 932 year: 2009 ident: 2907_CR16 publication-title: Clin NeuroPhysiol doi: 10.1016/j.clinph.2009.01.016 – volume: 10 start-page: 9 year: 2010 ident: 2907_CR15 publication-title: BMC Med Imag doi: 10.1186/1471-2342-10-9 – volume: 49 start-page: 262 year: 2021 ident: 2907_CR50 publication-title: Ann Biomed Eng doi: 10.1007/s10439-020-02536-7 – start-page: 5 volume-title: Proceedings of the Computer Vision - ECCV 2004 year: 2004 ident: 2907_CR37 – volume: 56 start-page: 489 year: 2009 ident: 2907_CR20 publication-title: IEEE Trans Ultrason Ferroelect Freq Contr doi: 10.1109/TUFFC.2009.1067 – volume: 18 start-page: 221 year: 2010 ident: 2907_CR8 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2010.2041593 – start-page: 2629 volume-title: Comprehensive Physiology year: 2012 ident: 2907_CR1 doi: 10.1002/cphy.c100087 – volume: 73 start-page: 102825 year: 2023 ident: 2907_CR30 publication-title: J Electromyography Kinesiology doi: 10.1016/j.jelekin.2023.102825 – volume: 9 start-page: 23 year: 2017 ident: 2907_CR45 publication-title: J Appl Comput Sci Methods doi: 10.1515/jacsm-2017-0002 – volume: 23 start-page: 113 year: 1983 ident: 2907_CR36 publication-title: Comput Vision Graphics Image Process doi: 10.1016/0734-189X(83)90108-1 – volume: 8 start-page: 170595 year: 2020 ident: 2907_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3023495 – volume: 67 start-page: 428 year: 2020 ident: 2907_CR12 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2019.2914966 – volume: 9 start-page: 67 year: 1999 ident: 2907_CR6 publication-title: J Electromyography Kinesiology doi: 10.1016/S1050-6411(98)00026-1 – volume: 17 start-page: 3989 year: 2015 ident: 2907_CR40 publication-title: Entropy doi: 10.3390/e17063989 – volume: 10 start-page: 45 year: 2022 ident: 2907_CR21 publication-title: Curr Phys Med Rehabil Rep doi: 10.1007/s40141-021-00337-0 – volume: 71 start-page: 1466 year: 2024 ident: 2907_CR27 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2023.3340019 – volume: 45 start-page: 100818 year: 2024 ident: 2907_CR23 publication-title: Inno Res Biomed Eng – volume: 9 start-page: 45277 year: 2021 ident: 2907_CR24 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3067162 – volume: 69 start-page: 746 year: 2022 ident: 2907_CR5 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2021.3104621 – volume: 19 start-page: 056005 year: 2022 ident: 2907_CR26 publication-title: J Neural Eng doi: 10.1088/1741-2552/ac8c6c – volume: 8 start-page: 066002 year: 2011 ident: 2907_CR9 publication-title: J Neural Eng doi: 10.1088/1741-2560/8/6/066002 – volume: 42 start-page: 672 year: 1995 ident: 2907_CR33 publication-title: IEEE Trans Ultrason Ferroelect Freq Contr doi: 10.1109/58.393110 – volume: 58 start-page: 175 year: 1984 ident: 2907_CR2 publication-title: Electroencephalography Clin NeuroPhysiol doi: 10.1016/0013-4694(84)90031-2 – volume: 27 start-page: 1750025 year: 2017 ident: 2907_CR4 publication-title: Int J Neur Syst doi: 10.1142/S0129065717500253 – volume: 72 start-page: 24 year: 2025 ident: 2907_CR51 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2024.3436053 – volume: 10 start-page: 2302345 year: 2023 ident: 2907_CR22 publication-title: Adv Sci doi: 10.1002/advs.202302345 – volume: 22 start-page: 387 year: 2018 ident: 2907_CR42 publication-title: Soft Comput doi: 10.1007/s00500-016-2474-6 – volume: 32 start-page: 130 year: 2012 ident: 2907_CR46 publication-title: J Huazhong Univ Sci Tech Med Sci doi: 10.1007/s11596-012-0023-9 – volume: 10 start-page: 22382 year: 2020 ident: 2907_CR52 publication-title: Sci Rep doi: 10.1038/s41598-020-79863-1 – volume: 21 start-page: 338 year: 2008 ident: 2907_CR39 publication-title: J Digit Imag doi: 10.1007/s10278-007-9044-5 – volume: 26 start-page: 5384 year: 2022 ident: 2907_CR17 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2022.3203084 – volume: 15 start-page: 207 year: 2022 ident: 2907_CR29 publication-title: BMC Res Notes doi: 10.1186/s13104-022-06093-1 – volume: 75 start-page: 1273 year: 1984 ident: 2907_CR18 publication-title: J Acoust Soc Am doi: 10.1121/1.390734 – volume: 8 start-page: 50299 year: 2020 ident: 2907_CR25 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2980053 – volume: 12 start-page: 8855 year: 2022 ident: 2907_CR47 publication-title: Sci Rep doi: 10.1038/s41598-022-12999-4 – start-page: 12 volume-title: Proceedings of the Storage and Retrieval Methods and Applications for Multimedia 2004 year: 2003 ident: 2907_CR38 – volume: 15 start-page: 407 year: 2002 ident: 2907_CR28 publication-title: Neuroimage doi: 10.1006/nimg.2001.0986 – volume: 34 start-page: 2896 year: 2023 ident: 2907_CR41 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2021.3110109 – volume: 35 start-page: R143 year: 2014 ident: 2907_CR10 publication-title: Physiol Meas doi: 10.1088/0967-3334/35/7/R143 – volume: 21 start-page: 259 year: 1999 ident: 2907_CR19 publication-title: Ultrason Imag doi: 10.1177/016173469902100402 – volume: 59 start-page: 2676 year: 2012 ident: 2907_CR32 publication-title: IEEE Trans Ultrason Ferroelect Freq Contr doi: 10.1109/TUFFC.2012.2508 – volume: 16 start-page: 026005 year: 2019 ident: 2907_CR13 publication-title: J Neural Eng doi: 10.1088/1741-2552/aaf4c3 – start-page: 12 volume-title: Proceedings of the 13th International Conference on Biomedical Engineering year: 2009 ident: 2907_CR34 – start-page: 243 volume-title: The Physiological Basis of Rehabilitation Medicine year: 1994 ident: 2907_CR3 doi: 10.1016/B978-1-4831-7818-9.50017-4 – start-page: 213 volume-title: Handbook of Clinical Neurophysiology year: 2003 ident: 2907_CR11 doi: 10.1016/S1567-4231(09)70121-2 – volume: 13 start-page: 026027 year: 2016 ident: 2907_CR44 publication-title: J Neural Eng doi: 10.1088/1741-2560/13/2/026027 – volume: 7 start-page: 42011 year: 2017 ident: 2907_CR49 publication-title: Sci Rep doi: 10.1038/srep42011 |
SSID | ssj0000389014 |
Score | 2.3789768 |
Snippet | Skeletal muscles are essential parts of the human motor system and are mainly regulated by motor units (MUs) through the nervous system. As a widely used... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Algorithms Decoding Engineering Image sequencing Mechanical analysis Muscles Nervous system Probability density functions Research Paper Spatial data Spatiotemporal data Ultrasonic imaging |
Title | A blind source separation algorithm for decoding the mechanical spatiotemporal responses of motor units |
URI | https://link.springer.com/article/10.1007/s11431-024-2907-y https://www.proquest.com/docview/3190315361 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAPEWhVB6YQJHcPOx4jFBLBYKJSmWK_CxDm6CmHfrvOedBAMHAnOSk3Nm-73x33yF0bR2M0JR4Ph-6NKMIvFgb4wWKKsJVaFQ57u3pmU6m4cMsmtV93EVT7d6kJMuTum12A9cOoa8fglzCvO0u6kYudIdFPPWTz4sVxxhHSk5vV2DvscAfNtnM36R890ctyPyRFy3dzfgQHdQ4ESeVYY_QjsmO0f4X9sATNE-whB_RuLqAx4WpeLzzDIvFPIeo_22JAZNiDSGmc1EYwB5eGtfr60yDi7KauianWuBVVS5rCpxbDBaELzew4YtTNB2PXu4mXj03wVM-I2tPWW2JVa7wggJ8EEL7lFEbWx1KyRQzMYkt58Jobijgv0gyy0lkWGAFp7EIzlAnyzNzjjBXWjFqSGhCHkbSxIH1iYq0lEToiMoeumm0l75X9BhpS4TsVJ2CqlOn6nTbQ_1Gv2m9U4oUjgA3aCKgwx66bXTePv5T2MW_3r5Ee74b3FtWKvZRZ73amCtAE2s5QN3k_vVxNChX0Qd-hMXe |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9MoEhuHnY8VghUoO3USt0iP8vQJqhph_57znkQQDAwJzkp58d95_v8HUK31sEITYnn864rM4rAi7UxXqCoIlyFRhXt3oYj2p-EL9NoWt3jzmu2e12SLHbq5rIbhHZIff0Q7BLmbbbRDmCB2PG4Jn7v82DFKcaRQtPbEew9Fvjdupr5m5Xv8agBmT_qokW4eTpEBxVOxL1yYI_QlkmP0f4X9cATNOthCT-icXkAj3NT6nhnKRbzWQZZ_9sCAybFGlJMF6IwgD28MO6urxsanBds6kqcao6XJV3W5DizGEYQvlzDgs9P0eTpcfzQ96q-CZ7yGVl5ympLrHLECwrwQQjtU0ZtbHUoJVPMxCS2nAujuaGA_yLJLCeRYYEVnMYiOEOtNEvNOcJcacWoIaEJeRhJEwfWJyrSUhKhIyrb6K72XvJeymMkjRCyc3UCrk6cq5NNG3Vq_ybVSskT2AJco4mAdtvovvZ58_hPYxf_evsG7fbHw0EyeB69XqI93zXxLViLHdRaLdfmCpDFSl4XM-kDvwPHPQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOiFUUCvjACRTV2ez4WAFV2SoOVOot8lqQ2qRq0kP_HjsLAQQHzkkcZcbOPHvevAHgUlsYITFyPOraNCPznUgq5fgCC0RFoETR7u15iAej4GEcjqs-p1nNdq9TkmVNg1VpSvLuXOpuU_hmwrzZBnuBeQcizmodbJi_sWun9cjrfR6yWPU4VOh7W7K9Q3zPrTObv43yPTY1gPNHjrQIPf1dsFNhRtgrnbwH1lSyD7a_KAkegEkPcvNREpaH8TBTpaZ3mkA2naSL9_xtBg0-hdJsN224ggb4wZmydb_WTTArmNWVUNUULkrqrMpgqqHxpnlyaRZ_dghG_bvXm4FT9VBwhEdQ7ggtNdLCkjCwgRKMSQ8TrCMtA86JICpCkaaUKUkVNlgw5ERTFCria0ZxxPwj0ErSRB0DSIUUBCsUqIAGIVeRrz0kQsk5YjLEvA2uauvF81IqI25Eka2pY2Pq2Jo6XrVBp7ZvXK2aLDYOtE0nfOy2wXVt8-byn4Od_OvuC7D5ctuPn-6Hj6dgy7P9fAsCYwe08sVSnRmQkfPzYiJ9AFEFy3k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+blind+source+separation+algorithm+for+decoding+the+mechanical+spatiotemporal+responses+of+motor+units&rft.jtitle=Science+China.+Technological+sciences&rft.au=Yin%2C+Zongtian&rft.au=Chen%2C+Chen&rft.au=Kang%2C+Yiming&rft.au=Ding%2C+Han&rft.date=2025-05-01&rft.issn=1674-7321&rft.eissn=1869-1900&rft.volume=68&rft.issue=5&rft_id=info:doi/10.1007%2Fs11431-024-2907-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11431_024_2907_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-7321&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-7321&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-7321&client=summon |