Advanced Cross-Graph Cycle Attention Model for Dissecting Complex Structures in Mass Spectrometry Imaging

Joint analysis of multimodalities in spatial mass spectrometry imaging (SMSI) data, including histology, spatial location, and molecule data, allows us to gain novel insights into tissue structures. However, the significant differences in characteristics such as scale and heterogeneity among the mul...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer science and technology Vol. 40; no. 3; pp. 766 - 779
Main Authors Cui, Jiang-Nan, Gao, Yang, Wang, Qiu, Li, Xuan, Xu, Ke-Ren, Huang, Zhen-Yu, Zhang, Jing-Song, Zuo, Chun-Man
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.05.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Joint analysis of multimodalities in spatial mass spectrometry imaging (SMSI) data, including histology, spatial location, and molecule data, allows us to gain novel insights into tissue structures. However, the significant differences in characteristics such as scale and heterogeneity among the multimodal data, coupled with the high noise levels and uneven quality of MSI data, severely hinder their comprehensive analysis. Here, we introduce a cross-graph cycle attention model, MSCG, to learn efficient joint embeddings for multimodalities of SMSI data by integrating graph attention autoencoders and attention-transfer. Specifically, MSCG enables leveraging one modality (e.g., histology) to fine-tune the graph neural network trained for another modality (e.g., MSI). Our study on real datasets from different platforms highlights the superior capacities of MSCG in dissecting cellular heterogeneity, as well as in denoising and aggregating MSI data. Notably, MSCG demonstrates versatile applicability across MSI data from various platforms, showcasing its potential for broad utility in this field.
AbstractList Joint analysis of multimodalities in spatial mass spectrometry imaging (SMSI) data, including histology, spatial location, and molecule data, allows us to gain novel insights into tissue structures. However, the significant differences in characteristics such as scale and heterogeneity among the multimodal data, coupled with the high noise levels and uneven quality of MSI data, severely hinder their comprehensive analysis. Here, we introduce a cross-graph cycle attention model, MSCG, to learn efficient joint embeddings for multimodalities of SMSI data by integrating graph attention autoencoders and attention-transfer. Specifically, MSCG enables leveraging one modality (e.g., histology) to fine-tune the graph neural network trained for another modality (e.g., MSI). Our study on real datasets from different platforms highlights the superior capacities of MSCG in dissecting cellular heterogeneity, as well as in denoising and aggregating MSI data. Notably, MSCG demonstrates versatile applicability across MSI data from various platforms, showcasing its potential for broad utility in this field.
Author Li, Xuan
Cui, Jiang-Nan
Wang, Qiu
Huang, Zhen-Yu
Zhang, Jing-Song
Gao, Yang
Xu, Ke-Ren
Zuo, Chun-Man
Author_xml – sequence: 1
  givenname: Jiang-Nan
  surname: Cui
  fullname: Cui, Jiang-Nan
– sequence: 2
  givenname: Yang
  surname: Gao
  fullname: Gao, Yang
– sequence: 3
  givenname: Qiu
  surname: Wang
  fullname: Wang, Qiu
– sequence: 4
  givenname: Xuan
  surname: Li
  fullname: Li, Xuan
– sequence: 5
  givenname: Ke-Ren
  surname: Xu
  fullname: Xu, Ke-Ren
– sequence: 6
  givenname: Zhen-Yu
  surname: Huang
  fullname: Huang, Zhen-Yu
– sequence: 7
  givenname: Jing-Song
  surname: Zhang
  fullname: Zhang, Jing-Song
– sequence: 8
  givenname: Chun-Man
  surname: Zuo
  fullname: Zuo, Chun-Man
BookMark eNp1kD1PwzAQhi1UJNrCD2CzxGzwV5pkrAIUpCKGwmw5zrmkauJgu4j-e1wFiYnl7obnvdM9MzTpXQ8IXTN6yyjN7wJjoqSE8oxIITnhZ2jKigUlMpflJM2UUlKmcoFmIewoFTmVcoraZfOlewMNrrwLgay8Hj5wdTR7wMsYoY-t6_GLa2CPrfP4vg0BTGz7La5cN-zhG2-iP5h48BBwm1AdAt4MifGug-iP-LnT28RfonOr9wGufvscvT8-vFVPZP26eq6Wa2J4TiMxrKmbLNeFbKQxjC441wy4FoYxmRXM1Lq21pra5FCwTDORQdlYIaxcWKiNmKObce_g3ecBQlQ7d_B9OqkE50VWCsbLRLGRMqe3PVg1-LbT_qgYVSejajSqklF1Mqp4yvAxExLbb8H_bf4_9APDhHxo
Cites_doi 10.1109/GMAP.2000.838272
10.1021/acs.analchem.1c04564
10.3724/sp.j.1123.2023.10035
10.5555/1953048.2078195
10.1002/admi.202201464
10.1093/gigascience/giad021
10.3390/life12030366
10.1038/s41591-024-02856-4
10.1021/ac970888i
10.1021/ac3034294
10.1074/mcp.O115.053918
10.1016/j.compbiomed.2021.104918
10.1038/labinvest.2014.156
10.1109/MedAI59581.2023.00024
10.1002/sia.740050307
10.1002/anie.200602449
10.1093/bioinformatics/btab403
10.1016/j.bcp.2022.115080
10.1038/s41467-024-49171-7
10.1038/s41467-022-33619-9
10.1109/tpami.2019.2918284
10.1007/s11263-015-0816-y
10.3866/PKU.DXHX201907028
10.1007/s11263-007-0090-8
10.1093/bib/bbaa287
10.1109/PIC.2018.8706300
10.1016/j.sigpro.2021.108036
10.1007/s11011-021-00797-2
10.1038/ncomms9971
10.1007/b97852
ContentType Journal Article
Copyright Institute of Computing Technology, Chinese Academy of Sciences 2025
Institute of Computing Technology, Chinese Academy of Sciences 2025.
Copyright_xml – notice: Institute of Computing Technology, Chinese Academy of Sciences 2025
– notice: Institute of Computing Technology, Chinese Academy of Sciences 2025.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11390-025-4342-2
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-4749
EndPage 779
ExternalDocumentID 10_1007_s11390_025_4342_2
GroupedDBID -SI
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
5XA
5XJ
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CAJEI
CCEZO
CCPQU
CHBEP
COF
CS3
CSCUP
CUBFJ
CW9
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
ICD
IHE
IJ-
IKXTQ
IVC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q--
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGMPQ
TGT
TSG
TSK
TSV
TUC
U1G
U2A
U5S
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
~EX
AAYXX
ABRTQ
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c270t-c1dbd57a84d4cc10622a1e2a3c114581cbabfffcbc7e815a135e9df33f46febc3
IEDL.DBID U2A
ISSN 1000-9000
IngestDate Fri Jul 25 08:57:24 EDT 2025
Wed Jul 16 16:49:06 EDT 2025
Thu Jul 10 08:11:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords graph attention autoencoder
mass spectrometry imaging
multimodal data integration
cross-graph cycle attention
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-c1dbd57a84d4cc10622a1e2a3c114581cbabfffcbc7e815a135e9df33f46febc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3228593129
PQPubID 326258
PageCount 14
ParticipantIDs proquest_journals_3228593129
crossref_primary_10_1007_s11390_025_4342_2
springer_journals_10_1007_s11390_025_4342_2
PublicationCentury 2000
PublicationDate 20250500
2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 5
  year: 2025
  text: 20250500
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Beijing
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationYear 2025
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References A Guo (4342_CR13) 2022; 12
M S Handcock (4342_CR29) 1999
4342_CR27
J Cui (4342_CR15) 2023
M Aichler (4342_CR7) 2015; 95
D Briggs (4342_CR1) 1983; 5
B C Russell (4342_CR26) 2008; 77
M Beuque (4342_CR12) 2021; 138
Y Yang (4342_CR4) 2020; 35
L K Schnackenberg (4342_CR9) 2022; 37
R M Caprioli (4342_CR2) 1977; 69
J Feng (4342_CR24) 2000
B J Tyler (4342_CR10) 2022; 94
S Zagoruyko (4342_CR19) 2017
P Czétány (4342_CR8) 2022; 12
D D Huang (4342_CR17) 2024; 42
J M Wiseman (4342_CR3) 2006; 45
4342_CR16
C Zuo (4342_CR20) 2021; 37
M Y Lu (4342_CR23) 2024; 30
Y Li (4342_CR21) 2019
L Zhang (4342_CR25) 2018
M L Spruill (4342_CR6) 2022; 201
C Zuo (4342_CR32) 2021; 22
G Huang (4342_CR14) 2022; 44
A Thomas (4342_CR11) 2013; 85
H Hermessi (4342_CR18) 2021; 183
W Gardner (4342_CR31) 2022; 9
O Russakovsky (4342_CR22) 2015; 115
K D Bemis (4342_CR5) 2016; 15
F Pedregosa (4342_CR28) 2011; 12
4342_CR30
References_xml – start-page: 408
  volume-title: Proc. the 2000 Geometric Modeling and Processing 2000. Theory and Applications
  year: 2000
  ident: 4342_CR24
  doi: 10.1109/GMAP.2000.838272
– start-page: 3835
  volume-title: Proc. the 36th International Conference on Machine Learning
  year: 2019
  ident: 4342_CR21
– volume-title: Proc. the 5th International Conference on Learning Representations
  year: 2017
  ident: 4342_CR19
– volume: 94
  start-page: 2835
  issue: 6
  year: 2022
  ident: 4342_CR10
  publication-title: Analytical Chemistry
  doi: 10.1021/acs.analchem.1c04564
– volume: 42
  start-page: 669
  issue: 7
  year: 2024
  ident: 4342_CR17
  publication-title: Chinese Journal of Chromatography
  doi: 10.3724/sp.j.1123.2023.10035
– volume: 12
  start-page: 2825
  year: 2011
  ident: 4342_CR28
  publication-title: The Journal of Machine Learning Research
  doi: 10.5555/1953048.2078195
– volume: 9
  start-page: 2201464
  issue: 34
  year: 2022
  ident: 4342_CR31
  publication-title: Advanced Materials Interfaces
  doi: 10.1002/admi.202201464
– volume: 12
  start-page: giad021
  year: 2022
  ident: 4342_CR13
  publication-title: GigaScience
  doi: 10.1093/gigascience/giad021
– volume: 12
  start-page: 366
  issue: 3
  year: 2022
  ident: 4342_CR8
  publication-title: Life
  doi: 10.3390/life12030366
– volume: 30
  start-page: 863
  issue: 3
  year: 2024
  ident: 4342_CR23
  publication-title: Nature Medicine
  doi: 10.1038/s41591-024-02856-4
– volume: 69
  start-page: 4751
  issue: 23
  year: 1977
  ident: 4342_CR2
  publication-title: Analytical Chemistry
  doi: 10.1021/ac970888i
– volume: 85
  start-page: 2860
  issue: 5
  year: 2013
  ident: 4342_CR11
  publication-title: Analytical Chemistry
  doi: 10.1021/ac3034294
– volume: 15
  start-page: 1761
  issue: 5
  year: 2016
  ident: 4342_CR5
  publication-title: Molecular & Cellular Proteomics
  doi: 10.1074/mcp.O115.053918
– volume: 138
  start-page: 104918
  year: 2021
  ident: 4342_CR12
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.104918
– volume: 95
  start-page: 422
  issue: 4
  year: 2015
  ident: 4342_CR7
  publication-title: Laboratory Investigation
  doi: 10.1038/labinvest.2014.156
– start-page: 110
  volume-title: Proc. the 2023 IEEE International Conference on Medical Artificial Intelligence (MedAI)
  year: 2023
  ident: 4342_CR15
  doi: 10.1109/MedAI59581.2023.00024
– volume: 5
  start-page: 113
  issue: 3
  year: 1983
  ident: 4342_CR1
  publication-title: Surface and Interface Analysis
  doi: 10.1002/sia.740050307
– volume: 45
  start-page: 7188
  issue: 43
  year: 2006
  ident: 4342_CR3
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.200602449
– volume: 37
  start-page: 4091
  issue: 22
  year: 2021
  ident: 4342_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab403
– volume: 201
  start-page: 115080
  year: 2022
  ident: 4342_CR6
  publication-title: Biochemical Pharmacology
  doi: 10.1016/j.bcp.2022.115080
– ident: 4342_CR30
  doi: 10.1038/s41467-024-49171-7
– ident: 4342_CR16
  doi: 10.1038/s41467-022-33619-9
– volume: 44
  start-page: 8704
  issue: 12
  year: 2022
  ident: 4342_CR14
  publication-title: IEEE Trans. Pattern Analysis and Machine Intelligence
  doi: 10.1109/tpami.2019.2918284
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 4342_CR22
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-015-0816-y
– volume: 35
  start-page: 47
  issue: 3
  year: 2020
  ident: 4342_CR4
  publication-title: University Chemistry
  doi: 10.3866/PKU.DXHX201907028
– volume: 77
  start-page: 157
  issue: 1/2/3
  year: 2008
  ident: 4342_CR26
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-007-0090-8
– volume: 22
  start-page: bbaa287
  issue: 4
  year: 2021
  ident: 4342_CR32
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbaa287
– start-page: 440
  volume-title: Proc. the 2018 IEEE International Conference on Progress in Informatics and Computing (PIC)
  year: 2018
  ident: 4342_CR25
  doi: 10.1109/PIC.2018.8706300
– volume: 183
  start-page: 108036
  year: 2021
  ident: 4342_CR18
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2021.108036
– volume: 37
  start-page: 105
  issue: 1
  year: 2022
  ident: 4342_CR9
  publication-title: Metabolic Brain Disease
  doi: 10.1007/s11011-021-00797-2
– ident: 4342_CR27
  doi: 10.1038/ncomms9971
– volume-title: Relative Distribution Methods in the Social Sciences
  year: 1999
  ident: 4342_CR29
  doi: 10.1007/b97852
SSID ssj0037044
Score 2.3624587
Snippet Joint analysis of multimodalities in spatial mass spectrometry imaging (SMSI) data, including histology, spatial location, and molecule data, allows us to gain...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 766
SubjectTerms Artificial Intelligence
Computer Science
Data Structures and Information Theory
Graph neural networks
Heterogeneity
Histology
Information Systems Applications (incl.Internet)
Mass spectrometry
Noise levels
Regular Paper
Scientific imaging
Software Engineering
Spatial data
Theory of Computation
Title Advanced Cross-Graph Cycle Attention Model for Dissecting Complex Structures in Mass Spectrometry Imaging
URI https://link.springer.com/article/10.1007/s11390-025-4342-2
https://www.proquest.com/docview/3228593129
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXVh4Iwql8sAEstTYcR5jWvoARBeoVKYodmypUimIBon-e-7cRBEIBqYMudxwts_f5R4fIZdKqSgwGryfEj7zrYlZlFnOtLJSByKItZt48zAJxlP_biZnZR_3qqp2r1KSzlPXzW4AVroM6Vd9gT0l26QpMXSHTTzlSeV-Rdh1DK7435ohI2aVyvxNxffLqEaYP5Ki7q4Z7pPdEiTSZLOqB2TLLA_JXkXAQMvzeETmSZnBp33Uz0Y4fZr21_ARTYpiU8lIke5sQQGc0htMvmssdKaobGE-6aObH_sBQTedgyhAaYqU9AVOMSje1_T2xdEYHZPpcPDUH7OSO4FpHnYLpr1c5TLMIj_3tYa4j_PMMzwTGgIgGXlaZcpaq5UOTeTJzBPSxLkVwvqBNUqLE9JYvi7NKaFh11NhZGRuRObrXCjBDTL5xR7ImoC3yFVlxPRtMyIjrYcho8VTsHiKFk9BuF2ZOS1PyyoFp4Jj1wB6tMh1Zfr69Z_Kzv4lfU52OC69q1ZskwbY11wAoihUhzSTYa83wefo-X7QcTvqCxfkx4g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDLDwjSgU8MAEstTY-RyjQmmh7UIrdbNix5YqlYJokOi_585NFIFgYM7lhot9fs7dvUfItVIqDo2G7KeEz3xrEhZnljOtbKBDESbaMd4MR2Fv4j9Og2k5x72sut2rkqTL1PWwG4CVNkP5VV_gTMkm2QIsEGMf14SnVfoVUdspuOJ_a4aKmFUp8zcX3w-jGmH-KIq6s6a7T3ZLkEjT9Vc9IBtmcUj2KgEGWu7HIzJLywo-7aB_9oDs07SzgpdoWhTrTkaKcmdzCuCU3mHxXWOjM0Vnc_NJnx1_7AdcuukMTAFKU5SkL5DFoHhf0f6LkzE6JpPu_bjTY6V2AtM8ahdMe7nKgyiL_dzXGu59nGee4ZnQcAEKYk-rTFlrtdKRib0g80RgktwKYf3QGqXFCWksXhfmlNCo7akoNkFuRObrXCjBDSr5JR7YmpA3yU0VRPm2psiQNRkyRlxCxCVGXIJxqwqzLHfLUkJSQdo1gB5NcluFvn78p7Ozf1lfke3eeDiQg_7o6ZzscFwGrnOxRRoQa3MB6KJQl241fQEiosdr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gnjxLVar7sGTsjTZzfMYWmvrowha6C1kN7tQqLHYCPbfO5MHQdGD50zmMNmd_TYz832EXEopA08ryH5SOMwxOmRBYjhT0rjKE16oCsabx7E3nDh3U3da6Zwu6273uiRZzjQgS1OWdxep6TaDbwBcLIZSrI7A-ZJ1sgHZ2MZlPeFRnYqFbxVqrvgPm6E6Zl3W_M3F94OpQZs_CqTFuTPYJdsVYKRR-YX3yJrO9slOLcZAq715QGZRVc2nPfTPbpGJmvZW8BKN8rzsaqQofTanAFRpHwvxCpueKTqb60_6XHDJfsAFnM7AFGA1RXn6HBkN8vcVHb0WkkaHZDK4eekNWaWjwBT3rZwpO5Wp6yeBkzpKwR2Q88TWPBEKLkNuYCuZSGOMksrXge0mtnB1mBohjOMZLZU4Iq3sLdPHhPqWLf1Au6kWiaNSIQXXqOoX2mCrPd4mV3UQ40VJlxE3xMgY8RgiHmPEYzDu1GGOq52zjCHBIAUbwJA2ua5D3zz-09nJv6wvyOZTfxA_jMb3p2SL4yoomhg7pAWh1mcANHJ5XiymL9Dzy6c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Cross-Graph+Cycle+Attention+Model+for+Dissecting+Complex+Structures+in+Mass+Spectrometry+Imaging&rft.jtitle=Journal+of+computer+science+and+technology&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=40&rft.issue=3&rft.spage=766&rft.epage=779&rft_id=info:doi/10.1007%2Fs11390-025-4342-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1000-9000&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1000-9000&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1000-9000&client=summon