Group attention retention network for co-salient object detection

The co-salient object detection (Co-SOD) aims to discover common, salient objects from a group of images. With the development of convolutional neural networks, the performance of Co-SOD methods has been significantly improved. However, some models cannot construct collaborative relationships across...

Full description

Saved in:
Bibliographic Details
Published inMachine vision and applications Vol. 34; no. 6; p. 107
Main Authors Liu, Jing, Wang, Jiaxiang, Fan, Zhiwei, Yuan, Min, Wang, Weikang, Yu, Jiexiao
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The co-salient object detection (Co-SOD) aims to discover common, salient objects from a group of images. With the development of convolutional neural networks, the performance of Co-SOD methods has been significantly improved. However, some models cannot construct collaborative relationships across images optimally and lack effective retention of collaborative features in the top-down decoding process. In this paper, we propose a novel group attention retention network (GARNet), which captures excellent collaborative features and retains them. First, a group attention module is designed to construct the inter-image relationships. Second, an attention retention module and a spatial attention module are designed to retain inter-image relationships for protecting them from being diluted and filter out the cluttered context during feature fusion, respectively. Finally, considering the intra-group consistency and inter-group separability of images, an embedding loss is additionally designed to discriminate between real collaborative objects and distracting objects. The experiments on four datasets (iCoSeg, CoSal2015, CoSoD3k, and CoCA) show that our GARNet outperforms previous state-of-the-art methods. The source code is available at https://github.com/TJUMMG/GARNet .
AbstractList The co-salient object detection (Co-SOD) aims to discover common, salient objects from a group of images. With the development of convolutional neural networks, the performance of Co-SOD methods has been significantly improved. However, some models cannot construct collaborative relationships across images optimally and lack effective retention of collaborative features in the top-down decoding process. In this paper, we propose a novel group attention retention network (GARNet), which captures excellent collaborative features and retains them. First, a group attention module is designed to construct the inter-image relationships. Second, an attention retention module and a spatial attention module are designed to retain inter-image relationships for protecting them from being diluted and filter out the cluttered context during feature fusion, respectively. Finally, considering the intra-group consistency and inter-group separability of images, an embedding loss is additionally designed to discriminate between real collaborative objects and distracting objects. The experiments on four datasets (iCoSeg, CoSal2015, CoSoD3k, and CoCA) show that our GARNet outperforms previous state-of-the-art methods. The source code is available at https://github.com/TJUMMG/GARNet.
The co-salient object detection (Co-SOD) aims to discover common, salient objects from a group of images. With the development of convolutional neural networks, the performance of Co-SOD methods has been significantly improved. However, some models cannot construct collaborative relationships across images optimally and lack effective retention of collaborative features in the top-down decoding process. In this paper, we propose a novel group attention retention network (GARNet), which captures excellent collaborative features and retains them. First, a group attention module is designed to construct the inter-image relationships. Second, an attention retention module and a spatial attention module are designed to retain inter-image relationships for protecting them from being diluted and filter out the cluttered context during feature fusion, respectively. Finally, considering the intra-group consistency and inter-group separability of images, an embedding loss is additionally designed to discriminate between real collaborative objects and distracting objects. The experiments on four datasets (iCoSeg, CoSal2015, CoSoD3k, and CoCA) show that our GARNet outperforms previous state-of-the-art methods. The source code is available at https://github.com/TJUMMG/GARNet .
ArticleNumber 107
Author Wang, Weikang
Fan, Zhiwei
Yu, Jiexiao
Liu, Jing
Yuan, Min
Wang, Jiaxiang
Author_xml – sequence: 1
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
  organization: The School of Electrical and Information Engineering, Tianjin University, Key Laboratory of Artificial Intelligence, Ministry of Education
– sequence: 2
  givenname: Jiaxiang
  surname: Wang
  fullname: Wang, Jiaxiang
  organization: The School of Electrical and Information Engineering, Tianjin University
– sequence: 3
  givenname: Zhiwei
  surname: Fan
  fullname: Fan, Zhiwei
  organization: The School of Electrical and Information Engineering, Tianjin University
– sequence: 4
  givenname: Min
  surname: Yuan
  fullname: Yuan, Min
  organization: The School of Electrical and Information Engineering, Tianjin University
– sequence: 5
  givenname: Weikang
  surname: Wang
  fullname: Wang, Weikang
  email: wwk_19970307@tju.edu.cn
  organization: The School of Electrical and Information Engineering, Tianjin University
– sequence: 6
  givenname: Jiexiao
  surname: Yu
  fullname: Yu, Jiexiao
  organization: The School of Electrical and Information Engineering, Tianjin University
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqOTj83HsRStQsGLnkM2m0hr3dQkRfz3pq7izdO8MM87A88MTYY4eIQuCVwTAHmTAQhTGCjDQLigWJ6gKeGMYiKFnqAp6JoVaHqGZjlvAYBLyadosUrxsG9sKX4omzg0yf-mwZePmF6bEFPjIs52t6mbJnZb70rTV84duXN0Guwu-4ufOUfPd7dPy3u8flw9LBdr7KiEgp3WQnSWCEUEY1pLCKK1gSkmNesI89Y6TRznvQuh7VrNQbS9pqL1Vsreszm6Gu_uU3w_-FzMNh7SUF8aqoQQTCnZVoqOlEsx5-SD2afNm02fhoA5qjKjKlNVmW9VRtYSG0u5wsOLT3-n_2l9AV2ZbWo
Cites_doi 10.1109/CVPR46437.2021.00199
10.1016/j.neucom.2019.12.109
10.1109/CVPR.2018.00813
10.1609/aaai.v33i01.33018917
10.1109/LSP.2015.2458434
10.1109/TPAMI.2023.3234586
10.1109/LSP.2014.2364896
10.1109/CVPR.2019.00231
10.1109/CVPR.2011.5995415
10.1109/ICASSP43922.2022.9746218
10.1109/TMM.2021.3054526
10.1109/TNNLS.2015.2495161
10.1016/j.knosys.2022.109356
10.1109/CVPR52688.2022.00105
10.1109/CVPR.2018.00081
10.1109/CVPR.2015.7298918
10.1145/3505244
10.24963/ijcai.2019/115
10.1007/s00138-021-01172-y
10.1109/TPAMI.2015.2420556
10.1109/ICCV48922.2021.00707
10.1007/978-3-319-10602-1_48
10.1016/j.dsp.2022.103425
10.1109/ACCESS.2022.3197752
10.24963/ijcai.2018/97
10.1007/s00138-022-01325-7
10.1109/ICME.2019.00065
10.1109/TMM.2011.2162399
10.1016/j.imavis.2020.103973
10.1109/CVPR46437.2021.00162
10.1109/CVPR42600.2020.00943
10.1109/ICCV48922.2021.00060
10.1109/CVPR.2019.00321
10.1109/TPAMI.2021.3060412
10.1109/TIP.2020.2988568
10.1023/B:VISI.0000029664.99615.94
10.1007/s00138-020-01065-6
10.1007/978-3-319-10599-4_17
10.1109/ICCV.2019.00887
10.1109/TIP.2011.2156803
10.1109/ICCV.2019.00861
10.1109/ICCV48922.2021.00468
10.1109/TIP.2017.2694222
10.1109/TPAMI.2015.2392783
10.1109/CVPR42600.2020.00907
10.1109/TMM.2023.3264883
10.1109/TIP.2020.3028289
10.1109/CVPR46437.2021.01211
10.1109/TNNLS.2020.2978386
10.1007/s00138-022-01312-y
10.1007/978-3-030-58452-8_13
10.1109/TMM.2021.3138246
10.1109/TCSVT.2022.3150923
10.1109/TIP.2013.2260166
10.1109/CVPR46437.2021.01655
10.1109/TCSVT.2017.2706264
10.5244/C.31.17
10.1007/978-3-030-58610-2_27
10.1007/978-3-030-01228-1_30
10.1109/CVPR.2017.404
10.1109/ICCV.2019.00736
10.1109/CVPR46437.2021.00198
10.1109/CVPR46437.2021.00700
10.1109/TPAMI.2023.3264571
10.1109/CVPR.2010.5540080
10.1109/CVPR46437.2021.00863
10.1109/CVPR42600.2020.00916
10.1109/TPAMI.2016.2567393
10.1109/TPAMI.2022.3152247
10.1109/ICCV48922.2021.00986
10.1109/CVPR46437.2021.00681
10.1109/LSP.2013.2292873
10.1109/TCSVT.2021.3127149
10.1109/TMM.2022.3198848
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PQEST
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s00138-023-01462-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1432-1769
ExternalDocumentID 10_1007_s00138_023_01462_7
GrantInformation_xml – fundername: National Science Foundation of China
  grantid: 6170134
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADGRI
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~8M
~EX
AACDK
AAEOY
AAGNY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
DWQXO
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c270t-c9966ba16816339970f65af383793b13eaac91c44dcff5b594065d9265ea77de3
IEDL.DBID BENPR
ISSN 0932-8092
IngestDate Fri Nov 01 04:29:58 EDT 2024
Wed Oct 30 12:27:48 EDT 2024
Sat Dec 16 12:07:00 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Vision transformer
Attention retention
Co-salient object detection
Group attention
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-c9966ba16816339970f65af383793b13eaac91c44dcff5b594065d9265ea77de3
PQID 2866638875
PQPubID 2043753
ParticipantIDs proquest_journals_2866638875
crossref_primary_10_1007_s00138_023_01462_7
springer_journals_10_1007_s00138_023_01462_7
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: New York
PublicationTitle Machine vision and applications
PublicationTitleAbbrev Machine Vision and Applications
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Fan, Q., Fan, D.-P., Fu, H., Tang, C.-K., Shao, L., Tai, Y.-W.: Group collaborative learning for co-salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12288–12298 (2021)
FuHCaoXTuZCluster-based co-saliency detectionIEEE Trans. Image Process.2013221037663778310513910.1109/TIP.2013.22601661373.94120
YeLLiuZLiJZhaoWLShenLCo-saliency detection via co-salient object discovery and recoveryIEEE Signal Process. Lett.201522112073207710.1109/LSP.2015.2458434
Zhang, K., Li, T., Liu, B., Liu, Q.: Co-saliency detection via mask-guided fully convolutional networks with multi-scale label smoothing. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019a)
LiuJYuanMHuangXSuYYangXDiponet: Dual-information progressive optimization network for salient object detectionDigit. Signal Process.202212610.1016/j.dsp.2022.103425
LuoYJiangMWongYZhaoQMulti-camera saliencyIEEE Trans. Pattern Anal. Mach. Intell.201537102057207010.1109/TPAMI.2015.2392783
Wang, C., Zha, Z.-J., Liu, D., Xie, H.: Robust deep co-saliency detection with group semantic. In: Proceedings of the AAAI Conference on Artificial Intelligence vol. 33, pp. 8917–8924 (2019)
Wang, N., Zhou, W., Wang, J., Li, H.: Transformer meets tracker: exploiting temporal context for robust visual tracking. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1571–1580 (2021a)
Kolesnikov, A., Dosovitskiy, A., Weissenborn, D., Heigold, G., Uszkoreit, J., Beyer, L., Minderer, M., Dehghani, M., Houlsby, N., Gelly, S., Unterthiner, T., Zhai, X.: An image is worth 16×16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$16\times 16$$\end{document} words: transformers for image recognition at scale (2021)
HanJChengGLiZZhangDA unified metric learning-based framework for co-saliency detectionIEEE Trans. Circuits Syst. Video Technol.2017282473248310.1109/TCSVT.2017.2706264
ZhangDHanJHanJLingSCosaliency detection based on intrasaliency prior transfer and deep intersaliency miningIEEE Trans. Neural Netw. Learn. Syst.201627611631176350723210.1109/TNNLS.2015.2495161
Zhao, J., Liu, J.-J., Fan, D.-P., Cao, Y., Yang, J., Cheng, M.-M.: EGNet: edge guidance network for salient object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8778–8787 (2019)
ChenH-YLinY-YChenB-YCo-segmentation guided hough transform for robust feature matchingIEEE Trans. Pattern Anal. Mach. Intell.201537122388240110.1109/TPAMI.2015.2420556
JinW-DXuJChengM-MZhangYGuoWLarochelleHRanzatoMHadsellRBalcanMFLinHIcnet: Intra-saliency correlation network for co-saliency detectionAdvances in Neural Information Processing Systems2020Red HookCurran Associates Inc.1874918759
ZhangDMengDHanJCo-saliency detection via a self-paced multiple-instance learning frameworkIEEE Trans. Pattern Anal. Mach. Intell.201739586587810.1109/TPAMI.2016.2567393
LiuZTanYHeQXiaoYSwinNet: Swin transformer drives edge-aware RGB-D and RGB-T salient object detectionIEEE Trans. Circuits Syst. Video Technol.20223274486449710.1109/TCSVT.2021.3127149
HeHWangJLiXHongMHuangSZhouTEAF-Net: an enhancement and aggregation-feedback network for RGB-T salient object detectionMach. Vis. Appl.202233411510.1007/s00138-022-01312-y
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jegou, H.: Training data-efficient image transformers and distillation through attention. In: Meila, M., Zhang, T. (eds) Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 10347–10357. PMLR (2021)
Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S., Shah, M.: Transformers in vision: a survey. ACM Comput. Surv. (2021)
Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z.-H., Tay, F. E., Feng, J., Yan, S.: Tokens-to-token vit: training vision transformers from scratch on imagenet. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 558–567 (October 2021)
Pang, Y., Zhao, X., Zhang, L., Lu, H.: Multi-scale interactive network for salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
SrivastavaGSrivastavaRUser-interactive salient object detection using YOLOv2, lazy snapping, and gabor filtersMach. Vis. Appl.20203131710.1007/s00138-020-01065-6
Ahn, J., Cho, S., Kwak, S.: Weakly supervised learning of instance segmentation with inter-pixel relations. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2204–2213 (2019)
Li, B., Sun, Z., Li, Q., Wu, Y., Anqi, H.: Group-wise deep object co-segmentation with co-attention recurrent neural network. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8518–8527 (2019a). https://doi.org/10.1109/ICCV.2019.00861
KorczakowskiJSarwasGCzajewskiWCoU2Net and CoLDF: two novel methods built on basis of double-branch co-salient object detection frameworkIEEE Access202210849898500110.1109/ACCESS.2022.3197752
ZhengPFuHFanD-PFanQQinJTaiY-WTangC-KVan GoolLGCoNEt+: A stronger group collaborative co-salient object detectorIEEE Trans. Pattern Anal. Mach. Intell.202310.1109/TPAMI.2023.3264571
Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang, T., Torr, P. H., Zhang, L.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6881–6890 (2021)
LiYFuKLiuZYangJEfficient saliency-model-guided visual co-saliency detectionIEEE Signal Process. Lett.201522558859210.1109/LSP.2014.2364896
GongXLiuXLiYLiHA novel co-attention computation block for deep learning based image co-segmentationImage Vis. Comput.202010110.1016/j.imavis.2020.103973
CaoXTaoZZhangBFuHFengWSelf-adaptively weighted co-saliency detection via rank constraintIEEE Trans. Image Process.20142394175418633000331374.94054
Li, K., Wang, S., Zhang, X., Xu, Y., Xu, W., Tu, Z.: Pose recognition with cascade transformers. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1944–1953 (2021)
JoulinATangKFei-FeiLFleetDPajdlaTSchieleBTuytelaarsTEfficient image and video co-localization with Frank–Wolfe algorithmComputer Vision–ECCV 20142014ChamSpringer International Publishing25326810.1007/978-3-319-10599-4_17
Zhou, H., Xie, X., Lai, J.-H., Chen, Z., Yang, L.: Interactive two-stream decoder for accurate and fast saliency detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9138–9147 (2020)
LiTSongHZhangKLiuQRecurrent reverse attention guided residual learning for saliency object detectionNeurocomputing202038917017810.1016/j.neucom.2019.12.109
Wang, L., Lu, H., Wang, Y., Feng, M., Xiang, R.: Learning to detect salient objects with image-level supervision. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)
Chang, K.-Y., Liu, T.-L., Lai, S.-H.: From co-saliency to co-segmentation: an efficient and fully unsupervised energy minimization model. In: CVPR 2011, pp. 2129–2136 (2011)
YanXChenZWuQLuMSunL3MNet: multi-task, multi-level and multi-channel feature aggregation network for salient object detectionMach. Vis. Appl.202132211310.1007/s00138-021-01172-y
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Comput. Sci. (2014)
Jiang, B., Jiang, X., Tang, J., Luo, B., Huang, S.: Multiple graph convolutional networks for co-saliency detection. In: 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 332–337 (2019)
Zhang, D., Han, J., Li, C., Wang, J., Li, X.: Detection of co-salient objects by looking deep and wide. Int. J. Comput. Vis. (2016b)
ChenZCongRXuQHuangQDPANet: Depth potentiality-aware gated attention network for RGB-D salient object detectionIEEE Trans. Image Process.2021307012702410.1109/TIP.2020.3028289
FanD-PLiTLinZJiG-PZhangDChengM-MFuHShenJRe-thinking co-salient object detectionIEEE Trans. Pattern Anal. Mach. Intell.20224484339435410.1109/TPAMI.2021.3060412
Ren, G., Dai, T., Stathaki, T.: Adaptive intra-group aggregation for co-saliency detection. In: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2520–2524 (2022). https://doi.org/10.1109/ICASSP43922.2022.9746218
LiHNganKNA co-saliency model of image pairsIEEE Trans. Image Process.2011201233653375285048210.1109/TIP.2011.21568031374.94203
ZhangQCongRHouJLiCZhaoYLarochelleHRanzatoMHadsellRBalcanMLinHCoadnet: collaborative aggregation-and-distribution networks for co-salient object detectionAdvances in Neural Information Processing Systems2020Red HookCurran Associates Inc.69596970
Zhang, K., Li, T., Liu, B., Liu, Q.: Co-saliency detection via mask-guided fully convolutional networks with multi-scale label smoothing. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3090–3099 (2019b)
Zhang, D., Han, J., Li, C., Wang, J.: Co-saliency detection via looking deep and wide. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2994–3002 (2015)
HanKWangYChenHChenXGuoJLiuZTangYXiaoAXuCXuYYangZZhangYTaoDA survey on vision transformerIEEE Trans. Pattern Anal. Mach. Intell.202210.1109/TPAMI.2022.3152247
LiuZDongHZhangZXiaoYGlobal-guided cross-reference network for co-salient object detectionMach. Vis. Appl.202233511310.1007/s00138-022-01325-7
Wu, Z., Su, L., Huang, Q. (2019) Stacked cross refinement network for edge-aware salient object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7264–7273 (2019)
Wang, Y., Xu, Z., Wang, X., Shen, C., Cheng, B., Shen, H., Xia, H.: End-to-end video instance segmentation with transformers. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognit
H He (1462_CR18) 2022; 33
1462_CR25
1462_CR69
1462_CR24
Y Li (1462_CR32) 2015; 22
1462_CR68
1462_CR23
G Srivastava (1462_CR50) 2020; 31
1462_CR29
Z Zhang (1462_CR80) 2020
1462_CR28
T Li (1462_CR33) 2020; 389
1462_CR27
X Yan (1462_CR64) 2021; 32
X Yao (1462_CR66) 2017; 26
Z Liu (1462_CR41) 2022; 33
A Vaswani (1462_CR56) 2017
H Fu (1462_CR13) 2013; 22
DG Lowe (1462_CR43) 2004; 60
J Han (1462_CR16) 2017; 28
H Li (1462_CR31) 2011; 20
1462_CR62
W-D Jin (1462_CR21) 2020
1462_CR61
1462_CR60
P Zheng (1462_CR85) 2023
1462_CR20
1462_CR37
Z Liu (1462_CR42) 2022; 32
1462_CR36
1462_CR35
H-Y Chen (1462_CR7) 2015; 37
1462_CR38
X Gong (1462_CR14) 2020; 101
A Joulin (1462_CR22) 2014
D Zhang (1462_CR78) 2017; 39
Q Zhang (1462_CR79) 2020
1462_CR73
1462_CR72
1462_CR71
Z Chen (1462_CR8) 2021; 30
J Liu (1462_CR40) 2022; 126
1462_CR76
1462_CR75
1462_CR30
T Li (1462_CR34) 2022; 24
1462_CR74
1462_CR48
Z Tan (1462_CR53) 2022; 252
1462_CR47
1462_CR46
1462_CR45
1462_CR49
D-P Fan (1462_CR12) 2022; 44
N Liu (1462_CR39) 2020; 99
N Carion (1462_CR5) 2020
Y Su (1462_CR52) 2023
L Yang (1462_CR65) 2011; 13
L Tang (1462_CR54) 2022; 32
Z Wu (1462_CR63) 2021; 32
X Cao (1462_CR4) 2014; 23
1462_CR84
1462_CR83
1462_CR82
Z Zhu (1462_CR88) 2023
1462_CR81
1462_CR87
1462_CR86
1462_CR15
1462_CR59
1462_CR58
1462_CR57
1462_CR19
Y Luo (1462_CR44) 2015; 37
Z Bai (1462_CR2) 2023; 25
L Ye (1462_CR67) 2015; 22
1462_CR1
1462_CR3
1462_CR6
J Korczakowski (1462_CR26) 2022; 10
1462_CR51
Z-J Zha (1462_CR70) 2020; 31
K Han (1462_CR17) 2022
D Zhang (1462_CR77) 2016; 27
1462_CR9
1462_CR11
1462_CR55
1462_CR10
References_xml – start-page: 18749
  volume-title: Advances in Neural Information Processing Systems
  year: 2020
  ident: 1462_CR21
  contributor:
    fullname: W-D Jin
– ident: 1462_CR36
  doi: 10.1109/CVPR46437.2021.00199
– volume: 389
  start-page: 170
  year: 2020
  ident: 1462_CR33
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.109
  contributor:
    fullname: T Li
– ident: 1462_CR57
  doi: 10.1109/CVPR.2018.00813
– ident: 1462_CR60
  doi: 10.1609/aaai.v33i01.33018917
– volume: 22
  start-page: 2073
  issue: 11
  year: 2015
  ident: 1462_CR67
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2015.2458434
  contributor:
    fullname: L Ye
– year: 2023
  ident: 1462_CR88
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2023.3234586
  contributor:
    fullname: Z Zhu
– volume: 22
  start-page: 588
  issue: 5
  year: 2015
  ident: 1462_CR32
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2364896
  contributor:
    fullname: Y Li
– ident: 1462_CR1
  doi: 10.1109/CVPR.2019.00231
– ident: 1462_CR6
  doi: 10.1109/CVPR.2011.5995415
– ident: 1462_CR47
  doi: 10.1109/ICASSP43922.2022.9746218
– volume: 24
  start-page: 492
  year: 2022
  ident: 1462_CR34
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2021.3054526
  contributor:
    fullname: T Li
– volume: 27
  start-page: 1163
  issue: 6
  year: 2016
  ident: 1462_CR77
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2495161
  contributor:
    fullname: D Zhang
– start-page: 6959
  volume-title: Advances in Neural Information Processing Systems
  year: 2020
  ident: 1462_CR79
  contributor:
    fullname: Q Zhang
– volume: 252
  year: 2022
  ident: 1462_CR53
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.109356
  contributor:
    fullname: Z Tan
– ident: 1462_CR68
  doi: 10.1109/CVPR52688.2022.00105
– ident: 1462_CR76
  doi: 10.1109/CVPR.2018.00081
– ident: 1462_CR72
  doi: 10.1109/CVPR.2015.7298918
– ident: 1462_CR23
  doi: 10.1145/3505244
– ident: 1462_CR29
  doi: 10.24963/ijcai.2019/115
– volume: 32
  start-page: 1
  issue: 2
  year: 2021
  ident: 1462_CR64
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-021-01172-y
  contributor:
    fullname: X Yan
– volume: 37
  start-page: 2388
  issue: 12
  year: 2015
  ident: 1462_CR7
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2420556
  contributor:
    fullname: H-Y Chen
– ident: 1462_CR15
  doi: 10.1109/ICCV48922.2021.00707
– ident: 1462_CR35
  doi: 10.1007/978-3-319-10602-1_48
– volume: 126
  year: 2022
  ident: 1462_CR40
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2022.103425
  contributor:
    fullname: J Liu
– volume: 10
  start-page: 84989
  year: 2022
  ident: 1462_CR26
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3197752
  contributor:
    fullname: J Korczakowski
– ident: 1462_CR11
  doi: 10.24963/ijcai.2018/97
– ident: 1462_CR87
– volume: 33
  start-page: 1
  issue: 5
  year: 2022
  ident: 1462_CR41
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-022-01325-7
  contributor:
    fullname: Z Liu
– ident: 1462_CR20
  doi: 10.1109/ICME.2019.00065
– ident: 1462_CR24
– volume: 13
  start-page: 1295
  issue: 6
  year: 2011
  ident: 1462_CR65
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2011.2162399
  contributor:
    fullname: L Yang
– volume: 101
  year: 2020
  ident: 1462_CR14
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2020.103973
  contributor:
    fullname: X Gong
– ident: 1462_CR49
– ident: 1462_CR9
– ident: 1462_CR61
  doi: 10.1109/CVPR46437.2021.00162
– ident: 1462_CR45
  doi: 10.1109/CVPR42600.2020.00943
– ident: 1462_CR69
  doi: 10.1109/ICCV48922.2021.00060
– ident: 1462_CR74
  doi: 10.1109/CVPR.2019.00321
– ident: 1462_CR55
– volume: 44
  start-page: 4339
  issue: 8
  year: 2022
  ident: 1462_CR12
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3060412
  contributor:
    fullname: D-P Fan
– volume: 99
  start-page: 6438
  year: 2020
  ident: 1462_CR39
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2988568
  contributor:
    fullname: N Liu
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 1462_CR43
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
  contributor:
    fullname: DG Lowe
– volume: 31
  start-page: 1
  issue: 3
  year: 2020
  ident: 1462_CR50
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-020-01065-6
  contributor:
    fullname: G Srivastava
– start-page: 253
  volume-title: Computer Vision–ECCV 2014
  year: 2014
  ident: 1462_CR22
  doi: 10.1007/978-3-319-10599-4_17
  contributor:
    fullname: A Joulin
– ident: 1462_CR82
  doi: 10.1109/ICCV.2019.00887
– volume: 20
  start-page: 3365
  issue: 12
  year: 2011
  ident: 1462_CR31
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2156803
  contributor:
    fullname: H Li
– ident: 1462_CR28
  doi: 10.1109/ICCV.2019.00861
– ident: 1462_CR38
  doi: 10.1109/ICCV48922.2021.00468
– volume: 26
  start-page: 3196
  issue: 7
  year: 2017
  ident: 1462_CR66
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2694222
  contributor:
    fullname: X Yao
– volume: 37
  start-page: 2057
  issue: 10
  year: 2015
  ident: 1462_CR44
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2392783
  contributor:
    fullname: Y Luo
– ident: 1462_CR75
  doi: 10.1109/CVPR42600.2020.00907
– ident: 1462_CR51
  doi: 10.1109/TMM.2023.3264883
– volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: 1462_CR56
  contributor:
    fullname: A Vaswani
– volume: 23
  start-page: 4175
  issue: 9
  year: 2014
  ident: 1462_CR4
  publication-title: IEEE Trans. Image Process.
  contributor:
    fullname: X Cao
– volume: 30
  start-page: 7012
  year: 2021
  ident: 1462_CR8
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3028289
  contributor:
    fullname: Z Chen
– ident: 1462_CR10
  doi: 10.1109/CVPR46437.2021.01211
– volume: 32
  start-page: 4
  issue: 1
  year: 2021
  ident: 1462_CR63
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2978386
  contributor:
    fullname: Z Wu
– volume: 31
  start-page: 2398
  issue: 7
  year: 2020
  ident: 1462_CR70
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  contributor:
    fullname: Z-J Zha
– volume: 33
  start-page: 1
  issue: 4
  year: 2022
  ident: 1462_CR18
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-022-01312-y
  contributor:
    fullname: H He
– start-page: 213
  volume-title: Computer Vision–ECCV 2020
  year: 2020
  ident: 1462_CR5
  doi: 10.1007/978-3-030-58452-8_13
  contributor:
    fullname: N Carion
– ident: 1462_CR25
– volume: 25
  start-page: 764
  year: 2023
  ident: 1462_CR2
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2021.3138246
  contributor:
    fullname: Z Bai
– volume: 32
  start-page: 5453
  issue: 8
  year: 2022
  ident: 1462_CR54
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2022.3150923
  contributor:
    fullname: L Tang
– volume: 22
  start-page: 3766
  issue: 10
  year: 2013
  ident: 1462_CR13
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2260166
  contributor:
    fullname: H Fu
– ident: 1462_CR83
  doi: 10.1109/CVPR46437.2021.01655
– volume: 28
  start-page: 2473
  year: 2017
  ident: 1462_CR16
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2017.2706264
  contributor:
    fullname: J Han
– ident: 1462_CR48
  doi: 10.5244/C.31.17
– start-page: 455
  volume-title: Computer Vision—ECCV 2020
  year: 2020
  ident: 1462_CR80
  doi: 10.1007/978-3-030-58610-2_27
  contributor:
    fullname: Z Zhang
– ident: 1462_CR19
  doi: 10.1007/978-3-030-01228-1_30
– ident: 1462_CR58
  doi: 10.1109/CVPR.2017.404
– ident: 1462_CR62
  doi: 10.1109/ICCV.2019.00736
– ident: 1462_CR30
  doi: 10.1109/CVPR46437.2021.00198
– ident: 1462_CR46
  doi: 10.1109/CVPR46437.2021.00700
– year: 2023
  ident: 1462_CR85
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2023.3264571
  contributor:
    fullname: P Zheng
– ident: 1462_CR3
  doi: 10.1109/CVPR.2010.5540080
– ident: 1462_CR59
  doi: 10.1109/CVPR46437.2021.00863
– ident: 1462_CR86
  doi: 10.1109/CVPR42600.2020.00916
– volume: 39
  start-page: 865
  issue: 5
  year: 2017
  ident: 1462_CR78
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2567393
  contributor:
    fullname: D Zhang
– year: 2022
  ident: 1462_CR17
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3152247
  contributor:
    fullname: K Han
– ident: 1462_CR37
  doi: 10.1109/ICCV48922.2021.00986
– ident: 1462_CR84
  doi: 10.1109/CVPR46437.2021.00681
– ident: 1462_CR71
  doi: 10.1109/CVPR.2015.7298918
– ident: 1462_CR73
  doi: 10.1109/CVPR.2019.00321
– ident: 1462_CR27
  doi: 10.1109/LSP.2013.2292873
– volume: 32
  start-page: 4486
  issue: 7
  year: 2022
  ident: 1462_CR42
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3127149
  contributor:
    fullname: Z Liu
– ident: 1462_CR81
  doi: 10.1109/TMM.2022.3198848
– year: 2023
  ident: 1462_CR52
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2023.3264883
  contributor:
    fullname: Y Su
SSID ssj0004774
Score 2.3862271
Snippet The co-salient object detection (Co-SOD) aims to discover common, salient objects from a group of images. With the development of convolutional neural...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 107
SubjectTerms Artificial neural networks
Collaboration
Communications Engineering
Computer Science
Decoding
Garnets
Image Processing and Computer Vision
Modules
Networks
Object recognition
Original Paper
Pattern Recognition
Retention
Salience
Source code
Vision systems
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUAECvLABpbysON6rBBVxcBEpW5W4seYojb8f85O3ACCgS2yIw-X-O47-7vvAO5NVUjOp5byVEvKMF2jsnReHs84Z3lmjAtsi9dysWQvK74a6rgD2T3eSAZHvat1C3dqFEMM9XonCAv34QDBA_M8rmU-G4ohRSe9jMAE3a_M-0qZ39f4Ho0GiPnjVjQEm_kpHPcokcy6z3oGe7YZw0mPGEm_H7c4FJsyxLExHH1RGDyHWThbIl5EM9AaycbGp6YjgBNErUSv6RYBOc6Qde1PZoixbSBpNRewnD-_PS1o3zWB6lykLdU-g6mrrJwi1EL4IVJX8sr5TFQWdVbYqtIy04wZ7RyvucSQzo3MS24rIYwtLmHUrBt7BUTqMrXWFUIbyTKmJatTJ3wKmHMjqiyBh2g99d6JY6idDHKwtUJbq2BrJRKYRAOrfqNsVT7F_KlAT8cTeIxGH6b_Xu36f6_fwKFvFN9VEU5g1G4-7C3Ciba-C7_PJ03jv_I
  priority: 102
  providerName: Springer Nature
Title Group attention retention network for co-salient object detection
URI https://link.springer.com/article/10.1007/s00138-023-01462-7
https://www.proquest.com/docview/2866638875
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLbYdoEDjwFiMKYcuEFEX2mWExpoD4E0IcSkcaraPI7d2Mb_x0lTBkhwqxIpB6e2Pzv2Z4ArlceCsb6mLJCCJhiuUZEaS4-njNEsVMq4aotpOpklj3M29wm3tS-rrG2iM9RqIW2O_DbqI9COUSXY3fKd2qlR9nXVj9BoQCvCSCFqQut-OH1-2XZG8oqHGVEK2mIR-bYZ1zznHuko-ixqCVQQZ_50TVu8-euJ1Hme0SHse8hIBtUdH8GOLttw4OEj8cq5bsPeN27BYxi4rBKx9JmuoJGsdP1VVqXfBPEqkQu6RiiOO2RR2JwMUXrjyrPKE5iNhq8PE-rnJVAZ8WBDpY1dijxM-wiyEHjwwKQsNzYGFXERxjrPpQhlkihpDCuYQGfOlIhSpnPOlY5PoVkuSn0GRMg00NrEXCqRhIkUSREYboO_iCmehx24rkWVLStajOyLANkJNkPBZk6wGe9At5Zm5lVknW0vtAM3tYS323-fdv7_aRewa0fCV_2CXWhuVh_6EoHDpuhBoz8a96A1GL89DXv-X8HVWTT4BEJ4who
link.rule.ids 315,783,787,12779,21402,27938,27939,33387,33758,41095,41537,42164,42606,43614,43819,52125,52248
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BGYCBRwFRKOCBDSzysON6QhWiFCidWqlblPgxJqUJ_x_bcSggwRbJkodz7u6713cA1zKLOaUDhWkgOCYmXMM80ZYeT2qtaCildt0W02Q8Jy8LuvAJt8q3VbY20RlqWQqbI7-LBgZox0Yl6P3yHdutUba66ldobMIWiY2jsZPio6f1XCRrWJgNRjGWmEd-aMaNzrkSHTYeC1v6FIMyfzqmNdr8VSB1fmd0AHseMKJh88KHsKGKLux78Ii8alZd2P3GLHgEQ5dTQpY807UzopVqv4qm8RsZtIpEiSsDxM0JKnObkUFS1a45qziG-ehx9jDGflsCFhELaixs5JJnYTIwEMvADhbohGbaRqA8zsNYZZngoSBECq1pTrlx5VTyKKEqY0yq-AQ6RVmoU0BcJIFSOmZCchISwUkeaGZDv4hKloU9uGlFlS4bUoz0i_7YCTY1gk2dYFPWg34rzdQrSJWun7MHt62E18d_33b2_21XsD2evU3SyfP09Rx27HL4ZnKwD5169aEuDISo80v3n3wCDzvAQg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BKyEYKBQQhQIe2MCQl-N6rIBSHkIMIMEUJX4sSGnVpgu_nrOTtIBgQGyRbVnJnXP-znf3GeBYpaFgrKcp86SgEbprVMTG0uMpYzTzlTIu2-IhHj5Hty_s5VMVv8t2r0OSZU2DZWnKi_OxMufzwjcXYKO431BLfoIYcRmakY9woQHN_vXr3dWiNpKXTMyIU9Aai6AqnPl5lq-b0wJxfguSur1n0IK0fusy5eTtbFZkZ_L9G6Hjfz5rA9YrYEr65UrahCWdt6FVgVRSmYApNtX3QNRtbVj7RGq4BX13nEUsb6fLpCQTXT_lZc45QaBM5IhO0QfAHjLK7GEQUbpweWH5NjwPrp4uhrS6qIHKgHsFldZpylI_7iG6Q8TDPROz1FjnV4SZH-o0lcKXUaSkMSxjAlEEUyKImU45VzrcgUY-yvUuECFjT2sTcqlE5EdSRJlnuPU6A6Z46nfgpNZQMi75OJI587ITX4LiS5z4Et6Bbq3EpPo3p0nQQ5ctROPKOnBa62TR_ftse38bfgQrj5eD5P7m4W4fVu019WUNYxcaxWSmDxDMFNlhtV4_AD5w6R4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+attention+retention+network+for+co-salient+object+detection&rft.jtitle=Machine+vision+and+applications&rft.au=Liu%2C+Jing&rft.au=Wang%2C+Jiaxiang&rft.au=Fan%2C+Zhiwei&rft.au=Yuan%2C+Min&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0932-8092&rft.eissn=1432-1769&rft.volume=34&rft.issue=6&rft.spage=107&rft_id=info:doi/10.1007%2Fs00138-023-01462-7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0932-8092&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0932-8092&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0932-8092&client=summon