Advanced Cross-Graph Cycle Attention Model for Dissecting Complex Structures in Mass Spectrometry Imaging
Joint analysis of multimodalities in spatial mass spectrometry imaging (SMSI) data, including histology, spatial location, and molecule data, allows us to gain novel insights into tissue structures. However, the significant differences in characteristics such as scale and heterogeneity among the mul...
Saved in:
Published in | Journal of computer science and technology Vol. 40; no. 3; pp. 766 - 779 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.05.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Joint analysis of multimodalities in spatial mass spectrometry imaging (SMSI) data, including histology, spatial location, and molecule data, allows us to gain novel insights into tissue structures. However, the significant differences in characteristics such as scale and heterogeneity among the multimodal data, coupled with the high noise levels and uneven quality of MSI data, severely hinder their comprehensive analysis. Here, we introduce a cross-graph cycle attention model, MSCG, to learn efficient joint embeddings for multimodalities of SMSI data by integrating graph attention autoencoders and attention-transfer. Specifically, MSCG enables leveraging one modality (e.g., histology) to fine-tune the graph neural network trained for another modality (e.g., MSI). Our study on real datasets from different platforms highlights the superior capacities of MSCG in dissecting cellular heterogeneity, as well as in denoising and aggregating MSI data. Notably, MSCG demonstrates versatile applicability across MSI data from various platforms, showcasing its potential for broad utility in this field. |
---|---|
AbstractList | Joint analysis of multimodalities in spatial mass spectrometry imaging (SMSI) data, including histology, spatial location, and molecule data, allows us to gain novel insights into tissue structures. However, the significant differences in characteristics such as scale and heterogeneity among the multimodal data, coupled with the high noise levels and uneven quality of MSI data, severely hinder their comprehensive analysis. Here, we introduce a cross-graph cycle attention model, MSCG, to learn efficient joint embeddings for multimodalities of SMSI data by integrating graph attention autoencoders and attention-transfer. Specifically, MSCG enables leveraging one modality (e.g., histology) to fine-tune the graph neural network trained for another modality (e.g., MSI). Our study on real datasets from different platforms highlights the superior capacities of MSCG in dissecting cellular heterogeneity, as well as in denoising and aggregating MSI data. Notably, MSCG demonstrates versatile applicability across MSI data from various platforms, showcasing its potential for broad utility in this field. |
Author | Li, Xuan Cui, Jiang-Nan Wang, Qiu Huang, Zhen-Yu Zhang, Jing-Song Gao, Yang Xu, Ke-Ren Zuo, Chun-Man |
Author_xml | – sequence: 1 givenname: Jiang-Nan surname: Cui fullname: Cui, Jiang-Nan – sequence: 2 givenname: Yang surname: Gao fullname: Gao, Yang – sequence: 3 givenname: Qiu surname: Wang fullname: Wang, Qiu – sequence: 4 givenname: Xuan surname: Li fullname: Li, Xuan – sequence: 5 givenname: Ke-Ren surname: Xu fullname: Xu, Ke-Ren – sequence: 6 givenname: Zhen-Yu surname: Huang fullname: Huang, Zhen-Yu – sequence: 7 givenname: Jing-Song surname: Zhang fullname: Zhang, Jing-Song – sequence: 8 givenname: Chun-Man surname: Zuo fullname: Zuo, Chun-Man |
BookMark | eNp1kD1PwzAQhi1UJNrCD2CzxGzwV5pkrAIUpCKGwmw5zrmkauJgu4j-e1wFiYnl7obnvdM9MzTpXQ8IXTN6yyjN7wJjoqSE8oxIITnhZ2jKigUlMpflJM2UUlKmcoFmIewoFTmVcoraZfOlewMNrrwLgay8Hj5wdTR7wMsYoY-t6_GLa2CPrfP4vg0BTGz7La5cN-zhG2-iP5h48BBwm1AdAt4MifGug-iP-LnT28RfonOr9wGufvscvT8-vFVPZP26eq6Wa2J4TiMxrKmbLNeFbKQxjC441wy4FoYxmRXM1Lq21pra5FCwTDORQdlYIaxcWKiNmKObce_g3ecBQlQ7d_B9OqkE50VWCsbLRLGRMqe3PVg1-LbT_qgYVSejajSqklF1Mqp4yvAxExLbb8H_bf4_9APDhHxo |
Cites_doi | 10.1109/GMAP.2000.838272 10.1021/acs.analchem.1c04564 10.3724/sp.j.1123.2023.10035 10.5555/1953048.2078195 10.1002/admi.202201464 10.1093/gigascience/giad021 10.3390/life12030366 10.1038/s41591-024-02856-4 10.1021/ac970888i 10.1021/ac3034294 10.1074/mcp.O115.053918 10.1016/j.compbiomed.2021.104918 10.1038/labinvest.2014.156 10.1109/MedAI59581.2023.00024 10.1002/sia.740050307 10.1002/anie.200602449 10.1093/bioinformatics/btab403 10.1016/j.bcp.2022.115080 10.1038/s41467-024-49171-7 10.1038/s41467-022-33619-9 10.1109/tpami.2019.2918284 10.1007/s11263-015-0816-y 10.3866/PKU.DXHX201907028 10.1007/s11263-007-0090-8 10.1093/bib/bbaa287 10.1109/PIC.2018.8706300 10.1016/j.sigpro.2021.108036 10.1007/s11011-021-00797-2 10.1038/ncomms9971 10.1007/b97852 |
ContentType | Journal Article |
Copyright | Institute of Computing Technology, Chinese Academy of Sciences 2025 Institute of Computing Technology, Chinese Academy of Sciences 2025. |
Copyright_xml | – notice: Institute of Computing Technology, Chinese Academy of Sciences 2025 – notice: Institute of Computing Technology, Chinese Academy of Sciences 2025. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s11390-025-4342-2 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1860-4749 |
EndPage | 779 |
ExternalDocumentID | 10_1007_s11390_025_4342_2 |
GroupedDBID | -SI -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29K 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VR 5VS 5XA 5XJ 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 92H 92I 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CAJEI CCEZO CCPQU CHBEP COF CS3 CSCUP CUBFJ CW9 D-I DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO ICD IHE IJ- IKXTQ IVC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M4Y M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PT4 PT5 PTHSS Q-- Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCL SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TCJ TGMPQ TGT TSG TSK TSV TUC U1G U2A U5S UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~A9 ~EX AAYXX ABRTQ CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c270t-c1dbd57a84d4cc10622a1e2a3c114581cbabfffcbc7e815a135e9df33f46febc3 |
IEDL.DBID | U2A |
ISSN | 1000-9000 |
IngestDate | Fri Jul 25 08:57:24 EDT 2025 Wed Jul 16 16:49:06 EDT 2025 Thu Jul 10 08:11:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | graph attention autoencoder mass spectrometry imaging multimodal data integration cross-graph cycle attention |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-c1dbd57a84d4cc10622a1e2a3c114581cbabfffcbc7e815a135e9df33f46febc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3228593129 |
PQPubID | 326258 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3228593129 crossref_primary_10_1007_s11390_025_4342_2 springer_journals_10_1007_s11390_025_4342_2 |
PublicationCentury | 2000 |
PublicationDate | 20250500 2025-05-00 20250501 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 5 year: 2025 text: 20250500 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Beijing |
PublicationTitle | Journal of computer science and technology |
PublicationTitleAbbrev | J. Comput. Sci. Technol |
PublicationYear | 2025 |
Publisher | Springer Nature Singapore Springer Nature B.V |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
References | A Guo (4342_CR13) 2022; 12 M S Handcock (4342_CR29) 1999 4342_CR27 J Cui (4342_CR15) 2023 M Aichler (4342_CR7) 2015; 95 D Briggs (4342_CR1) 1983; 5 B C Russell (4342_CR26) 2008; 77 M Beuque (4342_CR12) 2021; 138 Y Yang (4342_CR4) 2020; 35 L K Schnackenberg (4342_CR9) 2022; 37 R M Caprioli (4342_CR2) 1977; 69 J Feng (4342_CR24) 2000 B J Tyler (4342_CR10) 2022; 94 S Zagoruyko (4342_CR19) 2017 P Czétány (4342_CR8) 2022; 12 D D Huang (4342_CR17) 2024; 42 J M Wiseman (4342_CR3) 2006; 45 4342_CR16 C Zuo (4342_CR20) 2021; 37 M Y Lu (4342_CR23) 2024; 30 Y Li (4342_CR21) 2019 L Zhang (4342_CR25) 2018 M L Spruill (4342_CR6) 2022; 201 C Zuo (4342_CR32) 2021; 22 G Huang (4342_CR14) 2022; 44 A Thomas (4342_CR11) 2013; 85 H Hermessi (4342_CR18) 2021; 183 W Gardner (4342_CR31) 2022; 9 O Russakovsky (4342_CR22) 2015; 115 K D Bemis (4342_CR5) 2016; 15 F Pedregosa (4342_CR28) 2011; 12 4342_CR30 |
References_xml | – start-page: 408 volume-title: Proc. the 2000 Geometric Modeling and Processing 2000. Theory and Applications year: 2000 ident: 4342_CR24 doi: 10.1109/GMAP.2000.838272 – start-page: 3835 volume-title: Proc. the 36th International Conference on Machine Learning year: 2019 ident: 4342_CR21 – volume-title: Proc. the 5th International Conference on Learning Representations year: 2017 ident: 4342_CR19 – volume: 94 start-page: 2835 issue: 6 year: 2022 ident: 4342_CR10 publication-title: Analytical Chemistry doi: 10.1021/acs.analchem.1c04564 – volume: 42 start-page: 669 issue: 7 year: 2024 ident: 4342_CR17 publication-title: Chinese Journal of Chromatography doi: 10.3724/sp.j.1123.2023.10035 – volume: 12 start-page: 2825 year: 2011 ident: 4342_CR28 publication-title: The Journal of Machine Learning Research doi: 10.5555/1953048.2078195 – volume: 9 start-page: 2201464 issue: 34 year: 2022 ident: 4342_CR31 publication-title: Advanced Materials Interfaces doi: 10.1002/admi.202201464 – volume: 12 start-page: giad021 year: 2022 ident: 4342_CR13 publication-title: GigaScience doi: 10.1093/gigascience/giad021 – volume: 12 start-page: 366 issue: 3 year: 2022 ident: 4342_CR8 publication-title: Life doi: 10.3390/life12030366 – volume: 30 start-page: 863 issue: 3 year: 2024 ident: 4342_CR23 publication-title: Nature Medicine doi: 10.1038/s41591-024-02856-4 – volume: 69 start-page: 4751 issue: 23 year: 1977 ident: 4342_CR2 publication-title: Analytical Chemistry doi: 10.1021/ac970888i – volume: 85 start-page: 2860 issue: 5 year: 2013 ident: 4342_CR11 publication-title: Analytical Chemistry doi: 10.1021/ac3034294 – volume: 15 start-page: 1761 issue: 5 year: 2016 ident: 4342_CR5 publication-title: Molecular & Cellular Proteomics doi: 10.1074/mcp.O115.053918 – volume: 138 start-page: 104918 year: 2021 ident: 4342_CR12 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2021.104918 – volume: 95 start-page: 422 issue: 4 year: 2015 ident: 4342_CR7 publication-title: Laboratory Investigation doi: 10.1038/labinvest.2014.156 – start-page: 110 volume-title: Proc. the 2023 IEEE International Conference on Medical Artificial Intelligence (MedAI) year: 2023 ident: 4342_CR15 doi: 10.1109/MedAI59581.2023.00024 – volume: 5 start-page: 113 issue: 3 year: 1983 ident: 4342_CR1 publication-title: Surface and Interface Analysis doi: 10.1002/sia.740050307 – volume: 45 start-page: 7188 issue: 43 year: 2006 ident: 4342_CR3 publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.200602449 – volume: 37 start-page: 4091 issue: 22 year: 2021 ident: 4342_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab403 – volume: 201 start-page: 115080 year: 2022 ident: 4342_CR6 publication-title: Biochemical Pharmacology doi: 10.1016/j.bcp.2022.115080 – ident: 4342_CR30 doi: 10.1038/s41467-024-49171-7 – ident: 4342_CR16 doi: 10.1038/s41467-022-33619-9 – volume: 44 start-page: 8704 issue: 12 year: 2022 ident: 4342_CR14 publication-title: IEEE Trans. Pattern Analysis and Machine Intelligence doi: 10.1109/tpami.2019.2918284 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 4342_CR22 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-015-0816-y – volume: 35 start-page: 47 issue: 3 year: 2020 ident: 4342_CR4 publication-title: University Chemistry doi: 10.3866/PKU.DXHX201907028 – volume: 77 start-page: 157 issue: 1/2/3 year: 2008 ident: 4342_CR26 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-007-0090-8 – volume: 22 start-page: bbaa287 issue: 4 year: 2021 ident: 4342_CR32 publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbaa287 – start-page: 440 volume-title: Proc. the 2018 IEEE International Conference on Progress in Informatics and Computing (PIC) year: 2018 ident: 4342_CR25 doi: 10.1109/PIC.2018.8706300 – volume: 183 start-page: 108036 year: 2021 ident: 4342_CR18 publication-title: Signal Processing doi: 10.1016/j.sigpro.2021.108036 – volume: 37 start-page: 105 issue: 1 year: 2022 ident: 4342_CR9 publication-title: Metabolic Brain Disease doi: 10.1007/s11011-021-00797-2 – ident: 4342_CR27 doi: 10.1038/ncomms9971 – volume-title: Relative Distribution Methods in the Social Sciences year: 1999 ident: 4342_CR29 doi: 10.1007/b97852 |
SSID | ssj0037044 |
Score | 2.3624587 |
Snippet | Joint analysis of multimodalities in spatial mass spectrometry imaging (SMSI) data, including histology, spatial location, and molecule data, allows us to gain... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 766 |
SubjectTerms | Artificial Intelligence Computer Science Data Structures and Information Theory Graph neural networks Heterogeneity Histology Information Systems Applications (incl.Internet) Mass spectrometry Noise levels Regular Paper Scientific imaging Software Engineering Spatial data Theory of Computation |
Title | Advanced Cross-Graph Cycle Attention Model for Dissecting Complex Structures in Mass Spectrometry Imaging |
URI | https://link.springer.com/article/10.1007/s11390-025-4342-2 https://www.proquest.com/docview/3228593129 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXVh4Iwql8sAEstTYcR5jWvoARBeoVKYodmypUimIBon-e-7cRBEIBqYMudxwts_f5R4fIZdKqSgwGryfEj7zrYlZlFnOtLJSByKItZt48zAJxlP_biZnZR_3qqp2r1KSzlPXzW4AVroM6Vd9gT0l26QpMXSHTTzlSeV-Rdh1DK7435ohI2aVyvxNxffLqEaYP5Ki7q4Z7pPdEiTSZLOqB2TLLA_JXkXAQMvzeETmSZnBp33Uz0Y4fZr21_ARTYpiU8lIke5sQQGc0htMvmssdKaobGE-6aObH_sBQTedgyhAaYqU9AVOMSje1_T2xdEYHZPpcPDUH7OSO4FpHnYLpr1c5TLMIj_3tYa4j_PMMzwTGgIgGXlaZcpaq5UOTeTJzBPSxLkVwvqBNUqLE9JYvi7NKaFh11NhZGRuRObrXCjBDTL5xR7ImoC3yFVlxPRtMyIjrYcho8VTsHiKFk9BuF2ZOS1PyyoFp4Jj1wB6tMh1Zfr69Z_Kzv4lfU52OC69q1ZskwbY11wAoihUhzSTYa83wefo-X7QcTvqCxfkx4g |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDLDwjSgU8MAEstTY-RyjQmmh7UIrdbNix5YqlYJokOi_585NFIFgYM7lhot9fs7dvUfItVIqDo2G7KeEz3xrEhZnljOtbKBDESbaMd4MR2Fv4j9Og2k5x72sut2rkqTL1PWwG4CVNkP5VV_gTMkm2QIsEGMf14SnVfoVUdspuOJ_a4aKmFUp8zcX3w-jGmH-KIq6s6a7T3ZLkEjT9Vc9IBtmcUj2KgEGWu7HIzJLywo-7aB_9oDs07SzgpdoWhTrTkaKcmdzCuCU3mHxXWOjM0Vnc_NJnx1_7AdcuukMTAFKU5SkL5DFoHhf0f6LkzE6JpPu_bjTY6V2AtM8ahdMe7nKgyiL_dzXGu59nGee4ZnQcAEKYk-rTFlrtdKRib0g80RgktwKYf3QGqXFCWksXhfmlNCo7akoNkFuRObrXCjBDSr5JR7YmpA3yU0VRPm2psiQNRkyRlxCxCVGXIJxqwqzLHfLUkJSQdo1gB5NcluFvn78p7Ozf1lfke3eeDiQg_7o6ZzscFwGrnOxRRoQa3MB6KJQl241fQEiosdr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gnjxLVar7sGTsjTZzfMYWmvrowha6C1kN7tQqLHYCPbfO5MHQdGD50zmMNmd_TYz832EXEopA08ryH5SOMwxOmRBYjhT0rjKE16oCsabx7E3nDh3U3da6Zwu6273uiRZzjQgS1OWdxep6TaDbwBcLIZSrI7A-ZJ1sgHZ2MZlPeFRnYqFbxVqrvgPm6E6Zl3W_M3F94OpQZs_CqTFuTPYJdsVYKRR-YX3yJrO9slOLcZAq715QGZRVc2nPfTPbpGJmvZW8BKN8rzsaqQofTanAFRpHwvxCpueKTqb60_6XHDJfsAFnM7AFGA1RXn6HBkN8vcVHb0WkkaHZDK4eekNWaWjwBT3rZwpO5Wp6yeBkzpKwR2Q88TWPBEKLkNuYCuZSGOMksrXge0mtnB1mBohjOMZLZU4Iq3sLdPHhPqWLf1Au6kWiaNSIQXXqOoX2mCrPd4mV3UQ40VJlxE3xMgY8RgiHmPEYzDu1GGOq52zjCHBIAUbwJA2ua5D3zz-09nJv6wvyOZTfxA_jMb3p2SL4yoomhg7pAWh1mcANHJ5XiymL9Dzy6c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Cross-Graph+Cycle+Attention+Model+for+Dissecting+Complex+Structures+in+Mass+Spectrometry+Imaging&rft.jtitle=Journal+of+computer+science+and+technology&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=40&rft.issue=3&rft.spage=766&rft.epage=779&rft_id=info:doi/10.1007%2Fs11390-025-4342-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1000-9000&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1000-9000&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1000-9000&client=summon |