Efficient projection-free online convex optimization using stochastic gradients

We consider Online Convex Optimization (OCO) problems subject to a compact convex set. An important class of projection-free online methods known as Frank–Wolfe-type (FW-type) methods have attracted considerable attention in the machine learning community, as they eschew the expensive projection ope...

Full description

Saved in:
Bibliographic Details
Published inMachine learning Vol. 114; no. 4; p. 93
Main Authors Xie, Jiahao, Zhang, Chao, Shen, Zebang, Qian, Hui
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider Online Convex Optimization (OCO) problems subject to a compact convex set. An important class of projection-free online methods known as Frank–Wolfe-type (FW-type) methods have attracted considerable attention in the machine learning community, as they eschew the expensive projection operation and only require a simple linear minimization oracle in each round. Recently, the stochastic gradient technique has been integrated in FW-type online methods to circumvent the expensive full gradient computation and further reduce the per-round computational cost. However, these methods generally have high regret bounds due to high variance in gradient estimation. Although adopting a large minibatch in stochastic gradients can reduce the variance, it would in turn increase the per-round computational cost. In this paper, we develop efficient FW-type methods that only need stochastic gradients with small minibatch and achieve nearly optimal regret bounds with low per-round costs. We first explore the similarity between gradients of decision variables in consecutive rounds, and construct a lightweight variance-reduced estimator by utilizing historical gradient information. Based on this estimator, we propose a method named OFWRG for smooth problems in the stochastic setting. We prove that OFWRG achieves a nearly optimal regret bound with the lowest O ( 1 ) per-round computational cost. OFWRG is the first method with such nearly optimal result in this setting. We further extend OFWRG to OCO problems in other settings, including smooth problems in the adversarial setting and a class of non-smooth problems in the stochastic and adversarial settings. Our theoretical analyses show that these extensions of OFWRG achieve nearly optimal regret bounds and low per-round computational costs under mild conditions. Experimental results demonstrate the efficiency of our methods.
AbstractList We consider Online Convex Optimization (OCO) problems subject to a compact convex set. An important class of projection-free online methods known as Frank–Wolfe-type (FW-type) methods have attracted considerable attention in the machine learning community, as they eschew the expensive projection operation and only require a simple linear minimization oracle in each round. Recently, the stochastic gradient technique has been integrated in FW-type online methods to circumvent the expensive full gradient computation and further reduce the per-round computational cost. However, these methods generally have high regret bounds due to high variance in gradient estimation. Although adopting a large minibatch in stochastic gradients can reduce the variance, it would in turn increase the per-round computational cost. In this paper, we develop efficient FW-type methods that only need stochastic gradients with small minibatch and achieve nearly optimal regret bounds with low per-round costs. We first explore the similarity between gradients of decision variables in consecutive rounds, and construct a lightweight variance-reduced estimator by utilizing historical gradient information. Based on this estimator, we propose a method named OFWRG for smooth problems in the stochastic setting. We prove that OFWRG achieves a nearly optimal regret bound with the lowest O(1) per-round computational cost. OFWRG is the first method with such nearly optimal result in this setting. We further extend OFWRG to OCO problems in other settings, including smooth problems in the adversarial setting and a class of non-smooth problems in the stochastic and adversarial settings. Our theoretical analyses show that these extensions of OFWRG achieve nearly optimal regret bounds and low per-round computational costs under mild conditions. Experimental results demonstrate the efficiency of our methods.
We consider Online Convex Optimization (OCO) problems subject to a compact convex set. An important class of projection-free online methods known as Frank–Wolfe-type (FW-type) methods have attracted considerable attention in the machine learning community, as they eschew the expensive projection operation and only require a simple linear minimization oracle in each round. Recently, the stochastic gradient technique has been integrated in FW-type online methods to circumvent the expensive full gradient computation and further reduce the per-round computational cost. However, these methods generally have high regret bounds due to high variance in gradient estimation. Although adopting a large minibatch in stochastic gradients can reduce the variance, it would in turn increase the per-round computational cost. In this paper, we develop efficient FW-type methods that only need stochastic gradients with small minibatch and achieve nearly optimal regret bounds with low per-round costs. We first explore the similarity between gradients of decision variables in consecutive rounds, and construct a lightweight variance-reduced estimator by utilizing historical gradient information. Based on this estimator, we propose a method named OFWRG for smooth problems in the stochastic setting. We prove that OFWRG achieves a nearly optimal regret bound with the lowest O ( 1 ) per-round computational cost. OFWRG is the first method with such nearly optimal result in this setting. We further extend OFWRG to OCO problems in other settings, including smooth problems in the adversarial setting and a class of non-smooth problems in the stochastic and adversarial settings. Our theoretical analyses show that these extensions of OFWRG achieve nearly optimal regret bounds and low per-round computational costs under mild conditions. Experimental results demonstrate the efficiency of our methods.
ArticleNumber 93
Author Shen, Zebang
Qian, Hui
Zhang, Chao
Xie, Jiahao
Author_xml – sequence: 1
  givenname: Jiahao
  surname: Xie
  fullname: Xie, Jiahao
  organization: College of Computer Science and Technology, Zhejiang University, Auto Engineering Research Institute, BYD Auto Industry Co., LTD
– sequence: 2
  givenname: Chao
  orcidid: 0000-0001-7174-8663
  surname: Zhang
  fullname: Zhang, Chao
  email: zczju@zju.edu.cn
  organization: Advanced Technology Institute, Zhejiang University
– sequence: 3
  givenname: Zebang
  surname: Shen
  fullname: Shen, Zebang
  organization: ETH Zürich
– sequence: 4
  givenname: Hui
  surname: Qian
  fullname: Qian, Hui
  organization: College of Computer Science and Technology, Zhejiang University
BookMark eNp9kMFOAyEURYmpiW31B1xN4hp9wMDMLE1TrUmTbnRNGAYqTQsVplb9eqlj4s4FeQvuue_lTNDIB28QuiZwSwCqu0SgaUoMND8hSsDHMzQmvGIYuOAjNIa65lgQyi_QJKUNAFBRizFaza112hnfF_sYNkb3LnhsozFF8FvnTaGDfzcfRdj3bue-1Om_OCTn10Xqg35VqXe6WEfVnUrSJTq3apvM1e-copeH-fNsgZerx6fZ_RJrWkGPW8saCqyzDVeV4WBqyhgoYUsN3BKrrVBtVxkFnag60rBWKN1SXXJoMkPYFN0Mvfnqt4NJvdyEQ_R5pWRE1BxYWYqcokNKx5BSNFbuo9up-CkJyJM4OYiTWZz8ESePGWIDlHLYr038q_6H-gZybXTe
Cites_doi 10.1137/140992382
10.1214/aop/1176988477
10.1109/ALLERTON.2016.7852377
10.1561/2200000050
10.1007/s10107-018-1311-3
10.1609/aaai.v35i11.17209
10.1007/BF01589445
10.1007/s10994-007-5016-8
10.1109/ICDM.2014.112
10.1561/2200000018
10.1080/02331939208843789
10.1145/258128.258179
10.1137/100818327
10.1109/FOCS.2017.51
10.1002/nav.3800030109
10.1109/CVPR.2007.383099
10.1137/16M1093094
10.1016/j.jcss.2004.10.016
10.24033/bsmf.1625
10.1515/9781400873173
10.21236/ADA476748
10.1007/s10107-004-0552-5
10.1109/TIT.2015.2429594
10.1561/2400000013
10.1007/BFb0083582
10.1007/s10994-007-5014-x
10.1007/978-1-4614-0237-4
10.1137/050645506
10.1007/s10107-020-01583-1
10.1017/CBO9780511546921
10.1016/j.patcog.2017.10.003
10.26599/BDMA.2018.9020008
10.1007/s10994-016-5578-4
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Apr 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Apr 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10994-024-06640-w
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
ExternalDocumentID 10_1007_s10994_024_06640_w
GrantInformation_xml – fundername: national natural science foundation of china
  grantid: 61672376; 61751209; 61472347
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: national key research and development program of china
  grantid: 2020AAA0107400
– fundername: alibaba-zhejiang university joint research institute of frontier technologies
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LZ18F020002
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PHGZT
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z8Z
ZMTXR
AAYXX
ABBRH
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
CITATION
PHGZM
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c270t-bf39203df95a7e50e82330a6f4c05f1fcf6abd7ea0d67d193b6acb2c4509f9513
IEDL.DBID U2A
ISSN 0885-6125
IngestDate Sat Aug 23 12:30:38 EDT 2025
Tue Jul 01 05:17:37 EDT 2025
Fri Mar 28 01:24:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Projection-free methods
Online convex optimization
Regret bound
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-bf39203df95a7e50e82330a6f4c05f1fcf6abd7ea0d67d193b6acb2c4509f9513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7174-8663
PQID 3168503446
PQPubID 54194
ParticipantIDs proquest_journals_3168503446
crossref_primary_10_1007_s10994_024_06640_w
springer_journals_10_1007_s10994_024_06640_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250400
2025-04-00
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 4
  year: 2025
  text: 20250400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 6640_CR14
6640_CR58
6640_CR13
6640_CR1
6640_CR15
6640_CR10
S Bubeck (6640_CR6) 2015; 8
6640_CR11
J Guélat (6640_CR26) 1986; 35
6640_CR17
G Lan (6640_CR43) 2016; 26
YX Wang (6640_CR73) 2013; 26
E Hazan (6640_CR33) 2007; 69
6640_CR50
6640_CR52
6640_CR51
F Locatello (6640_CR48) 2019; 32
N Cesa-Bianchi (6640_CR9) 1997; 44
C Lanczos (6640_CR45) 1950
6640_CR47
6640_CR46
6640_CR49
6640_CR42
6640_CR44
E Frandi (6640_CR22) 2016; 104
A Kalai (6640_CR36) 2005; 71
Q Tran-Dinh (6640_CR70) 2018; 28
E Hazan (6640_CR30) 2014; 15
Y Wan (6640_CR72) 2021; 35
I Pinelis (6640_CR57) 1994; 22
S Shalev-Shwartz (6640_CR63) 2012; 4
6640_CR82
6640_CR41
TT Cai (6640_CR7) 2010; 38
6640_CR40
N Cesa-Bianchi (6640_CR8) 2006
6640_CR3
6640_CR81
6640_CR5
6640_CR35
6640_CR79
6640_CR38
6640_CR37
6640_CR32
A Mokhtari (6640_CR53) 2020; 21
G Neu (6640_CR56) 2016; 17
6640_CR76
6640_CR31
6640_CR75
6640_CR34
6640_CR78
A Beck (6640_CR2) 2012; 22
6640_CR77
A d’Aspremont (6640_CR16) 2007; 49
6640_CR39
Y Nesterov (6640_CR55) 2005; 103
6640_CR71
JJ Moreau (6640_CR54) 1965; 93
E Richard (6640_CR61) 2012
6640_CR74
6640_CR25
6640_CR69
6640_CR24
6640_CR68
A Ramlatchan (6640_CR59) 2018; 1
E Hazan (6640_CR28) 2016; 2
6640_CR21
6640_CR65
6640_CR20
6640_CR67
D Drusvyatskiy (6640_CR19) 2019; 178
6640_CR66
JR Birge (6640_CR4) 2011
6640_CR29
E Hazan (6640_CR27) 2008
Q Zheng (6640_CR80) 2018; 76
S Shalev-Shwartz (6640_CR64) 2007; 69
F Dragomirescu (6640_CR18) 1992; 24
Y Chen (6640_CR12) 2015; 61
6640_CR60
6640_CR62
M Frank (6640_CR23) 1956; 3
References_xml – volume: 26
  start-page: 1379
  issue: 2
  year: 2016
  ident: 6640_CR43
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/140992382
– volume: 22
  start-page: 1679
  issue: 4
  year: 1994
  ident: 6640_CR57
  publication-title: The Annals of Probability
  doi: 10.1214/aop/1176988477
– ident: 6640_CR60
  doi: 10.1109/ALLERTON.2016.7852377
– volume: 8
  start-page: 231
  issue: 3–4
  year: 2015
  ident: 6640_CR6
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000050
– ident: 6640_CR42
– volume: 178
  start-page: 503
  issue: 1
  year: 2019
  ident: 6640_CR19
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-018-1311-3
– ident: 6640_CR69
– volume: 35
  start-page: 10076
  year: 2021
  ident: 6640_CR72
  publication-title: Proceedings of the AAAI conference on artificial intelligence
  doi: 10.1609/aaai.v35i11.17209
– ident: 6640_CR46
– ident: 6640_CR49
– ident: 6640_CR65
– volume: 35
  start-page: 110
  issue: 1
  year: 1986
  ident: 6640_CR26
  publication-title: Mathematical Programming
  doi: 10.1007/BF01589445
– volume: 38
  start-page: 2118
  issue: 4
  year: 2010
  ident: 6640_CR7
  publication-title: The Annals of Statistics
– volume: 69
  start-page: 169
  issue: 2–3
  year: 2007
  ident: 6640_CR33
  publication-title: Machine Learning
  doi: 10.1007/s10994-007-5016-8
– ident: 6640_CR52
– ident: 6640_CR79
– ident: 6640_CR13
  doi: 10.1109/ICDM.2014.112
– volume: 4
  start-page: 107
  issue: 2
  year: 2012
  ident: 6640_CR63
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000018
– ident: 6640_CR75
– ident: 6640_CR39
– volume: 24
  start-page: 193
  issue: 3–4
  year: 1992
  ident: 6640_CR18
  publication-title: Optimization
  doi: 10.1080/02331939208843789
– volume: 44
  start-page: 427
  issue: 3
  year: 1997
  ident: 6640_CR9
  publication-title: Journal of the ACM (JACM)
  doi: 10.1145/258128.258179
– volume: 22
  start-page: 557
  issue: 2
  year: 2012
  ident: 6640_CR2
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/100818327
– ident: 6640_CR1
  doi: 10.1109/FOCS.2017.51
– volume: 3
  start-page: 95
  issue: 1–2
  year: 1956
  ident: 6640_CR23
  publication-title: Naval research logistics quarterly
  doi: 10.1002/nav.3800030109
– ident: 6640_CR29
– ident: 6640_CR68
– ident: 6640_CR74
  doi: 10.1109/CVPR.2007.383099
– ident: 6640_CR5
– volume: 21
  start-page: 1
  issue: 105
  year: 2020
  ident: 6640_CR53
  publication-title: Journal of Machine Learning Research
– ident: 6640_CR81
– ident: 6640_CR47
– volume: 28
  start-page: 96
  issue: 1
  year: 2018
  ident: 6640_CR70
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/16M1093094
– volume: 71
  start-page: 291
  issue: 3
  year: 2005
  ident: 6640_CR36
  publication-title: Journal of Computer and System Sciences
  doi: 10.1016/j.jcss.2004.10.016
– volume: 93
  start-page: 273
  year: 1965
  ident: 6640_CR54
  publication-title: Bulletin de la Société mathématique de France
  doi: 10.24033/bsmf.1625
– ident: 6640_CR62
  doi: 10.1515/9781400873173
– ident: 6640_CR78
– ident: 6640_CR15
– ident: 6640_CR32
– ident: 6640_CR67
  doi: 10.21236/ADA476748
– volume: 103
  start-page: 127
  issue: 1
  year: 2005
  ident: 6640_CR55
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-004-0552-5
– ident: 6640_CR11
– ident: 6640_CR34
– volume: 61
  start-page: 4034
  issue: 7
  year: 2015
  ident: 6640_CR12
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2015.2429594
– volume-title: Estimation of simultaneously sparse and low rank matrices
  year: 2012
  ident: 6640_CR61
– ident: 6640_CR40
– volume: 2
  start-page: 157
  year: 2016
  ident: 6640_CR28
  publication-title: Foundations and Trends in Optimization
  doi: 10.1561/2400000013
– ident: 6640_CR44
– ident: 6640_CR82
– ident: 6640_CR3
  doi: 10.1007/BFb0083582
– volume-title: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators
  year: 1950
  ident: 6640_CR45
– ident: 6640_CR25
– volume: 15
  start-page: 2489
  issue: 1
  year: 2014
  ident: 6640_CR30
  publication-title: The Journal of Machine Learning Research
– ident: 6640_CR50
– volume: 69
  start-page: 115
  issue: 2–3
  year: 2007
  ident: 6640_CR64
  publication-title: Machine Learning
  doi: 10.1007/s10994-007-5014-x
– ident: 6640_CR21
– ident: 6640_CR77
– ident: 6640_CR31
– volume-title: Introduction to stochastic programming
  year: 2011
  ident: 6640_CR4
  doi: 10.1007/978-1-4614-0237-4
– ident: 6640_CR37
– ident: 6640_CR58
– volume: 49
  start-page: 434
  issue: 3
  year: 2007
  ident: 6640_CR16
  publication-title: SIAM Review
  doi: 10.1137/050645506
– ident: 6640_CR35
– ident: 6640_CR14
– ident: 6640_CR71
  doi: 10.1007/s10107-020-01583-1
– ident: 6640_CR10
– ident: 6640_CR41
– volume: 32
  start-page: 14246
  year: 2019
  ident: 6640_CR48
  publication-title: Advances in Neural Information Processing Systems
– ident: 6640_CR66
– volume-title: Prediction, learning, and games
  year: 2006
  ident: 6640_CR8
  doi: 10.1017/CBO9780511546921
– volume: 17
  start-page: 1
  issue: 154
  year: 2016
  ident: 6640_CR56
  publication-title: Journal of Machine Learning Research
– ident: 6640_CR24
– ident: 6640_CR20
– volume: 76
  start-page: 715
  year: 2018
  ident: 6640_CR80
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2017.10.003
– start-page: 306
  volume-title: Latin American symposium on theoretical informatics
  year: 2008
  ident: 6640_CR27
– volume: 26
  start-page: 64
  year: 2013
  ident: 6640_CR73
  publication-title: Advances in Neural Information Processing Systems
– ident: 6640_CR17
– volume: 1
  start-page: 308
  issue: 4
  year: 2018
  ident: 6640_CR59
  publication-title: Big Data Mining and Analytics
  doi: 10.26599/BDMA.2018.9020008
– volume: 104
  start-page: 195
  issue: 2
  year: 2016
  ident: 6640_CR22
  publication-title: Machine Learning
  doi: 10.1007/s10994-016-5578-4
– ident: 6640_CR38
– ident: 6640_CR51
– ident: 6640_CR76
SSID ssj0002686
Score 2.454554
Snippet We consider Online Convex Optimization (OCO) problems subject to a compact convex set. An important class of projection-free online methods known as...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 93
SubjectTerms Artificial Intelligence
Computer Science
Computing costs
Control
Convex analysis
Convexity
Decision theory
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Optimization
Robotics
Simulation and Modeling
Variance
Title Efficient projection-free online convex optimization using stochastic gradients
URI https://link.springer.com/article/10.1007/s10994-024-06640-w
https://www.proquest.com/docview/3168503446
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu7DwjSiUygMbWHKc2GnHFrUgEGWhUpkif5aFFrVB5edjuw4FBANThiQ3vPjunuO7dwDnWUKsdpkCp8Km2LdC-vNdg42VbaU50ySI6dwP-c0oux2zcWwKW1TV7tWRZIjUX5rdgowtzXzXvLO-3IQ6c3t3X8g1ot3P-Et5mO_o3Idhn79jq8zvNr6nozXH_HEsGrLNYBe2I01E3dV33YMNM92HnWoEA4oeeQAP_SAB4TIHiv9UHM7Yzo1BKw0MFMrK39HMhYaX2HOJfLH7BDnap56F12lGk3mo_CoXhzAa9B-vbnCckYAVzUmJpXUEh6TadpjIDSOmTdOUCG4zRZhNrLJcSJ0bQTTPtWNrkgslqcocUXDvJOkR1KazqTkGlKpMUi05zYTIOokVieoQxf0WhQmlTQMuKqiK15UURrEWPfbAFg7YIgBbLBvQrNAsolssCj8li3mRQd6Aywrh9e2_rZ387_FT2KJ-Tm-osGlCrZy_mTNHHkrZgnp30OsN_fX66a7fCmvnA7dCwLA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0UD3rx24ii9uBNm3S7bYEjMRBUwAsk3Jp-4kUwsAZ_vm3piho9eN7dObztzLzdmXkDwDXNsDM-U6BcuhyFUchQ37XIOtXQhjODo5hOf8C7I_owZuM0FLYou93LkmSM1F-G3aKMLaFhat5bX26CLU8GGuEsj0jrM_4SHvc7evdhKOTvNCrzu43v6WjNMX-URWO26eyD3UQTYWv1Xg_Ahp0egr1yBQNMHnkEntpRAsJnDpj-qXickZtbC1caGDC2lb_DmQ8NL2nmEoZm9wn0tE8_y6DTDCfz2PlVLI7BqNMe3nVR2pGANKnjAinnCQ7OjWsyWbcM2wbJcyy5oxozlzntuFSmbiU2vG48W1NcakU09UTBP5PlJ6AynU3tKYC5pooYxQmVkjYzJzPdxJqHTxQmtbFVcFNCJV5XUhhiLXocgBUeWBGBFcsqqJVoiuQWCxG2ZLEgMsir4LZEeH35b2tn_7v9Cmx3h_2e6N0PHs_BDgk7e2O3TQ1UivmbvfBEolCX8dx8ANymwJM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgSIiFN6JQwAMbWHUc22nHClrxLAxU6mY5fpSFtGqDyudjOwktCAbmJI5yYvue5N5zLgDnNMJWu0iBYmlj5KWQPr9rkLFpS2nONA5mOo99fjOgd0M2XFLxh2r3KiVZaBq8S1OWNyfaNpeEb8HSllCvoHd3mq-CNerVwG5GD0jnay8mPPR6dEuJIR_LS9nM72N8D00LvvkjRRoiT28bbJaUEXaKd7wDVky2C7aqdgywXJ174Kkb7CDcU8Dy_4rDHNmpMbDww4ChxPwDjt028VbqL6EvfB9BRwHVq_SezXA0DVVg-WwfDHrdl6sbVPZLQIokOEepdWQHx9q2mUwMw6ZF4hhLbqnCzEZWWS5TnRiJNU-0Y24plyolijrS4K6J4gNQy8aZOQQwVjQlOuWESknbkZWRamPF_ecKk0qbOriooBKTwhZDLAyQPbDCASsCsGJeB40KTVEukZnwHbOYNxzkdXBZIbw4_PdoR_87_QysP1_3xMNt__4YbBDfvjcU3jRALZ--mxPHKfL0NEybTxOjxMY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+projection-free+online+convex+optimization+using+stochastic+gradients&rft.jtitle=Machine+learning&rft.date=2025-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=114&rft.issue=4&rft.spage=93&rft_id=info:doi/10.1007%2Fs10994-024-06640-w&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon