Singular spectrum analysis based sleeping stage classification via electrooculogram

The sleeping stage classification plays an important role in the medical science because it helps the diagnosis of the mental health diseases. The conventional approach for performing the sleeping stage classification is based on the electroencephalograms (EEGs). However, it is worth noting that the...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 24; pp. 65525 - 65548
Main Authors Che, Jia-Hui, Ling, Bingo Wing-Kuen, Zhou, Xueling
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The sleeping stage classification plays an important role in the medical science because it helps the diagnosis of the mental health diseases. The conventional approach for performing the sleeping stage classification is based on the electroencephalograms (EEGs). However, it is worth noting that the EEGs reflect the brain activities. Nevertheless, the brain activities are very complicated even though the subjects are sleeping. Hence, performing the sleeping stage classification via the EEGs may yield the low classification accuracy. On the other hand, the electrooculograms (EOGs) are the voltages between the front eyes and the back eyes which are related to the eye ball movement. As it can directly reflect the various sleeping stages, it can achieve a higher classification accuracy. Therefore, this paper employs the two channel EOGs for performing the sleeping stage classification. The major contribution of this paper is to 1) employ the singular spectrum analysis (SSA) to exploit the latent intrinsic high dimensional dynamics of the one dimensional EOGs for performing the sleeping stage classification, 2) employ the approximate entropy as the features for performing the sleeping stage classification, and 3) assign the same features of different SSA components of different channels of the epochs of the EOGs into the same group and perform the principal component analysis (PCA) on each group of the feature vectors so that the properties of each type of the features are preserved. The results show that our proposed method yields the five sleeping stage classification accuracy at 93.73% and the sensitivity of the stage one non-rapid eye movement (S1) at 78.44%, which achieves the significant improvements compared to the existing methods. Therefore, our proposed method could be used to reduce the workload of the medical officers.
AbstractList The sleeping stage classification plays an important role in the medical science because it helps the diagnosis of the mental health diseases. The conventional approach for performing the sleeping stage classification is based on the electroencephalograms (EEGs). However, it is worth noting that the EEGs reflect the brain activities. Nevertheless, the brain activities are very complicated even though the subjects are sleeping. Hence, performing the sleeping stage classification via the EEGs may yield the low classification accuracy. On the other hand, the electrooculograms (EOGs) are the voltages between the front eyes and the back eyes which are related to the eye ball movement. As it can directly reflect the various sleeping stages, it can achieve a higher classification accuracy. Therefore, this paper employs the two channel EOGs for performing the sleeping stage classification. The major contribution of this paper is to 1) employ the singular spectrum analysis (SSA) to exploit the latent intrinsic high dimensional dynamics of the one dimensional EOGs for performing the sleeping stage classification, 2) employ the approximate entropy as the features for performing the sleeping stage classification, and 3) assign the same features of different SSA components of different channels of the epochs of the EOGs into the same group and perform the principal component analysis (PCA) on each group of the feature vectors so that the properties of each type of the features are preserved. The results show that our proposed method yields the five sleeping stage classification accuracy at 93.73% and the sensitivity of the stage one non-rapid eye movement (S1) at 78.44%, which achieves the significant improvements compared to the existing methods. Therefore, our proposed method could be used to reduce the workload of the medical officers.
