Singular spectrum analysis based sleeping stage classification via electrooculogram
The sleeping stage classification plays an important role in the medical science because it helps the diagnosis of the mental health diseases. The conventional approach for performing the sleeping stage classification is based on the electroencephalograms (EEGs). However, it is worth noting that the...
Saved in:
Published in | Multimedia tools and applications Vol. 83; no. 24; pp. 65525 - 65548 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The sleeping stage classification plays an important role in the medical science because it helps the diagnosis of the mental health diseases. The conventional approach for performing the sleeping stage classification is based on the electroencephalograms (EEGs). However, it is worth noting that the EEGs reflect the brain activities. Nevertheless, the brain activities are very complicated even though the subjects are sleeping. Hence, performing the sleeping stage classification via the EEGs may yield the low classification accuracy. On the other hand, the electrooculograms (EOGs) are the voltages between the front eyes and the back eyes which are related to the eye ball movement. As it can directly reflect the various sleeping stages, it can achieve a higher classification accuracy. Therefore, this paper employs the two channel EOGs for performing the sleeping stage classification. The major contribution of this paper is to 1) employ the singular spectrum analysis (SSA) to exploit the latent intrinsic high dimensional dynamics of the one dimensional EOGs for performing the sleeping stage classification, 2) employ the approximate entropy as the features for performing the sleeping stage classification, and 3) assign the same features of different SSA components of different channels of the epochs of the EOGs into the same group and perform the principal component analysis (PCA) on each group of the feature vectors so that the properties of each type of the features are preserved. The results show that our proposed method yields the five sleeping stage classification accuracy at 93.73% and the sensitivity of the stage one non-rapid eye movement (S1) at 78.44%, which achieves the significant improvements compared to the existing methods. Therefore, our proposed method could be used to reduce the workload of the medical officers. |
---|---|
AbstractList | The sleeping stage classification plays an important role in the medical science because it helps the diagnosis of the mental health diseases. The conventional approach for performing the sleeping stage classification is based on the electroencephalograms (EEGs). However, it is worth noting that the EEGs reflect the brain activities. Nevertheless, the brain activities are very complicated even though the subjects are sleeping. Hence, performing the sleeping stage classification via the EEGs may yield the low classification accuracy. On the other hand, the electrooculograms (EOGs) are the voltages between the front eyes and the back eyes which are related to the eye ball movement. As it can directly reflect the various sleeping stages, it can achieve a higher classification accuracy. Therefore, this paper employs the two channel EOGs for performing the sleeping stage classification. The major contribution of this paper is to 1) employ the singular spectrum analysis (SSA) to exploit the latent intrinsic high dimensional dynamics of the one dimensional EOGs for performing the sleeping stage classification, 2) employ the approximate entropy as the features for performing the sleeping stage classification, and 3) assign the same features of different SSA components of different channels of the epochs of the EOGs into the same group and perform the principal component analysis (PCA) on each group of the feature vectors so that the properties of each type of the features are preserved. The results show that our proposed method yields the five sleeping stage classification accuracy at 93.73% and the sensitivity of the stage one non-rapid eye movement (S1) at 78.44%, which achieves the significant improvements compared to the existing methods. Therefore, our proposed method could be used to reduce the workload of the medical officers. |
Author | Ling, Bingo Wing-Kuen Zhou, Xueling Che, Jia-Hui |
Author_xml | – sequence: 1 givenname: Jia-Hui surname: Che fullname: Che, Jia-Hui organization: Faculty of Information Engineering, Guangdong University of Technology – sequence: 2 givenname: Bingo Wing-Kuen surname: Ling fullname: Ling, Bingo Wing-Kuen email: yongquanling@gdut.edu.cn organization: Faculty of Information Engineering, Guangdong University of Technology – sequence: 3 givenname: Xueling surname: Zhou fullname: Zhou, Xueling organization: Faculty of Information Engineering, Guangdong University of Technology |
BookMark | eNp9kE1Lw0AQhhepYFv9A54WPEf3I8mmRyl-QcFD9bxsdichJc3GncTSf-_WCHryMjOH530ZngWZdb4DQq45u-WMqTvknKUiYUImvOBMJoczMueZkolSgs_-3BdkgbhjjOeZSOdku226emxNoNiDHcK4p6Yz7REbpKVBcBRbgD5CFAdTA7WtQWyqxpqh8R39bAyF9pT03o6tr4PZX5LzyrQIVz97Sd4fH97Wz8nm9ellfb9JrFBsiJMX1oK0rlIutyo3RbrKpHKZNYUrGJTcVoWqmInfSpOLPLUOMihdBS5TIJfkZurtg_8YAQe982OI36OWTOWFWAkpIyUmygaPGKDSfWj2Jhw1Z_okT0_ydJSnv-XpQwzJKYQR7moIv9X_pL4A9qp26Q |
Cites_doi | 10.1016/j.patcog.2009.11.001 10.1109/TSMCA.2009.2029559 10.1016/j.bspc.2020.102131 10.1145/1961189.1961199 10.1016/S1474-4422(06)70476-8 10.1016/j.na.2009.01.124 10.1016/S0167-2789(97)00118-8 10.1038/nn.3193 10.1016/j.compbiomed.2018.08.022 10.1016/j.bspc.2015.09.002 10.1016/j.jfranklin.2017.05.020 10.4249/scholarpedia.1883 10.1016/j.jneumeth.2007.06.016 10.1109/TIM.2012.2187242 10.1038/nature04287 10.1109/5254.708428 10.1073/pnas.88.6.2297 10.1093/sleep/32.2.139 10.1109/TIM.2015.2433652 10.1007/s10916-008-9218-9 10.1053/smrv.1999.0087 10.1016/j.biopsycho.2012.10.010 10.1109/TBME.2014.2375292 10.1109/WHISPERS.2014.8077583 10.1007/BF00058655 10.5664/jcsm.2172 10.1145/1520340.1520468 10.1109/CircuitsAndSystems.2015.7394075 10.1109/EMBC.2016.7591548 10.1109/ICR.2006.343443 10.1007/978-3-030-61705-9_54 10.1109/SIPROCESS.2019.8868879 10.1016/j.spl.2021.109095 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-023-18103-w |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Business Premium Collection (Proquest) Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 65548 |
ExternalDocumentID | 10_1007_s11042_023_18103_w |
GrantInformation_xml | – fundername: Innovation and Technology Commission - Hong Kong grantid: no. S/E/070/17 funderid: http://dx.doi.org/10.13039/501100007156 – fundername: Team Project of the Education Ministry of the Guangdong Province grantid: no. 2017KCXTD011 – fundername: Guangdong Higher Education Engineering Technology Research Center for Big Data on Manufacturing Knowledge Patent grantid: no. 501130144 – fundername: National Nature Science Foundation of China grantid: no. U1701266; no. 61671163; no. 62071128 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c270t-c218cce3cdf7d6c76a849537d5ca8d80eb1cf87f0a0013a6264cde5ebdfed57e3 |
IEDL.DBID | BENPR |
ISSN | 1573-7721 1380-7501 |
IngestDate | Fri Jul 25 09:10:53 EDT 2025 Tue Jul 01 04:13:31 EDT 2025 Fri Feb 21 02:39:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | Singular spectrum analysis one way variance analysis Sleeping stage classification random forest Electrooculograms Principal component analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-c218cce3cdf7d6c76a849537d5ca8d80eb1cf87f0a0013a6264cde5ebdfed57e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3076829233 |
PQPubID | 54626 |
PageCount | 24 |
ParticipantIDs | proquest_journals_3076829233 crossref_primary_10_1007_s11042_023_18103_w springer_journals_10_1007_s11042_023_18103_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240700 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 7 year: 2024 text: 20240700 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Iranzo (CR7) 2006; 5 Cao (CR27) 1997; 110 Arzi, Shedlesky, Ben-Shaul, Nasser, Oksenberg (CR1) 2000; 15 Vural, Yildiz (CR9) 2008; 34 CR19 CR18 Steven (CR29) 1991; 88 CR15 Hearst (CR33) 1998; 13 CR35 CR10 (CR14) 2016; 24 Dabbaghchian, Ghaemmaghami, Aghagolzadeh (CR23) 2010; 42 Peterson (CR31) 2009; 4 CR32 Liang, Kuo, Lee, Lin, Liu, Chen, Cherng, Shaw (CR16) 2015; 64 CR30 Seiffert, Khoshgoftaar, Van Hulse, Napolitano (CR37) 2010; 40 (CR24) 2021; 33 Moser, Anderer, Gruber, Parapatics, Loretz, Boeck, Kloesch, Heller, Schmidt, Danker-Hopfe, Saletu, Zeitlhofer, Dorffner (CR4) 2009; 32 Penzel, Conradt (CR3) 2000; 4 Zabalza, Qing, Yuen, Sun, Zhao, Ren (CR22) 2018; 355 Lin, Ling, Xu, Lam, Ho (CR17) 2020; 62 Virkkala, Hasan, Värri, Himanen, Müller (CR12) 2007; 166 CR5 Mahowald, Schenck (CR2) 2005; 437 CR28 CR26 Skubalska-Rafajlowicz (CR25) 2009; 71 CR21 CR20 Chih-Chung, Chih-Jen (CR34) 2011; 2 (CR13) 2018; 102 Hau-tieng, Talmon, Lo (CR6) 2015; 62 Liang, Kuo, Yu-Han, Pan, Wang (CR8) 2012; 61 Horne (CR36) 2013; 92 Kuo, Liang, Lee, Cherng, Lin, Chen, Liu, Shaw (CR11) 2014; 8908 A Iranzo (18103_CR7) 2006; 5 Wu Hau-tieng (18103_CR6) 2015; 62 J Virkkala (18103_CR12) 2007; 166 E Skubalska-Rafajlowicz (18103_CR25) 2009; 71 18103_CR19 C Chih-Chung (18103_CR34) 2011; 2 18103_CR18 18103_CR15 T Penzel (18103_CR3) 2000; 4 MW Mahowald (18103_CR2) 2005; 437 LE Peterson (18103_CR31) 2009; 4 18103_CR10 18103_CR32 S-F Liang (18103_CR8) 2012; 61 18103_CR35 J Horne (18103_CR36) 2013; 92 18103_CR20 L Cao (18103_CR27) 1997; 110 D Moser (18103_CR4) 2009; 32 S-F Liang (18103_CR16) 2015; 64 18103_CR5 Y Lin (18103_CR17) 2020; 62 C Vural (18103_CR9) 2008; 34 J Zabalza (18103_CR22) 2018; 355 Ahnaf Rashik Hassan and Mohammed Imamul Hassan Bhuiyan (18103_CR14) 2016; 24 M Steven (18103_CR29) 1991; 88 Md Mosheyur Rahman (18103_CR13) 2018; 102 18103_CR26 Revathi Balasundaram and Gnanou Florence Sudha (18103_CR24) 2021; 33 18103_CR28 18103_CR21 A Arzi (18103_CR1) 2000; 15 S Dabbaghchian (18103_CR23) 2010; 42 18103_CR30 MA Hearst (18103_CR33) 1998; 13 C-E Kuo (18103_CR11) 2014; 8908 C Seiffert (18103_CR37) 2010; 40 |
References_xml | – volume: 42 start-page: 1431 issue: 4 year: 2010 end-page: 1440 ident: CR23 article-title: Feature extraction using discrete cosine transform and discrimination power analysis with a face recognition technology publication-title: Pattern Recogn doi: 10.1016/j.patcog.2009.11.001 – volume: 40 start-page: 185 issue: 1 year: 2010 end-page: 197 ident: CR37 article-title: RUSBoost: A hybrid approach to alleviating class imbalance publication-title: IEEE Trans Syst Man, Cybern Part A: Syst Humans doi: 10.1109/TSMCA.2009.2029559 – ident: CR18 – volume: 62 start-page: 102 year: 2020 end-page: 131 ident: CR17 article-title: Effectiveness analysis of bio-electronic stimulation therapy to Parkinson’s diseases via joint singular spectrum analysis and discrete Fourier transform approach publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.102131 – volume: 33 start-page: 110 issue: 1 year: 2021 end-page: 117 ident: CR24 article-title: Retrieval performance analysis of multibiometric database using optimized multidimensional spectral hashing based indexing publication-title: J King Saud Univ Comput Inf Sci – ident: CR30 – volume: 2 start-page: 1 year: 2011 end-page: 39 ident: CR34 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans Intell Syst Technol doi: 10.1145/1961189.1961199 – volume: 5 start-page: 572 issue: 7 year: 2006 end-page: 577 ident: CR7 article-title: Jose Luis Molinuevo, Joan Santamara, Monica Serradell Bsc, Maria Jose Marti, Francesc Valldeoriola and Eduard Tolosa, “Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study” publication-title: THE Lancet Neurol doi: 10.1016/S1474-4422(06)70476-8 – ident: CR10 – volume: 71 start-page: 1225 issue: 12 year: 2009 end-page: 1263 ident: CR25 article-title: Neural networks with sigmoidal activation functions – dimension reduction using normal random projection publication-title: Nonlinear Anal Theory Methods Appl doi: 10.1016/j.na.2009.01.124 – ident: CR35 – volume: 110 start-page: 43 year: 1997 end-page: 50 ident: CR27 article-title: Practical method for determining the minimum embedding dimension of a scalar time series publication-title: Phys D: Nonlinear Phenomena doi: 10.1016/S0167-2789(97)00118-8 – volume: 15 start-page: 1460 issue: 10 year: 2000 end-page: 1465 ident: CR1 article-title: Ilana S Hairston and Noam Sobel, “Humans can learn new information during sleep” publication-title: Nat Neurosci doi: 10.1038/nn.3193 – volume: 102 start-page: 211 year: 2018 end-page: 220 ident: CR13 article-title: Mohammed Imamul Hassan Bhuiyan and Ahnaf Rashik Hassan, “Sleep stage classification using single-channel EOG” publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.08.022 – volume: 24 start-page: 1 year: 2016 end-page: 10 ident: CR14 article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2015.09.002 – volume: 355 start-page: 1733 year: 2018 end-page: 1751 ident: CR22 article-title: Fast implementation of two-dimensional singular spectrum analysis for effective data classification in hyperspectral imaging publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2017.05.020 – volume: 4 start-page: 1883 issue: 2 year: 2009 ident: CR31 article-title: K-nearest neighbor publication-title: Scholarpedia doi: 10.4249/scholarpedia.1883 – volume: 166 start-page: 109 issue: 1 year: 2007 end-page: 115 ident: CR12 article-title: Automatic sleep stage classification using two-channel electro-oculography publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2007.06.016 – volume: 61 start-page: 1649 issue: 6 year: 2012 end-page: 1657 ident: CR8 article-title: Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2012.2187242 – ident: CR21 – volume: 437 start-page: 1279 issue: 7063 year: 2005 end-page: 1285 ident: CR2 article-title: Insights from studying human sleep disorders publication-title: Nature doi: 10.1038/nature04287 – ident: CR19 – volume: 13 start-page: 18 issue: 4 year: 1998 end-page: 28 ident: CR33 article-title: Support vector machines publication-title: IEEE Intelligent Syst Appl doi: 10.1109/5254.708428 – volume: 8908 start-page: 71 year: 2014 end-page: 88 ident: CR11 article-title: An EOG-Based automatic sleep scoring system and its related application in sleep environmental control publication-title: Int Conf Physiol Comput Syst Springer, Berlin Heidelberg – volume: 88 start-page: 2297 issue: 6 year: 1991 end-page: 2301 ident: CR29 article-title: Approximate entropy as a measure of system complexity publication-title: Proceed Nat Acad Sci United States Am doi: 10.1073/pnas.88.6.2297 – ident: CR15 – volume: 32 start-page: 139 issue: 2 year: 2009 end-page: 149 ident: CR4 article-title: Sleep classification according to aasm and rechtschaffen & kales: effects on sleep scoring parameters publication-title: Sleep doi: 10.1093/sleep/32.2.139 – volume: 64 start-page: 2977 issue: 11 year: 2015 end-page: 2985 ident: CR16 article-title: Development of an EOG-Based automatic sleep-monitoring eye mask publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2015.2433652 – volume: 34 start-page: 83 issue: 1 year: 2008 end-page: 89 ident: CR9 article-title: Determination of sleep stage separation ability of features extracted from EEG signals using principle component analysis publication-title: J Med Syst doi: 10.1007/s10916-008-9218-9 – ident: CR32 – volume: 4 start-page: 131 issue: 2 year: 2000 end-page: 148 ident: CR3 article-title: Computer based sleep recording and analysis publication-title: Sleep Med Rev doi: 10.1053/smrv.1999.0087 – ident: CR5 – ident: CR28 – ident: CR26 – volume: 92 start-page: 152 year: 2013 end-page: 168 ident: CR36 article-title: Why REM sleep? Clues beyond the laboratory in a more challenging world publication-title: Biol Psychol doi: 10.1016/j.biopsycho.2012.10.010 – ident: CR20 – volume: 62 start-page: 1159 issue: 4 year: 2015 end-page: 1168 ident: CR6 article-title: Assess sleep stage by modern signal processing techniques publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2375292 – volume: 13 start-page: 18 issue: 4 year: 1998 ident: 18103_CR33 publication-title: IEEE Intelligent Syst Appl doi: 10.1109/5254.708428 – ident: 18103_CR21 doi: 10.1109/WHISPERS.2014.8077583 – volume: 32 start-page: 139 issue: 2 year: 2009 ident: 18103_CR4 publication-title: Sleep doi: 10.1093/sleep/32.2.139 – volume: 4 start-page: 131 issue: 2 year: 2000 ident: 18103_CR3 publication-title: Sleep Med Rev doi: 10.1053/smrv.1999.0087 – ident: 18103_CR32 doi: 10.1007/BF00058655 – volume: 24 start-page: 1 year: 2016 ident: 18103_CR14 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2015.09.002 – volume: 33 start-page: 110 issue: 1 year: 2021 ident: 18103_CR24 publication-title: J King Saud Univ Comput Inf Sci – ident: 18103_CR5 doi: 10.5664/jcsm.2172 – volume: 62 start-page: 1159 issue: 4 year: 2015 ident: 18103_CR6 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2375292 – volume: 34 start-page: 83 issue: 1 year: 2008 ident: 18103_CR9 publication-title: J Med Syst doi: 10.1007/s10916-008-9218-9 – ident: 18103_CR10 doi: 10.1145/1520340.1520468 – volume: 110 start-page: 43 year: 1997 ident: 18103_CR27 publication-title: Phys D: Nonlinear Phenomena doi: 10.1016/S0167-2789(97)00118-8 – volume: 88 start-page: 2297 issue: 6 year: 1991 ident: 18103_CR29 publication-title: Proceed Nat Acad Sci United States Am doi: 10.1073/pnas.88.6.2297 – volume: 437 start-page: 1279 issue: 7063 year: 2005 ident: 18103_CR2 publication-title: Nature doi: 10.1038/nature04287 – ident: 18103_CR26 – volume: 15 start-page: 1460 issue: 10 year: 2000 ident: 18103_CR1 publication-title: Nat Neurosci doi: 10.1038/nn.3193 – ident: 18103_CR20 doi: 10.1109/CircuitsAndSystems.2015.7394075 – ident: 18103_CR35 doi: 10.1109/EMBC.2016.7591548 – volume: 61 start-page: 1649 issue: 6 year: 2012 ident: 18103_CR8 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2012.2187242 – ident: 18103_CR28 doi: 10.1109/ICR.2006.343443 – volume: 5 start-page: 572 issue: 7 year: 2006 ident: 18103_CR7 publication-title: THE Lancet Neurol doi: 10.1016/S1474-4422(06)70476-8 – ident: 18103_CR18 doi: 10.1007/978-3-030-61705-9_54 – ident: 18103_CR19 doi: 10.1109/SIPROCESS.2019.8868879 – ident: 18103_CR15 – ident: 18103_CR30 doi: 10.1016/j.spl.2021.109095 – volume: 166 start-page: 109 issue: 1 year: 2007 ident: 18103_CR12 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2007.06.016 – volume: 64 start-page: 2977 issue: 11 year: 2015 ident: 18103_CR16 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2015.2433652 – volume: 4 start-page: 1883 issue: 2 year: 2009 ident: 18103_CR31 publication-title: Scholarpedia doi: 10.4249/scholarpedia.1883 – volume: 102 start-page: 211 year: 2018 ident: 18103_CR13 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.08.022 – volume: 2 start-page: 1 year: 2011 ident: 18103_CR34 publication-title: ACM Trans Intell Syst Technol doi: 10.1145/1961189.1961199 – volume: 40 start-page: 185 issue: 1 year: 2010 ident: 18103_CR37 publication-title: IEEE Trans Syst Man, Cybern Part A: Syst Humans doi: 10.1109/TSMCA.2009.2029559 – volume: 8908 start-page: 71 year: 2014 ident: 18103_CR11 publication-title: Int Conf Physiol Comput Syst Springer, Berlin Heidelberg – volume: 42 start-page: 1431 issue: 4 year: 2010 ident: 18103_CR23 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2009.11.001 – volume: 355 start-page: 1733 year: 2018 ident: 18103_CR22 publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2017.05.020 – volume: 62 start-page: 102 year: 2020 ident: 18103_CR17 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.102131 – volume: 92 start-page: 152 year: 2013 ident: 18103_CR36 publication-title: Biol Psychol doi: 10.1016/j.biopsycho.2012.10.010 – volume: 71 start-page: 1225 issue: 12 year: 2009 ident: 18103_CR25 publication-title: Nonlinear Anal Theory Methods Appl doi: 10.1016/j.na.2009.01.124 |
SSID | ssj0016524 |
Score | 2.352936 |
Snippet | The sleeping stage classification plays an important role in the medical science because it helps the diagnosis of the mental health diseases. The conventional... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 65525 |
SubjectTerms | Accuracy Brain Classification Computer Communication Networks Computer Science Data Structures and Information Theory Electroencephalography Electrooculograms Medical science Multimedia Information Systems Principal components analysis Special Purpose and Application-Based Systems Spectrum analysis Track 2: Medical Applications of Multimedia |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUAUCvLABpFSx46TsUJUFRIspVI3y_UDIdEW0Zb-fc6uQwDBwJIMeQzfnX3f6e47A1wioygFzzE7KR0mKIbZpExNnhiaqqzgnGrmxcn3D3l_yO5GfBRFYfOq270qSYaduha7dbyUBGNMglEpzZLVJmxxn7ujFw9p97N2kHPKojzm9---h6CaV_4ohYYI09uH3UgNSXdtywPYsNMm7FXHLpC4Cpuw82WG4CEMBnjzvaQkiCbflhOi4qAR4kOUIfMXa70qiiARfLJEe77sG4SCTcj7syLxLJyZXoYJ1pMjGPZuH2_6STwpIdFUpAu8dgqtbaaNEybXIleF7xsVhmtVmCLFDVm7QrhUecqnMIlh2lhux8ZZw4XNjqExnU3tCZCSiqKTIY3TqmTMUcWdU5SKsTEs15y34KoCT76uB2LIevSxh1oi1DJALVctaFf4yrg45jLz1T-KzDJrwXWFef3477-d_u_1M9hG92Dr5to2NNAE9hwpxGJ8ETzmA1CFwTc priority: 102 providerName: Springer Nature |
Title | Singular spectrum analysis based sleeping stage classification via electrooculogram |
URI | https://link.springer.com/article/10.1007/s11042-023-18103-w https://www.proquest.com/docview/3076829233 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFH8RuOjBD9SIIunBmy6Obl27k0EDEo3EiCR4WkrbGRP5UED-fV9HJ2qily3Zkh5-r33v9_q-AE6QUcScReidxCk6KDo0XuzryNPUl4FgjKrQFiffdaJ2L7zps767cJu6tMpcJ2aKWo-VvSM_D2zIiCIdCS4mb56dGmWjq26ERgFKqIIFOl-ly2bn_uErjhAxN9ZW-B7axrorm1kWz9VtaQraLA-tnB94i5-macU3f4VIM8vT2oZNRxlJYynjHVgzozJs5eMYiDudZdj41ltwF7pdfNkcU5IVU77Ph0S6BiTEmi5Npq_G2GopggTx2RBlebRNHMpkRT5eJHEzcsZqnnW2Hu5Br9V8vGp7boKCpyj3Z_isC6VMoHTKdaR4JIXNJ-WaKSm08FFRq1Tw1JeWCkp0bkKlDTMDnRrNuAn2oTgaj8wBkJhyUQ-Q3ikZh2FKJUtTSSkfaB1GirEKnObgJZNlo4xk1RLZQp0g1EkGdbKoQDXHN3GHZpqsRFyBsxzz1e-_Vzv8f7UjWKdIRZZJtlUoIuTmGKnEbFCDgmhd16DUuH66bdbc7sGvPdr4BNtzyoQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGICBRwFRKOABJohI7Th2BoQQUFpouwASW3BtByHRFihQ8af4jZzzoIAEG0s8RPLw5Xz3OXffHcAWMopI8BBvJ1GCFxQTWC_yTegZ6ismOac6cOLkVjusXwVn1_x6DN4LLYwrqyx8YuqoTV-7f-R7zKWMKNIRdvDw6LmpUS67WozQyMzi3L4N8co22G8c4_fdprR2cnlU9_KpAp6mwn_GZ1VqbZk2iTChFqGSrsZSGK6VNNJH56UTKRJfOXqkkPAH2lhuOyaxhgvLcN9xmAwYi9yJkrXTz6xFyPMhutL3MBJXc5FOJtWrOiEMRkgPY6rPvOH3QDhitz8Ssmmcq83DbE5QyWFmUQswZnslmCuGP5DcF5Rg5ksnw0W4uMDFVbSSVLr59NIlKm93QlygNGRwb63TZhGko7eWaMfaXZlSahnk9U6RfCJPX7-kfbS7S3D1L8guw0Sv37MrQCIqZJUhmdQqCoKEKp4kilLRMSYINedl2CnAix-ythzxqAGzgzpGqOMU6nhYhkqBb5wf0UE8Mqgy7BaYj17_vtvq37ttwlT9stWMm432-RpMUyRBWXlvBSYQfruOJOa5s5FaDoGb_zbVD3c1BRo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qC6IH32K16h70pMF0k80mBxG1Fp9FfIC3uN2HCNqqVYt_zV_nbLKxKujNS3II7OHLZOabzHwzACvIKBLOIsxOEoMJigq1l_gq8hT1RRAzRmVoxcknrWj_Mjy8YlcleC-0MLatsvCJmaNWXWn_kW8EtmREkY4EG8a1RZw2mlsPj57dIGUrrcU6jdxEjvRbH9O33uZBA9_1KqXNvYvdfc9tGPAk5f4zXuuxlDqQynAVSR6J2PZbcsWkiFXsoyOTJubGF5YqCST_oVSa6bYyWjGuAzx3CCocsyK_DJWdvdbp2WcNI2JupW7sexiX606ykwv36lYWg_HSwwjrB17_e1gccN0f5dks6jUnYMzRVbKd29cklHRnCsaLVRDEeYYpGP0y13Aazs_xZvtbSSbkfHq5J8INPyE2bCrSu9PaKrUIktMbTaTl8LZpKbMT8noriNvP05Uv2VTt-xm4_BdsZ6Hc6Xb0HJCE8rgeILWUIglDQwUzRlDK20qFkWSsCmsFeOlDPqQjHYxjtlCnCHWaQZ32q1Ar8E3dB9tLB-ZVhfUC88Hj30-b__u0ZRhGM02PD1pHCzBCkRHlvb41KCP6ehEZzXN7yZkOgev_ttYPu5kKrA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Singular+spectrum+analysis+based+sleeping+stage+classification+via+electrooculogram&rft.jtitle=Multimedia+tools+and+applications&rft.au=Che%2C+Jia-Hui&rft.au=Ling%2C+Bingo+Wing-Kuen&rft.au=Zhou%2C+Xueling&rft.date=2024-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=24&rft.spage=65525&rft.epage=65548&rft_id=info:doi/10.1007%2Fs11042-023-18103-w&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |