Development and Experimental Testing of a Differential Thermal Expansion Type Gas-Gap Heat Switch for Dilution Refrigerators
The gas-gap heat switch, with its stability and reliability, high switching ratio, and a design that is simple, flexible, and easily scalable, has become the preferred option for efficient pre-cooling in various low-temperature devices such as dilution refrigerators. We have successfully developed a...
Saved in:
Published in | Journal of low temperature physics Vol. 218; no. 3; pp. 193 - 212 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The gas-gap heat switch, with its stability and reliability, high switching ratio, and a design that is simple, flexible, and easily scalable, has become the preferred option for efficient pre-cooling in various low-temperature devices such as dilution refrigerators. We have successfully developed a differential thermal expansion type of gas-gap heat switch. This paper details its basic principles, fabrication process, performance testing, and preliminary application in dilution refrigerator system. The typical thermal conductivity of the gas-gap heat switch in the temperature range of 4–30 K has been experimentally measured in both ON and OFF states, and the results are generally consistent with the calculated data. Tests in a dilution refrigerator with a cooling power of approximately 400 μW at 100 mK showed that the developed gas-gap heat switch assembly could perform its functions of thermal connection and disconnection properly and reduce the temperature of the still cold plate to about 7 K within roughly 24 h, significantly improving the original cooling time. Additionally, its heat leakage in the millikelvin temperature range does not affect the attainment of temperatures around 10 mK. Finally, combining the calculated results, we quantitatively analyzed the impact and feasible solutions for the performance improvement of this type of gas-gap heat switch. The research work presented in this paper is of reference value for efficient pre-cooling in dilution refrigerators and other low-temperature equipment. |
---|---|
AbstractList | The gas-gap heat switch, with its stability and reliability, high switching ratio, and a design that is simple, flexible, and easily scalable, has become the preferred option for efficient pre-cooling in various low-temperature devices such as dilution refrigerators. We have successfully developed a differential thermal expansion type of gas-gap heat switch. This paper details its basic principles, fabrication process, performance testing, and preliminary application in dilution refrigerator system. The typical thermal conductivity of the gas-gap heat switch in the temperature range of 4–30 K has been experimentally measured in both ON and OFF states, and the results are generally consistent with the calculated data. Tests in a dilution refrigerator with a cooling power of approximately 400 μW at 100 mK showed that the developed gas-gap heat switch assembly could perform its functions of thermal connection and disconnection properly and reduce the temperature of the still cold plate to about 7 K within roughly 24 h, significantly improving the original cooling time. Additionally, its heat leakage in the millikelvin temperature range does not affect the attainment of temperatures around 10 mK. Finally, combining the calculated results, we quantitatively analyzed the impact and feasible solutions for the performance improvement of this type of gas-gap heat switch. The research work presented in this paper is of reference value for efficient pre-cooling in dilution refrigerators and other low-temperature equipment. The gas-gap heat switch, with its stability and reliability, high switching ratio, and a design that is simple, flexible, and easily scalable, has become the preferred option for efficient pre-cooling in various low-temperature devices such as dilution refrigerators. We have successfully developed a differential thermal expansion type of gas-gap heat switch. This paper details its basic principles, fabrication process, performance testing, and preliminary application in dilution refrigerator system. The typical thermal conductivity of the gas-gap heat switch in the temperature range of 4–30 K has been experimentally measured in both ON and OFF states, and the results are generally consistent with the calculated data. Tests in a dilution refrigerator with a cooling power of approximately 400 μW at 100 mK showed that the developed gas-gap heat switch assembly could perform its functions of thermal connection and disconnection properly and reduce the temperature of the still cold plate to about 7 K within roughly 24 h, significantly improving the original cooling time. Additionally, its heat leakage in the millikelvin temperature range does not affect the attainment of temperatures around 10 mK. Finally, combining the calculated results, we quantitatively analyzed the impact and feasible solutions for the performance improvement of this type of gas-gap heat switch. The research work presented in this paper is of reference value for efficient pre-cooling in dilution refrigerators and other low-temperature equipment. |
Author | Fan, Jie Bian, Yong Bo Cheng, Zhi Gang Guan, Xiang Ji, Zhong Qing |
Author_xml | – sequence: 1 givenname: Xiang surname: Guan fullname: Guan, Xiang organization: Institute of Physics Chinese Academy of Sciences – sequence: 2 givenname: Jie surname: Fan fullname: Fan, Jie organization: Institute of Physics Chinese Academy of Sciences – sequence: 3 givenname: Yong Bo surname: Bian fullname: Bian, Yong Bo organization: Institute of Physics Chinese Academy of Sciences – sequence: 4 givenname: Zhi Gang surname: Cheng fullname: Cheng, Zhi Gang email: zgcheng@iphy.ac.cn organization: Institute of Physics Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences – sequence: 5 givenname: Zhong Qing surname: Ji fullname: Ji, Zhong Qing email: zji@iphy.ac.cn organization: Institute of Physics Chinese Academy of Sciences |
BookMark | eNp9kE1rGzEQhkVJoM7HH-hJ0LPakWYj7R6L7TqFQCBxzkIrj5INtrSV1m0D-fGV40JvOQ3DPO8M85yxk5giMfZJwhcJYL4WCR10AlQjAFWDQn9gM3llUBi8MidsBqCUUKqTH9lZKc8A0LUaZ-x1Qb9om8YdxYm7uOHLPyPl4dC6LV9TmYb4yFPgji-GECjXwXCYPFHe1VpxF8uQIl-_jMRXroiVG_k1uYnf_x4m_8RDyjW73U8H6o5CHh4puynlcsFOg9sWuvxXz9nD9-V6fi1ublc_5t9uhFcGJuF751tsNw5VRwAt9tr0DfYN9A435E3QRgYEpzWovlOqRY-evHShDXoj8Zx9Pu4dc_q5rz_Z57TPsZ60KHWjG1StqZQ6Uj6nUjIFO1YRLr9YCfZg2R4t22rZvlm2uobwGCoVjvWx_6vfSf0FkN6DFQ |
Cites_doi | 10.1016/j.cryogenics.2024.103818 10.1088/1742-6596/969/1/012091 10.1007/s10909-019-02221-7 10.1016/j.cryogenics.2023.103687 10.1016/j.sna.2011.08.017 10.1016/S1872-5805(19)60028-4 10.1016/j.phpro.2015.06.173 10.1016/j.cryogenics.2023.103632 10.1007/978-3-540-46360-3 10.1016/j.cryogenics.2023.103772 10.1016/0011-2275(87)90211-6 10.1016/j.chip.2023.100054 10.1109/TASC.2023.3239581 10.1016/j.applthermaleng.2014.04.062 10.1088/1742-6596/568/3/032014 10.1088/1757-899X/278/1/012133 10.1088/1757-899X/101/1/012157 10.1007/s10909-023-03035-4 10.1016/j.cryogenics.2021.103390 10.1007/978-981-99-6128-3_29 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10909-024-03243-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1573-7357 |
EndPage | 212 |
ExternalDocumentID | 10_1007_s10909_024_03243_6 |
GrantInformation_xml | – fundername: Special Research Assistant Program of the Chinese Academy of Sciences grantid: E3VP021RX4 – fundername: the National Natural Science Foundation of China grantid: Grant No. T2325026 – fundername: the Beijing Commission of Science and Technology grantid: No. Z211100004021012 |
GroupedDBID | -54 -5F -5G -BR -DZ -EM -Y2 -~C -~X .86 06D 0R~ 0VY 186 199 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MQGED N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UPT UQL UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 W4F WH7 WJK WK8 XJT XOL XSW YLTOR YQT Z45 Z7R Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c270t-cbac838da329e0083b67b43b40ba3dec7f671f30a6602b92283c3cec1af8f6d13 |
IEDL.DBID | U2A |
ISSN | 0022-2291 |
IngestDate | Fri Jul 25 22:12:19 EDT 2025 Tue Jul 01 03:55:20 EDT 2025 Fri Feb 21 02:37:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Gas-gap heat switch Dilution refrigerator Differential thermal expansion Efficient pre-cooling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-cbac838da329e0083b67b43b40ba3dec7f671f30a6602b92283c3cec1af8f6d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3164643287 |
PQPubID | 2043553 |
PageCount | 20 |
ParticipantIDs | proquest_journals_3164643287 crossref_primary_10_1007_s10909_024_03243_6 springer_journals_10_1007_s10909_024_03243_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of low temperature physics |
PublicationTitleAbbrev | J Low Temp Phys |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | 3243_CR8 H Chang (3243_CR5) 2023; 2 Y Zhang (3243_CR13) 2024; 137 F Pobell (3243_CR19) 2007 Y Lei (3243_CR16) 2023; 132 J Franklin (3243_CR2) 2023; 33 ME Barber (3243_CR4) 2024; 215 3243_CR6 M Zheng (3243_CR3) 2019; 197 3243_CR7 T Poole (3243_CR9) 2023; 130 D Martins (3243_CR15) 2011; 171 L Duband (3243_CR21) 1987; 27 3243_CR24 3243_CR14 3243_CR11 3243_CR22 3243_CR12 3243_CR23 J Franco (3243_CR18) 2015; 67 H Zu (3243_CR1) 2022; 121 X-T Xi (3243_CR20) 2019; 34 D Wu (3243_CR10) 2024; 139 J Franco (3243_CR17) 2014; 70 |
References_xml | – volume: 139 start-page: 103818 year: 2024 ident: 3243_CR10 publication-title: Cryogenics doi: 10.1016/j.cryogenics.2024.103818 – ident: 3243_CR8 doi: 10.1088/1742-6596/969/1/012091 – volume: 197 start-page: 1 issue: 1 year: 2019 ident: 3243_CR3 publication-title: J. Low Temp. Phys. doi: 10.1007/s10909-019-02221-7 – volume: 132 start-page: 103687 year: 2023 ident: 3243_CR16 publication-title: Cryogenics doi: 10.1016/j.cryogenics.2023.103687 – volume: 171 start-page: 324 issue: 2 year: 2011 ident: 3243_CR15 publication-title: Sens. Actuators A doi: 10.1016/j.sna.2011.08.017 – ident: 3243_CR11 – volume: 34 start-page: 524 issue: 6 year: 2019 ident: 3243_CR20 publication-title: New Carbon Mater. doi: 10.1016/S1872-5805(19)60028-4 – volume: 67 start-page: 1117 year: 2015 ident: 3243_CR18 publication-title: Phys. Procedia doi: 10.1016/j.phpro.2015.06.173 – volume: 130 start-page: 103632 year: 2023 ident: 3243_CR9 publication-title: Cryogenics doi: 10.1016/j.cryogenics.2023.103632 – start-page: 1 volume-title: Matter and Methods at Low Temperatures year: 2007 ident: 3243_CR19 doi: 10.1007/978-3-540-46360-3 – volume: 137 start-page: 103772 year: 2024 ident: 3243_CR13 publication-title: Cryogenics doi: 10.1016/j.cryogenics.2023.103772 – volume: 27 start-page: 397 issue: 7 year: 1987 ident: 3243_CR21 publication-title: Cryogenics doi: 10.1016/0011-2275(87)90211-6 – ident: 3243_CR22 – ident: 3243_CR23 – volume: 2 start-page: 100054 issue: 3 year: 2023 ident: 3243_CR5 publication-title: Chip doi: 10.1016/j.chip.2023.100054 – volume: 33 start-page: 1 issue: 5 year: 2023 ident: 3243_CR2 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2023.3239581 – volume: 70 start-page: 115 issue: 1 year: 2014 ident: 3243_CR17 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.04.062 – ident: 3243_CR7 doi: 10.1088/1742-6596/568/3/032014 – ident: 3243_CR12 doi: 10.1088/1757-899X/278/1/012133 – ident: 3243_CR14 doi: 10.1088/1757-899X/101/1/012157 – volume: 215 start-page: 1 issue: 1–2 year: 2024 ident: 3243_CR4 publication-title: J. Low Temp. Phys. doi: 10.1007/s10909-023-03035-4 – ident: 3243_CR24 – volume: 121 start-page: 103390 year: 2022 ident: 3243_CR1 publication-title: Cryogenics doi: 10.1016/j.cryogenics.2021.103390 – ident: 3243_CR6 doi: 10.1007/978-981-99-6128-3_29 |
SSID | ssj0009863 |
Score | 2.3878565 |
Snippet | The gas-gap heat switch, with its stability and reliability, high switching ratio, and a design that is simple, flexible, and easily scalable, has become the... The gas-gap heat switch, with its stability and reliability, high switching ratio, and a design that is simple, flexible, and easily scalable, has become the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 193 |
SubjectTerms | Characterization and Evaluation of Materials Condensed Matter Physics Cooling Dilution Heat Heat switches Impact analysis Low temperature Magnetic Materials Magnetism Physics Physics and Astronomy Refrigerators Temperature Thermal conductivity Thermal expansion |
Title | Development and Experimental Testing of a Differential Thermal Expansion Type Gas-Gap Heat Switch for Dilution Refrigerators |
URI | https://link.springer.com/article/10.1007/s10909-024-03243-6 https://www.proquest.com/docview/3164643287 |
Volume | 218 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagFRIL4ikKpfLABpZS27GTsYU-BKIDtFKZIscPQEJpRYpY-PGc00QtCAamDH4Md_bdd_HddwidB1LJKLScKGco4ToOiYqikEjP1aYAQKtC03cjMZzwm2k4LYvC8irbvXqSLCz1WrFb7H_kU04CQAGMiE1UDyF294lcE9pZUe1GZf80CLMojdtlqczve3x3RyuM-eNZtPA2_V20U8JE3FnqdQ9t2GwfbRXpmjo_QJ9ruT5YZQb31oj68dgzZ2RPeOawwtdlBxS4yTDy7A3xq58OLgpUgn0cigcqJwM1x0MwzPjh4wU0iQHMwtrlucT31kEUb4sn-fwQTfq98dWQlH0UiKYyWBCdKh2xyChGY-sxVypkylnKg1QxY7V0QrYdC5QQAU1jT4ijmba6rVzkhGmzI1TLZpk9RthA9BGb0GnKHbcsUtI5kxoeC6kAGPEGuqjEmcyXdBnJihjZCz8B4SeF8BPRQM1K4kl5dfKEecYzziCSa6DLSgur4b93O_nf9FO0TX0v3yIDu4lqi7d3ewYAY5G2UL3T73ZH_jt4vO21ivP1BQamyp0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4CMGCeIpCAQ9sYCm1HdsZK6Atj3aAVmKLHD8ACaWIFLHw4zmniVoQDMx2PNzZd9_l7r5D6CSSWqrYcaK9pYSbJCZaqZjIwNWmAUDrUtP9geiN-PVD_FA1hRV1tXudkiwt9VyzWxJ-5FNOIkABjIhFtAxgQIW7PKLtGdWuquanQZhFadKqWmV-P-O7O5phzB9p0dLbdDbQegUTcXuq10204PIttFKWa5piG33O1fpgnVt8OUfUj4eBOSN_xGOPNb6oJqDAS4aVp2CIX8J2cFGgEhziUNzVBenqV9wDw4zvP55BkxjALHw7vZf4znmI4l2Zki920KhzOTzvkWqOAjFURhNiMm0UU1YzmriAuTIhM84yHmWaWWekF7LlWaSFiGiWBEIcw4wzLe2VF7bFdtFSPs7dHsIWoo_Ext5Q7rljSkvvbWZ5IqQGYMQb6LQWZ_o6pctIZ8TIQfgpCD8thZ-KBmrWEk-rp1OkLDCecQaRXAOd1VqYLf992v7_th-j1d6wf5veXg1uDtAaDXN9y2rsJlqavL27QwAbk-yovFtfBbLKgA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gCMQF8RSDATlwg4guSZP2OLEXrwnBJu1WpXkAEuomVsSFH4_TddpAcOCcNAfbiT_X9meETgOpZBRaTpQzlHAdh0RFUUik52pTAKBVoem7nugO-PUwHC508RfV7rOU5LSnwbM0ZfnF2LiLhca32P_Up5wEgAgYEctohftuYLDoAW3MaXejcpYahFyUxvWybeb3M767pjne_JEiLTxPexNtlJARN6Y63kJLNttGq0Xppp7soM-Fuh-sMoNbC6T9uO9ZNLInPHJY4WY5DQVuNaw8-0f51W8HdwXqwT4mxR01IR01xl14pPHjxwtoFQOwhW-nNoofrIOI3hbp-ckuGrRb_csuKWcqEE1lkBOdKh2xyChGY-vxVypkylnKg1QxY7V0QtYdC5QQAU1jT46jmba6rlzkhKmzPVTJRpndR9hAJBKb0GnKHbcsUtI5kxoeC6kAJPEqOpuJMxlPqTOSOUmyF34Cwk8K4SeiimoziSflNZokzLOfcQZRXRWdz7QwX_77tIP_bT9Ba_fNdnJ71bs5ROvUj_gtCrNrqJK_vdsjwB15elyY1hfSNc6z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+Experimental+Testing+of+a+Differential+Thermal+Expansion+Type+Gas-Gap+Heat+Switch+for+Dilution+Refrigerators&rft.jtitle=Journal+of+low+temperature+physics&rft.au=Guan%2C+Xiang&rft.au=Fan%2C+Jie&rft.au=Bian%2C+Yong+Bo&rft.au=Cheng%2C+Zhi+Gang&rft.date=2025-02-01&rft.pub=Springer+US&rft.issn=0022-2291&rft.eissn=1573-7357&rft.volume=218&rft.issue=3&rft.spage=193&rft.epage=212&rft_id=info:doi/10.1007%2Fs10909-024-03243-6&rft.externalDocID=10_1007_s10909_024_03243_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2291&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2291&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2291&client=summon |