Author Ling, Bingo Wing-Kuen
Zhou, Xueling
Che, Jia-Hui
Author_xml – sequence: 1
  givenname: Jia-Hui
  surname: Che
  fullname: Che, Jia-Hui
  organization: Faculty of Information Engineering, Guangdong University of Technology
– sequence: 2
  givenname: Bingo Wing-Kuen
  surname: Ling
  fullname: Ling, Bingo Wing-Kuen
  email: yongquanling@gdut.edu.cn
  organization: Faculty of Information Engineering, Guangdong University of Technology
– sequence: 3
  givenname: Xueling
  surname: Zhou
  fullname: Zhou, Xueling
  organization: Faculty of Information Engineering, Guangdong University of Technology
BookMark eNp9kE1Lw0AQhhepYFv9A54WPEf3I8mmRyl-QcFD9bxsdichJc3GncTSf-_WCHryMjOH530ZngWZdb4DQq45u-WMqTvknKUiYUImvOBMJoczMueZkolSgs_-3BdkgbhjjOeZSOdku226emxNoNiDHcK4p6Yz7REbpKVBcBRbgD5CFAdTA7WtQWyqxpqh8R39bAyF9pT03o6tr4PZX5LzyrQIVz97Sd4fH97Wz8nm9ellfb9JrFBsiJMX1oK0rlIutyo3RbrKpHKZNYUrGJTcVoWqmInfSpOLPLUOMihdBS5TIJfkZurtg_8YAQe982OI36OWTOWFWAkpIyUmygaPGKDSfWj2Jhw1Z_okT0_ydJSnv-XpQwzJKYQR7moIv9X_pL4A9qp26Q
Cites_doi 10.1016/j.patcog.2009.11.001
10.1109/TSMCA.2009.2029559
10.1016/j.bspc.2020.102131
10.1145/1961189.1961199
10.1016/S1474-4422(06)70476-8
10.1016/j.na.2009.01.124
10.1016/S0167-2789(97)00118-8
10.1038/nn.3193
10.1016/j.compbiomed.2018.08.022
10.1016/j.bspc.2015.09.002
10.1016/j.jfranklin.2017.05.020
10.4249/scholarpedia.1883
10.1016/j.jneumeth.2007.06.016
10.1109/TIM.2012.2187242
10.1038/nature04287
10.1109/5254.708428
10.1073/pnas.88.6.2297
10.1093/sleep/32.2.139
10.1109/TIM.2015.2433652
10.1007/s10916-008-9218-9
10.1053/smrv.1999.0087
10.1016/j.biopsycho.2012.10.010
10.1109/TBME.2014.2375292
10.1109/WHISPERS.2014.8077583
10.1007/BF00058655
10.5664/jcsm.2172
10.1145/1520340.1520468
10.1109/CircuitsAndSystems.2015.7394075
10.1109/EMBC.2016.7591548
10.1109/ICR.2006.343443
10.1007/978-3-030-61705-9_54
10.1109/SIPROCESS.2019.8868879
10.1016/j.spl.2021.109095
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-18103-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection (Proquest)
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 65548
ExternalDocumentID 10_1007_s11042_023_18103_w
GrantInformation_xml – fundername: Innovation and Technology Commission - Hong Kong
  grantid: no. S/E/070/17
  funderid: http://dx.doi.org/10.13039/501100007156
– fundername: Team Project of the Education Ministry of the Guangdong Province
  grantid: no. 2017KCXTD011
– fundername: Guangdong Higher Education Engineering Technology Research Center for Big Data on Manufacturing Knowledge Patent
  grantid: no. 501130144
– fundername: National Nature Science Foundation of China
  grantid: no. U1701266; no. 61671163; no. 62071128
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c270t-c218cce3cdf7d6c76a849537d5ca8d80eb1cf87f0a0013a6264cde5ebdfed57e3
IEDL.DBID BENPR
ISSN 1573-7721
1380-7501
IngestDate Fri Jul 25 09:10:53 EDT 2025
Tue Jul 01 04:13:31 EDT 2025
Fri Feb 21 02:39:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Singular spectrum analysis
one way variance analysis
Sleeping stage classification
random forest
Electrooculograms
Principal component analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-c218cce3cdf7d6c76a849537d5ca8d80eb1cf87f0a0013a6264cde5ebdfed57e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3076829233
PQPubID 54626
PageCount 24
