Development and Experimental Testing of a Differential Thermal Expansion Type Gas-Gap Heat Switch for Dilution Refrigerators

The gas-gap heat switch, with its stability and reliability, high switching ratio, and a design that is simple, flexible, and easily scalable, has become the preferred option for efficient pre-cooling in various low-temperature devices such as dilution refrigerators. We have successfully developed a...

Full description

Saved in:
Bibliographic Details
Published inJournal of low temperature physics Vol. 218; no. 3; pp. 193 - 212
Main Authors Guan, Xiang, Fan, Jie, Bian, Yong Bo, Cheng, Zhi Gang, Ji, Zhong Qing
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The gas-gap heat switch, with its stability and reliability, high switching ratio, and a design that is simple, flexible, and easily scalable, has become the preferred option for efficient pre-cooling in various low-temperature devices such as dilution refrigerators. We have successfully developed a differential thermal expansion type of gas-gap heat switch. This paper details its basic principles, fabrication process, performance testing, and preliminary application in dilution refrigerator system. The typical thermal conductivity of the gas-gap heat switch in the temperature range of 4–30 K has been experimentally measured in both ON and OFF states, and the results are generally consistent with the calculated data. Tests in a dilution refrigerator with a cooling power of approximately 400 μW at 100 mK showed that the developed gas-gap heat switch assembly could perform its functions of thermal connection and disconnection properly and reduce the temperature of the still cold plate to about 7 K within roughly 24 h, significantly improving the original cooling time. Additionally, its heat leakage in the millikelvin temperature range does not affect the attainment of temperatures around 10 mK. Finally, combining the calculated results, we quantitatively analyzed the impact and feasible solutions for the performance improvement of this type of gas-gap heat switch. The research work presented in this paper is of reference value for efficient pre-cooling in dilution refrigerators and other low-temperature equipment.
AbstractList The gas-gap heat switch, with its stability and reliability, high switching ratio, and a design that is simple, flexible, and easily scalable, has become the preferred option for efficient pre-cooling in various low-temperature devices such as dilution refrigerators. We have successfully developed a differential thermal expansion type of gas-gap heat switch. This paper details its basic principles, fabrication process, performance testing, and preliminary application in dilution refrigerator system. The typical thermal conductivity of the gas-gap heat switch in the temperature range of 4–30 K has been experimentally measured in both ON and OFF states, and the results are generally consistent with the calculated data. Tests in a dilution refrigerator with a cooling power of approximately 400 μW at 100 mK showed that the developed gas-gap heat switch assembly could perform its functions of thermal connection and disconnection properly and reduce the temperature of the still cold plate to about 7 K within roughly 24 h, significantly improving the original cooling time. Additionally, its heat leakage in the millikelvin temperature range does not affect the attainment of temperatures around 10 mK. Finally, combining the calculated results, we quantitatively analyzed the impact and feasible solutions for the performance improvement of this type of gas-gap heat switch. The research work presented in this paper is of reference value for efficient pre-cooling in dilution refrigerators and other low-temperature equipment.
The gas-gap heat switch, with its stability and reliability, high switching ratio, and a design that is simple, flexible, and easily scalable, has become the preferred option for efficient pre-cooling in various low-temperature devices such as dilution refrigerators. We have successfully developed a differential thermal expansion type of gas-gap heat switch. This paper details its basic principles, fabrication process, performance testing, and preliminary application in dilution refrigerator system. The typical thermal conductivity of the gas-gap heat switch in the temperature range of 4–30 K has been experimentally measured in both ON and OFF states, and the results are generally consistent with the calculated data. Tests in a dilution refrigerator with a cooling power of approximately 400 μW at 100 mK showed that the developed gas-gap heat switch assembly could perform its functions of thermal connection and disconnection properly and reduce the temperature of the still cold plate to about 7 K within roughly 24 h, significantly improving the original cooling time. Additionally, its heat leakage in the millikelvin temperature range does not affect the attainment of temperatures around 10 mK. Finally, combining the calculated results, we quantitatively analyzed the impact and feasible solutions for the performance improvement of this type of gas-gap heat switch. The research work presented in this paper is of reference value for efficient pre-cooling in dilution refrigerators and other low-temperature equipment.
Author Fan, Jie
Bian, Yong Bo
Cheng, Zhi Gang
Guan, Xiang
Ji, Zhong Qing
Author_xml – sequence: 1
  givenname: Xiang
  surname: Guan
  fullname: Guan, Xiang
  organization: Institute of Physics Chinese Academy of Sciences
– sequence: 2
  givenname: Jie
  surname: Fan
  fullname: Fan, Jie
  organization: Institute of Physics Chinese Academy of Sciences
– sequence: 3
  givenname: Yong Bo
  surname: Bian
  fullname: Bian, Yong Bo
  organization: Institute of Physics Chinese Academy of Sciences
– sequence: 4
  givenname: Zhi Gang
  surname: Cheng
  fullname: Cheng, Zhi Gang
  email: zgcheng@iphy.ac.cn
  organization: Institute of Physics Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences
– sequence: 5
  givenname: Zhong Qing
  surname: Ji
  fullname: Ji, Zhong Qing
  email: zji@iphy.ac.cn
  organization: Institute of Physics Chinese Academy of Sciences
BookMark eNp9kE1rGzEQhkVJoM7HH-hJ0LPakWYj7R6L7TqFQCBxzkIrj5INtrSV1m0D-fGV40JvOQ3DPO8M85yxk5giMfZJwhcJYL4WCR10AlQjAFWDQn9gM3llUBi8MidsBqCUUKqTH9lZKc8A0LUaZ-x1Qb9om8YdxYm7uOHLPyPl4dC6LV9TmYb4yFPgji-GECjXwXCYPFHe1VpxF8uQIl-_jMRXroiVG_k1uYnf_x4m_8RDyjW73U8H6o5CHh4puynlcsFOg9sWuvxXz9nD9-V6fi1ublc_5t9uhFcGJuF751tsNw5VRwAt9tr0DfYN9A435E3QRgYEpzWovlOqRY-evHShDXoj8Zx9Pu4dc_q5rz_Z57TPsZ60KHWjG1StqZQ6Uj6nUjIFO1YRLr9YCfZg2R4t22rZvlm2uobwGCoVjvWx_6vfSf0FkN6DFQ
Cites_doi 10.1016/j.cryogenics.2024.103818
10.1088/1742-6596/969/1/012091
10.1007/s10909-019-02221-7
10.1016/j.cryogenics.2023.103687
10.1016/j.sna.2011.08.017
10.1016/S1872-5805(19)60028-4
10.1016/j.phpro.2015.06.173
10.1016/j.cryogenics.2023.103632
10.1007/978-3-540-46360-3
10.1016/j.cryogenics.2023.103772
10.1016/0011-2275(87)90211-6
10.1016/j.chip.2023.100054
10.1109/TASC.2023.3239581
10.1016/j.applthermaleng.2014.04.062
10.1088/1742-6596/568/3/032014
10.1088/1757-899X/278/1/012133
10.1088/1757-899X/101/1/012157
10.1007/s10909-023-03035-4
10.1016/j.cryogenics.2021.103390
10.1007/978-981-99-6128-3_29
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s10909-024-03243-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1573-7357
EndPage 212
ExternalDocumentID 10_1007_s10909_024_03243_6
GrantInformation_xml – fundername: Special Research Assistant Program of the Chinese Academy of Sciences
  grantid: E3VP021RX4
– fundername: the National Natural Science Foundation of China
  grantid: Grant No. T2325026
– fundername: the Beijing Commission of Science and Technology
  grantid: No. Z211100004021012
GroupedDBID -54
-5F
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
186
199
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MQGED
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UPT
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
W4F
WH7
WJK
WK8
XJT
XOL
XSW
YLTOR
YQT
Z45
Z7R
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-cbac838da329e0083b67b43b40ba3dec7f671f30a6602b92283c3cec1af8f6d13
IEDL.DBID U2A
ISSN 0022-2291
IngestDate Fri Jul 25 22:12:19 EDT 2025
Tue Jul 01 03:55:20 EDT 2025
Fri Feb 21 02:37:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Gas-gap heat switch
Dilution refrigerator
Differential thermal expansion
Efficient pre-cooling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-cbac838da329e0083b67b43b40ba3dec7f671f30a6602b92283c3cec1af8f6d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3164643287
PQPubID 2043553
PageCount 20
ParticipantIDs proquest_journals_3164643287
crossref_primary_10_1007_s10909_024_03243_6
springer_journals_10_1007_s10909_024_03243_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of low temperature physics
PublicationTitleAbbrev J Low Temp Phys
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 3243_CR8
H Chang (3243_CR5) 2023; 2
Y Zhang (3243_CR13) 2024; 137
F Pobell (3243_CR19) 2007
Y Lei (3243_CR16) 2023; 132
J Franklin (3243_CR2) 2023; 33
ME Barber (3243_CR4) 2024; 215
3243_CR6
M Zheng (3243_CR3) 2019; 197
3243_CR7
T Poole (3243_CR9) 2023; 130
D Martins (3243_CR15) 2011; 171
L Duband (3243_CR21) 1987; 27
3243_CR24
3243_CR14
3243_CR11
3243_CR22
3243_CR12
3243_CR23
J Franco (3243_CR18) 2015; 67
H Zu (3243_CR1) 2022; 121
X-T Xi (3243_CR20) 2019; 34
D Wu (3243_CR10) 2024; 139
J Franco (3243_CR17) 2014; 70
References_xml – volume: 139
  start-page: 103818
  year: 2024
  ident: 3243_CR10
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2024.103818
– ident: 3243_CR8
  doi: 10.1088/1742-6596/969/1/012091
– volume: 197
  start-page: 1
  issue: 1
  year: 2019
  ident: 3243_CR3
  publication-title: J. Low Temp. Phys.
  doi: 10.1007/s10909-019-02221-7
– volume: 132
  start-page: 103687
  year: 2023
  ident: 3243_CR16
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2023.103687
– volume: 171
  start-page: 324
  issue: 2
  year: 2011
  ident: 3243_CR15
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2011.08.017
– ident: 3243_CR11
– volume: 34
  start-page: 524
  issue: 6
  year: 2019
  ident: 3243_CR20
  publication-title: New Carbon Mater.
  doi: 10.1016/S1872-5805(19)60028-4
– volume: 67
  start-page: 1117
  year: 2015
  ident: 3243_CR18
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2015.06.173
– volume: 130
  start-page: 103632
  year: 2023
  ident: 3243_CR9
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2023.103632
– start-page: 1
  volume-title: Matter and Methods at Low Temperatures
  year: 2007
  ident: 3243_CR19
  doi: 10.1007/978-3-540-46360-3
– volume: 137
  start-page: 103772
  year: 2024
  ident: 3243_CR13
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2023.103772
– volume: 27
  start-page: 397
  issue: 7
  year: 1987
  ident: 3243_CR21
  publication-title: Cryogenics
  doi: 10.1016/0011-2275(87)90211-6
– ident: 3243_CR22
– ident: 3243_CR23
– volume: 2
  start-page: 100054
  issue: 3
  year: 2023
  ident: 3243_CR5
  publication-title: Chip
  doi: 10.1016/j.chip.2023.100054
– volume: 33
  start-page: 1
  issue: 5
  year: 2023
  ident: 3243_CR2
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2023.3239581
– volume: 70
  start-page: 115
  issue: 1
  year: 2014
  ident: 3243_CR17
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.04.062
– ident: 3243_CR7
  doi: 10.1088/1742-6596/568/3/032014
– ident: 3243_CR12
  doi: 10.1088/1757-899X/278/1/012133
– ident: 3243_CR14
  doi: 10.1088/1757-899X/101/1/012157
– volume: 215
  start-page: 1
  issue: 1–2
  year: 2024
  ident: 3243_CR4
  publication-title: J. Low Temp. Phys.
  doi: 10.1007/s10909-023-03035-4
– ident: 3243_CR24
– volume: 121
  start-page: 103390
  year: 2022
  ident: 3243_CR1
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2021.103390
– ident: 3243_CR6
  doi: 10.1007/978-981-99-6128-3_29
SSID ssj0009863
Score 2.3878565
Snippet The gas-gap heat switch, with its stability and reliability, high switching ratio, and a design that is simple, flexible, and easily scalable, has become the...
The gas-gap heat switch, with its stability and reliability, high switching ratio, and a design that is simple, flexible, and easily scalable, has become the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 193
SubjectTerms Characterization and Evaluation of Materials
Condensed Matter Physics
Cooling
Dilution
Heat
Heat switches
Impact analysis
Low temperature
Magnetic Materials
Magnetism
Physics
Physics and Astronomy
Refrigerators
Temperature
Thermal conductivity
Thermal expansion
Title Development and Experimental Testing of a Differential Thermal Expansion Type Gas-Gap Heat Switch for Dilution Refrigerators
URI https://link.springer.com/article/10.1007/s10909-024-03243-6
https://www.proquest.com/docview/3164643287
Volume 218
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagFRIL4ikKpfLABpZS27GTsYU-BKIDtFKZIscPQEJpRYpY-PGc00QtCAamDH4Md_bdd_HddwidB1LJKLScKGco4ToOiYqikEjP1aYAQKtC03cjMZzwm2k4LYvC8irbvXqSLCz1WrFb7H_kU04CQAGMiE1UDyF294lcE9pZUe1GZf80CLMojdtlqczve3x3RyuM-eNZtPA2_V20U8JE3FnqdQ9t2GwfbRXpmjo_QJ9ruT5YZQb31oj68dgzZ2RPeOawwtdlBxS4yTDy7A3xq58OLgpUgn0cigcqJwM1x0MwzPjh4wU0iQHMwtrlucT31kEUb4sn-fwQTfq98dWQlH0UiKYyWBCdKh2xyChGY-sxVypkylnKg1QxY7V0QrYdC5QQAU1jT4ijmba6rVzkhGmzI1TLZpk9RthA9BGb0GnKHbcsUtI5kxoeC6kAGPEGuqjEmcyXdBnJihjZCz8B4SeF8BPRQM1K4kl5dfKEecYzziCSa6DLSgur4b93O_nf9FO0TX0v3yIDu4lqi7d3ewYAY5G2UL3T73ZH_jt4vO21ivP1BQamyp0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4CMGCeIpCAQ9sYCm1HdsZK6Atj3aAVmKLHD8ACaWIFLHw4zmniVoQDMx2PNzZd9_l7r5D6CSSWqrYcaK9pYSbJCZaqZjIwNWmAUDrUtP9geiN-PVD_FA1hRV1tXudkiwt9VyzWxJ-5FNOIkABjIhFtAxgQIW7PKLtGdWuquanQZhFadKqWmV-P-O7O5phzB9p0dLbdDbQegUTcXuq10204PIttFKWa5piG33O1fpgnVt8OUfUj4eBOSN_xGOPNb6oJqDAS4aVp2CIX8J2cFGgEhziUNzVBenqV9wDw4zvP55BkxjALHw7vZf4znmI4l2Zki920KhzOTzvkWqOAjFURhNiMm0UU1YzmriAuTIhM84yHmWaWWekF7LlWaSFiGiWBEIcw4wzLe2VF7bFdtFSPs7dHsIWoo_Ext5Q7rljSkvvbWZ5IqQGYMQb6LQWZ_o6pctIZ8TIQfgpCD8thZ-KBmrWEk-rp1OkLDCecQaRXAOd1VqYLf992v7_th-j1d6wf5veXg1uDtAaDXN9y2rsJlqavL27QwAbk-yovFtfBbLKgA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gCMQF8RSDATlwg4guSZP2OLEXrwnBJu1WpXkAEuomVsSFH4_TddpAcOCcNAfbiT_X9meETgOpZBRaTpQzlHAdh0RFUUik52pTAKBVoem7nugO-PUwHC508RfV7rOU5LSnwbM0ZfnF2LiLhca32P_Up5wEgAgYEctohftuYLDoAW3MaXejcpYahFyUxvWybeb3M767pjne_JEiLTxPexNtlJARN6Y63kJLNttGq0Xppp7soM-Fuh-sMoNbC6T9uO9ZNLInPHJY4WY5DQVuNaw8-0f51W8HdwXqwT4mxR01IR01xl14pPHjxwtoFQOwhW-nNoofrIOI3hbp-ckuGrRb_csuKWcqEE1lkBOdKh2xyChGY-vxVypkylnKg1QxY7V0QtYdC5QQAU1jT46jmba6rlzkhKmzPVTJRpndR9hAJBKb0GnKHbcsUtI5kxoeC6kAJPEqOpuJMxlPqTOSOUmyF34Cwk8K4SeiimoziSflNZokzLOfcQZRXRWdz7QwX_77tIP_bT9Ba_fNdnJ71bs5ROvUj_gtCrNrqJK_vdsjwB15elyY1hfSNc6z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+Experimental+Testing+of+a+Differential+Thermal+Expansion+Type+Gas-Gap+Heat+Switch+for+Dilution+Refrigerators&rft.jtitle=Journal+of+low+temperature+physics&rft.au=Guan%2C+Xiang&rft.au=Fan%2C+Jie&rft.au=Bian%2C+Yong+Bo&rft.au=Cheng%2C+Zhi+Gang&rft.date=2025-02-01&rft.pub=Springer+US&rft.issn=0022-2291&rft.eissn=1573-7357&rft.volume=218&rft.issue=3&rft.spage=193&rft.epage=212&rft_id=info:doi/10.1007%2Fs10909-024-03243-6&rft.externalDocID=10_1007_s10909_024_03243_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2291&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2291&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2291&client=summon