ParticipantIDs proquest_journals_3076829233
crossref_primary_10_1007_s11042_023_18103_w
springer_journals_10_1007_s11042_023_18103_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240700
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 7
  year: 2024
  text: 20240700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Iranzo (CR7) 2006; 5
Cao (CR27) 1997; 110
Arzi, Shedlesky, Ben-Shaul, Nasser, Oksenberg (CR1) 2000; 15
Vural, Yildiz (CR9) 2008; 34
CR19
CR18
Steven (CR29) 1991; 88
CR15
Hearst (CR33) 1998; 13
CR35
CR10
(CR14) 2016; 24
Dabbaghchian, Ghaemmaghami, Aghagolzadeh (CR23) 2010; 42
Peterson (CR31) 2009; 4
CR32
Liang, Kuo, Lee, Lin, Liu, Chen, Cherng, Shaw (CR16) 2015; 64
CR30
Seiffert, Khoshgoftaar, Van Hulse, Napolitano (CR37) 2010; 40
(CR24) 2021; 33
Moser, Anderer, Gruber, Parapatics, Loretz, Boeck, Kloesch, Heller, Schmidt, Danker-Hopfe, Saletu, Zeitlhofer, Dorffner (CR4) 2009; 32
Penzel, Conradt (CR3) 2000; 4
Zabalza, Qing, Yuen, Sun, Zhao, Ren (CR22) 2018; 355
Lin, Ling, Xu, Lam, Ho (CR17) 2020; 62
Virkkala, Hasan, Värri, Himanen, Müller (CR12) 2007; 166
CR5
Mahowald, Schenck (CR2) 2005; 437
CR28
CR26
Skubalska-Rafajlowicz (CR25) 2009; 71
CR21
CR20
Chih-Chung, Chih-Jen (CR34) 2011; 2
(CR13) 2018; 102
Hau-tieng, Talmon, Lo (CR6) 2015; 62
Liang, Kuo, Yu-Han, Pan, Wang (CR8) 2012; 61
Horne (CR36) 2013; 92
Kuo, Liang, Lee, Cherng, Lin, Chen, Liu, Shaw (CR11) 2014; 8908
A Iranzo (18103_CR7) 2006; 5
Wu Hau-tieng (18103_CR6) 2015; 62
J Virkkala (18103_CR12) 2007; 166
E Skubalska-Rafajlowicz (18103_CR25) 2009; 71
18103_CR19
C Chih-Chung (18103_CR34) 2011; 2
18103_CR18
18103_CR15
T Penzel (18103_CR3) 2000; 4
MW Mahowald (18103_CR2) 2005; 437
LE Peterson (18103_CR31) 2009; 4
18103_CR10
18103_CR32
S-F Liang (18103_CR8) 2012; 61
18103_CR35
J Horne (18103_CR36) 2013; 92
18103_CR20
L Cao (18103_CR27) 1997; 110
D Moser (18103_CR4) 2009; 32
S-F Liang (18103_CR16) 2015; 64
18103_CR5
Y Lin (18103_CR17) 2020; 62
C Vural (18103_CR9) 2008; 34
J Zabalza (18103_CR22) 2018; 355
Ahnaf Rashik Hassan and Mohammed Imamul Hassan Bhuiyan (18103_CR14) 2016; 24
M Steven (18103_CR29) 1991; 88
Md Mosheyur Rahman (18103_CR13) 2018; 102
18103_CR26
Revathi Balasundaram and Gnanou Florence Sudha (18103_CR24) 2021; 33
18103_CR28
18103_CR21
A Arzi (18103_CR1) 2000; 15
S Dabbaghchian (18103_CR23) 2010; 42
18103_CR30
MA Hearst (18103_CR33) 1998; 13
C-E Kuo (18103_CR11) 2014; 8908
C Seiffert (18103_CR37) 2010; 40
References_xml – volume: 42
  start-page: 1431
  issue: 4
  year: 2010
  end-page: 1440
  ident: CR23
  article-title: Feature extraction using discrete cosine transform and discrimination power analysis with a face recognition technology
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2009.11.001
– volume: 40
  start-page: 185
  issue: 1
  year: 2010
  end-page: 197
  ident: CR37
  article-title: RUSBoost: A hybrid approach to alleviating class imbalance
  publication-title: IEEE Trans Syst Man, Cybern Part A: Syst Humans
  doi: 10.1109/TSMCA.2009.2029559
– ident: CR18
– volume: 62
  start-page: 102
  year: 2020
  end-page: 131
  ident: CR17
  article-title: Effectiveness analysis of bio-electronic stimulation therapy to Parkinson’s diseases via joint singular spectrum analysis and discrete Fourier transform approach
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102131
– volume: 33
  start-page: 110
  issue: 1
  year: 2021
  end-page: 117
  ident: CR24
  article-title: Retrieval performance analysis of multibiometric database using optimized multidimensional spectral hashing based indexing
  publication-title: J King Saud Univ Comput Inf Sci
– ident: CR30
– volume: 2
  start-page: 1
  year: 2011
  end-page: 39
  ident: CR34
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/1961189.1961199
– volume: 5
  start-page: 572
  issue: 7
  year: 2006
  end-page: 577
  ident: CR7
  article-title: Jose Luis Molinuevo, Joan Santamara, Monica Serradell Bsc, Maria Jose Marti, Francesc Valldeoriola and Eduard Tolosa, “Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study”
  publication-title: THE Lancet Neurol
  doi: 10.1016/S1474-4422(06)70476-8
– ident: CR10
– volume: 71
  start-page: 1225
  issue: 12
  year: 2009
  end-page: 1263
  ident: CR25
  article-title: Neural networks with sigmoidal activation functions – dimension reduction using normal random projection
  publication-title: Nonlinear Anal Theory Methods Appl
  doi: 10.1016/j.na.2009.01.124
– ident: CR35
– volume: 110
  start-page: 43
  year: 1997
  end-page: 50
  ident: CR27
  article-title: Practical method for determining the minimum embedding dimension of a scalar time series
  publication-title: Phys D: Nonlinear Phenomena
  doi: 10.1016/S0167-2789(97)00118-8
– volume: 15
  start-page: 1460
  issue: 10
  year: 2000
  end-page: 1465
  ident: CR1
  article-title: Ilana S Hairston and Noam Sobel, “Humans can learn new information during sleep”
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3193
– volume: 102
  start-page: 211
  year: 2018
  end-page: 220
  ident: CR13
  article-title: Mohammed Imamul Hassan Bhuiyan and Ahnaf Rashik Hassan, “Sleep stage classification using single-channel EOG”
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.08.022
– volume: 24
  start-page: 1
  year: 2016
  end-page: 10
  ident: CR14
  article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2015.09.002
– volume: 355
  start-page: 1733
  year: 2018
  end-page: 1751
  ident: CR22
  article-title: Fast implementation of two-dimensional singular spectrum analysis for effective data classification in hyperspectral imaging
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2017.05.020
– volume: 4
  start-page: 1883
  issue: 2
  year: 2009
  ident: CR31
  article-title: K-nearest neighbor
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1883
– volume: 166
  start-page: 109
  issue: 1
  year: 2007
  end-page: 115
  ident: CR12
  article-title: Automatic sleep stage classification using two-channel electro-oculography
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2007.06.016
– volume: 61
  start-page: 1649
  issue: 6
  year: 2012
  end-page: 1657
  ident: CR8
  article-title: Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2012.2187242
– ident: CR21
– volume: 437
  start-page: 1279
  issue: 7063
  year: 2005
  end-page: 1285
  ident: CR2
  article-title: Insights from studying human sleep disorders
  publication-title: Nature
  doi: 10.1038/nature04287
– ident: CR19
– volume: 13
  start-page: 18
  issue: 4
  year: 1998
  end-page: 28
  ident: CR33
  article-title: Support vector machines
  publication-title: IEEE Intelligent Syst Appl
  doi: 10.1109/5254.708428
– volume: 8908
  start-page: 71
  year: 2014
  end-page: 88
  ident: CR11
  article-title: An EOG-Based automatic sleep scoring system and its related application in sleep environmental control
  publication-title: Int Conf Physiol Comput Syst Springer, Berlin Heidelberg
– volume: 88
  start-page: 2297
  issue: 6
  year: 1991
  end-page: 2301
  ident: CR29
  article-title: Approximate entropy as a measure of system complexity
  publication-title: Proceed Nat Acad Sci United States Am
  doi: 10.1073/pnas.88.6.2297
– ident: CR15
– volume: 32
  start-page: 139
  issue: 2
  year: 2009
  end-page: 149
  ident: CR4
  article-title: Sleep classification according to aasm and rechtschaffen & kales: effects on sleep scoring parameters
  publication-title: Sleep
  doi: 10.1093/sleep/32.2.139
– volume: 64
  start-page: 2977
  issue: 11
  year: 2015
  end-page: 2985
  ident: CR16
  article-title: Development of an EOG-Based automatic sleep-monitoring eye mask
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2015.2433652
– volume: 34
  start-page: 83
  issue: 1
  year: 2008
  end-page: 89
  ident: CR9
  article-title: Determination of sleep stage separation ability of features extracted from EEG signals using principle component analysis
  publication-title: J Med Syst
  doi: 10.1007/s10916-008-9218-9
– ident: CR32
– volume: 4
  start-page: 131
  issue: 2
  year: 2000
  end-page: 148
  ident: CR3
  article-title: Computer based sleep recording and analysis
  publication-title: Sleep Med Rev
  doi: 10.1053/smrv.1999.0087
– ident: CR5
– ident: CR28
– ident: CR26
– volume: 92
  start-page: 152
  year: 2013
  end-page: 168
  ident: CR36
  article-title: Why REM sleep? Clues beyond the laboratory in a more challenging world
  publication-title: Biol Psychol
  doi: 10.1016/j.biopsycho.2012.10.010
– ident: CR20
– volume: 62
  start-page: 1159
  issue: 4
  year: 2015
  end-page: 1168
  ident: CR6
  article-title: Assess sleep stage by modern signal processing techniques
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2375292
– volume: 13
  start-page: 18
  issue: 4
  year: 1998
  ident: 18103_CR33
  publication-title: IEEE Intelligent Syst Appl
  doi: 10.1109/5254.708428
– ident: 18103_CR21
  doi: 10.1109/WHISPERS.2014.8077583
– volume: 32
  start-page: 139
  issue: 2
  year: 2009
  ident: 18103_CR4
  publication-title: Sleep
  doi: 10.1093/sleep/32.2.139
– volume: 4
  start-page: 131
  issue: 2
  year: 2000
  ident: 18103_CR3
  publication-title: Sleep Med Rev
  doi: 10.1053/smrv.1999.0087
– ident: 18103_CR32
  doi: 10.1007/BF00058655
– volume: 24
  start-page: 1
  year: 2016
  ident: 18103_CR14
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2015.09.002
– volume: 33
  start-page: 110
  issue: 1
  year: 2021
  ident: 18103_CR24
  publication-title: J King Saud Univ Comput Inf Sci
– ident: 18103_CR5
  doi: 10.5664/jcsm.2172
– volume: 62
  start-page: 1159
  issue: 4
  year: 2015
  ident: 18103_CR6
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2375292
– volume: 34
  start-page: 83
  issue: 1
  year: 2008
  ident: 18103_CR9
  publication-title: J Med Syst
  doi: 10.1007/s10916-008-9218-9
– ident: 18103_CR10
  doi: 10.1145/1520340.1520468
– volume: 110
  start-page: 43
  year: 1997
  ident: 18103_CR27
  publication-title: Phys D: Nonlinear Phenomena
  doi: 10.1016/S0167-2789(97)00118-8
– volume: 88
  start-page: 2297
  issue: 6
  year: 1991
  ident: 18103_CR29
  publication-title: Proceed Nat Acad Sci United States Am
  doi: 10.1073/pnas.88.6.2297
– volume: 437
  start-page: 1279
  issue: 7063
  year: 2005
  ident: 18103_CR2
  publication-title: Nature
  doi: 10.1038/nature04287
– ident: 18103_CR26
– volume: 15
  start-page: 1460
  issue: 10
  year: 2000
  ident: 18103_CR1
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3193
– ident: 18103_CR20
  doi: 10.1109/CircuitsAndSystems.2015.7394075
– ident: 18103_CR35
  doi: 10.1109/EMBC.2016.7591548
– volume: 61
  start-page: 1649
  issue: 6
  year: 2012
  ident: 18103_CR8
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2012.2187242
– ident: 18103_CR28
  doi: 10.1109/ICR.2006.343443
– volume: 5
  start-page: 572
  issue: 7
  year: 2006
  ident: 18103_CR7
  publication-title: THE Lancet Neurol
  doi: 10.1016/S1474-4422(06)70476-8
– ident: 18103_CR18
  doi: 10.1007/978-3-030-61705-9_54
– ident: 18103_CR19
  doi: 10.1109/SIPROCESS.2019.8868879
– ident: 18103_CR15
– ident: 18103_CR30
  doi: 10.1016/j.spl.2021.109095
– volume: 166
  start-page: 109
  issue: 1
  year: 2007
  ident: 18103_CR12
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2007.06.016
– volume: 64
  start-page: 2977
  issue: 11
  year: 2015
  ident: 18103_CR16
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2015.2433652
– volume: 4
  start-page: 1883
  issue: 2
  year: 2009
  ident: 18103_CR31
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1883
– volume: 102
  start-page: 211
  year: 2018
  ident: 18103_CR13
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.08.022
– volume: 2
  start-page: 1
  year: 2011
  ident: 18103_CR34
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/1961189.1961199
– volume: 40
  start-page: 185
  issue: 1
  year: 2010
  ident: 18103_CR37
  publication-title: IEEE Trans Syst Man, Cybern Part A: Syst Humans
  doi: 10.1109/TSMCA.2009.2029559
– volume: 8908
  start-page: 71
  year: 2014
  ident: 18103_CR11
  publication-title: Int Conf Physiol Comput Syst Springer, Berlin Heidelberg
– volume: 42
  start-page: 1431
  issue: 4
  year: 2010
  ident: 18103_CR23
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2009.11.001
– volume: 355
  start-page: 1733
  year: 2018
  ident: 18103_CR22
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2017.05.020
– volume: 62
  start-page: 102
  year: 2020
  ident: 18103_CR17
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102131
– volume: 92
  start-page: 152
  year: 2013
  ident: 18103_CR36
  publication-title: Biol Psychol
  doi: 10.1016/j.biopsycho.2012.10.010
– volume: 71
  start-page: 1225
  issue: 12
  year: 2009
  ident: 18103_CR25
  publication-title: Nonlinear Anal Theory Methods Appl
  doi: 10.1016/j.na.2009.01.124
SSID ssj0016524
Score 2.352936
Snippet The sleeping stage classification plays an important role in the medical science because it helps the diagnosis of the mental health diseases. The conventional...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 65525
SubjectTerms Accuracy
Brain
Classification
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Electroencephalography
Electrooculograms
Medical science
Multimedia Information Systems
Principal components analysis
Special Purpose and Application-Based Systems
Spectrum analysis
Track 2: Medical Applications of Multimedia
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgUUAUCvLABpFSx46TsUJUFRIspVI3y_UDIdEW0Zb-fc6uQwDBwJIMeQzfnX3f6e47A1wioygFzzE7KR0mKIbZpExNnhiaqqzgnGrmxcn3D3l_yO5GfBRFYfOq270qSYaduha7dbyUBGNMglEpzZLVJmxxn7ujFw9p97N2kHPKojzm9---h6CaV_4ohYYI09uH3UgNSXdtywPYsNMm7FXHLpC4Cpuw82WG4CEMBnjzvaQkiCbflhOi4qAR4kOUIfMXa70qiiARfLJEe77sG4SCTcj7syLxLJyZXoYJ1pMjGPZuH2_6STwpIdFUpAu8dgqtbaaNEybXIleF7xsVhmtVmCLFDVm7QrhUecqnMIlh2lhux8ZZw4XNjqExnU3tCZCSiqKTIY3TqmTMUcWdU5SKsTEs15y34KoCT76uB2LIevSxh1oi1DJALVctaFf4yrg45jLz1T-KzDJrwXWFef3477-d_u_1M9hG92Dr5to2NNAE9hwpxGJ8ETzmA1CFwTc
  priority: 102
  providerName: Springer Nature
Title Singular spectrum analysis based sleeping stage classification via electrooculogram
URI https://link.springer.com/article/10.1007/s11042-023-18103-w
https://www.proquest.com/docview/3076829233
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFH8RuOjBD9SIIunBmy6Obl27k0EDEo3EiCR4WkrbGRP5UED-fV9HJ2qily3Zkh5-r33v9_q-AE6QUcScReidxCk6KDo0XuzryNPUl4FgjKrQFiffdaJ2L7zps767cJu6tMpcJ2aKWo-VvSM_D2zIiCIdCS4mb56dGmWjq26ERgFKqIIFOl-ly2bn_uErjhAxN9ZW-B7axrorm1kWz9VtaQraLA-tnB94i5-macU3f4VIM8vT2oZNRxlJYynjHVgzozJs5eMYiDudZdj41ltwF7pdfNkcU5IVU77Ph0S6BiTEmi5Npq_G2GopggTx2RBlebRNHMpkRT5eJHEzcsZqnnW2Hu5Br9V8vGp7boKCpyj3Z_isC6VMoHTKdaR4JIXNJ-WaKSm08FFRq1Tw1JeWCkp0bkKlDTMDnRrNuAn2oTgaj8wBkJhyUQ-Q3ikZh2FKJUtTSSkfaB1GirEKnObgJZNlo4xk1RLZQp0g1EkGdbKoQDXHN3GHZpqsRFyBsxzz1e-_Vzv8f7UjWKdIRZZJtlUoIuTmGKnEbFCDgmhd16DUuH66bdbc7sGvPdr4BNtzyoQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGICBRwFRKOABJohI7Th2BoQQUFpouwASW3BtByHRFihQ8af4jZzzoIAEG0s8RPLw5Xz3OXffHcAWMopI8BBvJ1GCFxQTWC_yTegZ6ismOac6cOLkVjusXwVn1_x6DN4LLYwrqyx8YuqoTV-7f-R7zKWMKNIRdvDw6LmpUS67WozQyMzi3L4N8co22G8c4_fdprR2cnlU9_KpAp6mwn_GZ1VqbZk2iTChFqGSrsZSGK6VNNJH56UTKRJfOXqkkPAH2lhuOyaxhgvLcN9xmAwYi9yJkrXTz6xFyPMhutL3MBJXc5FOJtWrOiEMRkgPY6rPvOH3QDhitz8Ssmmcq83DbE5QyWFmUQswZnslmCuGP5DcF5Rg5ksnw0W4uMDFVbSSVLr59NIlKm93QlygNGRwb63TZhGko7eWaMfaXZlSahnk9U6RfCJPX7-kfbS7S3D1L8guw0Sv37MrQCIqZJUhmdQqCoKEKp4kilLRMSYINedl2CnAix-ythzxqAGzgzpGqOMU6nhYhkqBb5wf0UE8Mqgy7BaYj17_vtvq37ttwlT9stWMm432-RpMUyRBWXlvBSYQfruOJOa5s5FaDoGb_zbVD3c1BRo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qC6IH32K16h70pMF0k80mBxG1Fp9FfIC3uN2HCNqqVYt_zV_nbLKxKujNS3II7OHLZOabzHwzACvIKBLOIsxOEoMJigq1l_gq8hT1RRAzRmVoxcknrWj_Mjy8YlcleC-0MLatsvCJmaNWXWn_kW8EtmREkY4EG8a1RZw2mlsPj57dIGUrrcU6jdxEjvRbH9O33uZBA9_1KqXNvYvdfc9tGPAk5f4zXuuxlDqQynAVSR6J2PZbcsWkiFXsoyOTJubGF5YqCST_oVSa6bYyWjGuAzx3CCocsyK_DJWdvdbp2WcNI2JupW7sexiX606ykwv36lYWg_HSwwjrB17_e1gccN0f5dks6jUnYMzRVbKd29cklHRnCsaLVRDEeYYpGP0y13Aazs_xZvtbSSbkfHq5J8INPyE2bCrSu9PaKrUIktMbTaTl8LZpKbMT8noriNvP05Uv2VTt-xm4_BdsZ6Hc6Xb0HJCE8rgeILWUIglDQwUzRlDK20qFkWSsCmsFeOlDPqQjHYxjtlCnCHWaQZ32q1Ar8E3dB9tLB-ZVhfUC88Hj30-b__u0ZRhGM02PD1pHCzBCkRHlvb41KCP6ehEZzXN7yZkOgev_ttYPu5kKrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Singular+spectrum+analysis+based+sleeping+stage+classification+via+electrooculogram&rft.jtitle=Multimedia+tools+and+applications&rft.au=Che%2C+Jia-Hui&rft.au=Ling%2C+Bingo+Wing-Kuen&rft.au=Zhou%2C+Xueling&rft.date=2024-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=24&rft.spage=65525&rft.epage=65548&rft_id=info:doi/10.1007%2Fs11042-023-18103-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon