Efficient projection-free online convex optimization using stochastic gradients
We consider Online Convex Optimization (OCO) problems subject to a compact convex set. An important class of projection-free online methods known as Frank–Wolfe-type (FW-type) methods have attracted considerable attention in the machine learning community, as they eschew the expensive projection ope...
Saved in:
Published in | Machine learning Vol. 114; no. 4; p. 93 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider Online Convex Optimization (OCO) problems subject to a compact convex set. An important class of projection-free online methods known as Frank–Wolfe-type (FW-type) methods have attracted considerable attention in the machine learning community, as they eschew the expensive projection operation and only require a simple linear minimization oracle in each round. Recently, the stochastic gradient technique has been integrated in FW-type online methods to circumvent the expensive full gradient computation and further reduce the per-round computational cost. However, these methods generally have high regret bounds due to high variance in gradient estimation. Although adopting a large minibatch in stochastic gradients can reduce the variance, it would in turn increase the per-round computational cost. In this paper, we develop efficient FW-type methods that only need stochastic gradients with small minibatch and achieve nearly optimal regret bounds with low per-round costs. We first explore the similarity between gradients of decision variables in consecutive rounds, and construct a lightweight variance-reduced estimator by utilizing historical gradient information. Based on this estimator, we propose a method named OFWRG for smooth problems in the stochastic setting. We prove that OFWRG achieves a nearly optimal regret bound with the lowest
O
(
1
)
per-round computational cost. OFWRG is the first method with such nearly optimal result in this setting. We further extend OFWRG to OCO problems in other settings, including smooth problems in the adversarial setting and a class of non-smooth problems in the stochastic and adversarial settings. Our theoretical analyses show that these extensions of OFWRG achieve nearly optimal regret bounds and low per-round computational costs under mild conditions. Experimental results demonstrate the efficiency of our methods. |
---|---|
AbstractList | We consider Online Convex Optimization (OCO) problems subject to a compact convex set. An important class of projection-free online methods known as Frank–Wolfe-type (FW-type) methods have attracted considerable attention in the machine learning community, as they eschew the expensive projection operation and only require a simple linear minimization oracle in each round. Recently, the stochastic gradient technique has been integrated in FW-type online methods to circumvent the expensive full gradient computation and further reduce the per-round computational cost. However, these methods generally have high regret bounds due to high variance in gradient estimation. Although adopting a large minibatch in stochastic gradients can reduce the variance, it would in turn increase the per-round computational cost. In this paper, we develop efficient FW-type methods that only need stochastic gradients with small minibatch and achieve nearly optimal regret bounds with low per-round costs. We first explore the similarity between gradients of decision variables in consecutive rounds, and construct a lightweight variance-reduced estimator by utilizing historical gradient information. Based on this estimator, we propose a method named OFWRG for smooth problems in the stochastic setting. We prove that OFWRG achieves a nearly optimal regret bound with the lowest O(1) per-round computational cost. OFWRG is the first method with such nearly optimal result in this setting. We further extend OFWRG to OCO problems in other settings, including smooth problems in the adversarial setting and a class of non-smooth problems in the stochastic and adversarial settings. Our theoretical analyses show that these extensions of OFWRG achieve nearly optimal regret bounds and low per-round computational costs under mild conditions. Experimental results demonstrate the efficiency of our methods. We consider Online Convex Optimization (OCO) problems subject to a compact convex set. An important class of projection-free online methods known as Frank–Wolfe-type (FW-type) methods have attracted considerable attention in the machine learning community, as they eschew the expensive projection operation and only require a simple linear minimization oracle in each round. Recently, the stochastic gradient technique has been integrated in FW-type online methods to circumvent the expensive full gradient computation and further reduce the per-round computational cost. However, these methods generally have high regret bounds due to high variance in gradient estimation. Although adopting a large minibatch in stochastic gradients can reduce the variance, it would in turn increase the per-round computational cost. In this paper, we develop efficient FW-type methods that only need stochastic gradients with small minibatch and achieve nearly optimal regret bounds with low per-round costs. We first explore the similarity between gradients of decision variables in consecutive rounds, and construct a lightweight variance-reduced estimator by utilizing historical gradient information. Based on this estimator, we propose a method named OFWRG for smooth problems in the stochastic setting. We prove that OFWRG achieves a nearly optimal regret bound with the lowest O ( 1 ) per-round computational cost. OFWRG is the first method with such nearly optimal result in this setting. We further extend OFWRG to OCO problems in other settings, including smooth problems in the adversarial setting and a class of non-smooth problems in the stochastic and adversarial settings. Our theoretical analyses show that these extensions of OFWRG achieve nearly optimal regret bounds and low per-round computational costs under mild conditions. Experimental results demonstrate the efficiency of our methods. |
ArticleNumber | 93 |
Author | Shen, Zebang Qian, Hui Zhang, Chao Xie, Jiahao |
Author_xml | – sequence: 1 givenname: Jiahao surname: Xie fullname: Xie, Jiahao organization: College of Computer Science and Technology, Zhejiang University, Auto Engineering Research Institute, BYD Auto Industry Co., LTD – sequence: 2 givenname: Chao orcidid: 0000-0001-7174-8663 surname: Zhang fullname: Zhang, Chao email: zczju@zju.edu.cn organization: Advanced Technology Institute, Zhejiang University – sequence: 3 givenname: Zebang surname: Shen fullname: Shen, Zebang organization: ETH Zürich – sequence: 4 givenname: Hui surname: Qian fullname: Qian, Hui organization: College of Computer Science and Technology, Zhejiang University |
BookMark | eNp9kMFOAyEURYmpiW31B1xN4hp9wMDMLE1TrUmTbnRNGAYqTQsVplb9eqlj4s4FeQvuue_lTNDIB28QuiZwSwCqu0SgaUoMND8hSsDHMzQmvGIYuOAjNIa65lgQyi_QJKUNAFBRizFaza112hnfF_sYNkb3LnhsozFF8FvnTaGDfzcfRdj3bue-1Om_OCTn10Xqg35VqXe6WEfVnUrSJTq3apvM1e-copeH-fNsgZerx6fZ_RJrWkGPW8saCqyzDVeV4WBqyhgoYUsN3BKrrVBtVxkFnag60rBWKN1SXXJoMkPYFN0Mvfnqt4NJvdyEQ_R5pWRE1BxYWYqcokNKx5BSNFbuo9up-CkJyJM4OYiTWZz8ESePGWIDlHLYr038q_6H-gZybXTe |
Cites_doi | 10.1137/140992382 10.1214/aop/1176988477 10.1109/ALLERTON.2016.7852377 10.1561/2200000050 10.1007/s10107-018-1311-3 10.1609/aaai.v35i11.17209 10.1007/BF01589445 10.1007/s10994-007-5016-8 10.1109/ICDM.2014.112 10.1561/2200000018 10.1080/02331939208843789 10.1145/258128.258179 10.1137/100818327 10.1109/FOCS.2017.51 10.1002/nav.3800030109 10.1109/CVPR.2007.383099 10.1137/16M1093094 10.1016/j.jcss.2004.10.016 10.24033/bsmf.1625 10.1515/9781400873173 10.21236/ADA476748 10.1007/s10107-004-0552-5 10.1109/TIT.2015.2429594 10.1561/2400000013 10.1007/BFb0083582 10.1007/s10994-007-5014-x 10.1007/978-1-4614-0237-4 10.1137/050645506 10.1007/s10107-020-01583-1 10.1017/CBO9780511546921 10.1016/j.patcog.2017.10.003 10.26599/BDMA.2018.9020008 10.1007/s10994-016-5578-4 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Apr 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Apr 2025 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s10994-024-06640-w |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-0565 |
ExternalDocumentID | 10_1007_s10994_024_06640_w |
GrantInformation_xml | – fundername: national natural science foundation of china grantid: 61672376; 61751209; 61472347 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: national key research and development program of china grantid: 2020AAA0107400 – fundername: alibaba-zhejiang university joint research institute of frontier technologies – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LZ18F020002 |
GroupedDBID | -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PHGZT PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z8Z ZMTXR AAYXX ABBRH ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR CITATION PHGZM 7SC 8FD ABRTQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c270t-bf39203df95a7e50e82330a6f4c05f1fcf6abd7ea0d67d193b6acb2c4509f9513 |
IEDL.DBID | U2A |
ISSN | 0885-6125 |
IngestDate | Sat Aug 23 12:30:38 EDT 2025 Tue Jul 01 05:17:37 EDT 2025 Fri Mar 28 01:24:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Projection-free methods Online convex optimization Regret bound |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-bf39203df95a7e50e82330a6f4c05f1fcf6abd7ea0d67d193b6acb2c4509f9513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7174-8663 |
PQID | 3168503446 |
PQPubID | 54194 |
ParticipantIDs | proquest_journals_3168503446 crossref_primary_10_1007_s10994_024_06640_w springer_journals_10_1007_s10994_024_06640_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250400 2025-04-00 20250401 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 4 year: 2025 text: 20250400 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Machine learning |
PublicationTitleAbbrev | Mach Learn |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | 6640_CR14 6640_CR58 6640_CR13 6640_CR1 6640_CR15 6640_CR10 S Bubeck (6640_CR6) 2015; 8 6640_CR11 J Guélat (6640_CR26) 1986; 35 6640_CR17 G Lan (6640_CR43) 2016; 26 YX Wang (6640_CR73) 2013; 26 E Hazan (6640_CR33) 2007; 69 6640_CR50 6640_CR52 6640_CR51 F Locatello (6640_CR48) 2019; 32 N Cesa-Bianchi (6640_CR9) 1997; 44 C Lanczos (6640_CR45) 1950 6640_CR47 6640_CR46 6640_CR49 6640_CR42 6640_CR44 E Frandi (6640_CR22) 2016; 104 A Kalai (6640_CR36) 2005; 71 Q Tran-Dinh (6640_CR70) 2018; 28 E Hazan (6640_CR30) 2014; 15 Y Wan (6640_CR72) 2021; 35 I Pinelis (6640_CR57) 1994; 22 S Shalev-Shwartz (6640_CR63) 2012; 4 6640_CR82 6640_CR41 TT Cai (6640_CR7) 2010; 38 6640_CR40 N Cesa-Bianchi (6640_CR8) 2006 6640_CR3 6640_CR81 6640_CR5 6640_CR35 6640_CR79 6640_CR38 6640_CR37 6640_CR32 A Mokhtari (6640_CR53) 2020; 21 G Neu (6640_CR56) 2016; 17 6640_CR76 6640_CR31 6640_CR75 6640_CR34 6640_CR78 A Beck (6640_CR2) 2012; 22 6640_CR77 A d’Aspremont (6640_CR16) 2007; 49 6640_CR39 Y Nesterov (6640_CR55) 2005; 103 6640_CR71 JJ Moreau (6640_CR54) 1965; 93 E Richard (6640_CR61) 2012 6640_CR74 6640_CR25 6640_CR69 6640_CR24 6640_CR68 A Ramlatchan (6640_CR59) 2018; 1 E Hazan (6640_CR28) 2016; 2 6640_CR21 6640_CR65 6640_CR20 6640_CR67 D Drusvyatskiy (6640_CR19) 2019; 178 6640_CR66 JR Birge (6640_CR4) 2011 6640_CR29 E Hazan (6640_CR27) 2008 Q Zheng (6640_CR80) 2018; 76 S Shalev-Shwartz (6640_CR64) 2007; 69 F Dragomirescu (6640_CR18) 1992; 24 Y Chen (6640_CR12) 2015; 61 6640_CR60 6640_CR62 M Frank (6640_CR23) 1956; 3 |
References_xml | – volume: 26 start-page: 1379 issue: 2 year: 2016 ident: 6640_CR43 publication-title: SIAM Journal on Optimization doi: 10.1137/140992382 – volume: 22 start-page: 1679 issue: 4 year: 1994 ident: 6640_CR57 publication-title: The Annals of Probability doi: 10.1214/aop/1176988477 – ident: 6640_CR60 doi: 10.1109/ALLERTON.2016.7852377 – volume: 8 start-page: 231 issue: 3–4 year: 2015 ident: 6640_CR6 publication-title: Foundations and Trends in Machine Learning doi: 10.1561/2200000050 – ident: 6640_CR42 – volume: 178 start-page: 503 issue: 1 year: 2019 ident: 6640_CR19 publication-title: Mathematical Programming doi: 10.1007/s10107-018-1311-3 – ident: 6640_CR69 – volume: 35 start-page: 10076 year: 2021 ident: 6640_CR72 publication-title: Proceedings of the AAAI conference on artificial intelligence doi: 10.1609/aaai.v35i11.17209 – ident: 6640_CR46 – ident: 6640_CR49 – ident: 6640_CR65 – volume: 35 start-page: 110 issue: 1 year: 1986 ident: 6640_CR26 publication-title: Mathematical Programming doi: 10.1007/BF01589445 – volume: 38 start-page: 2118 issue: 4 year: 2010 ident: 6640_CR7 publication-title: The Annals of Statistics – volume: 69 start-page: 169 issue: 2–3 year: 2007 ident: 6640_CR33 publication-title: Machine Learning doi: 10.1007/s10994-007-5016-8 – ident: 6640_CR52 – ident: 6640_CR79 – ident: 6640_CR13 doi: 10.1109/ICDM.2014.112 – volume: 4 start-page: 107 issue: 2 year: 2012 ident: 6640_CR63 publication-title: Foundations and Trends in Machine Learning doi: 10.1561/2200000018 – ident: 6640_CR75 – ident: 6640_CR39 – volume: 24 start-page: 193 issue: 3–4 year: 1992 ident: 6640_CR18 publication-title: Optimization doi: 10.1080/02331939208843789 – volume: 44 start-page: 427 issue: 3 year: 1997 ident: 6640_CR9 publication-title: Journal of the ACM (JACM) doi: 10.1145/258128.258179 – volume: 22 start-page: 557 issue: 2 year: 2012 ident: 6640_CR2 publication-title: SIAM Journal on Optimization doi: 10.1137/100818327 – ident: 6640_CR1 doi: 10.1109/FOCS.2017.51 – volume: 3 start-page: 95 issue: 1–2 year: 1956 ident: 6640_CR23 publication-title: Naval research logistics quarterly doi: 10.1002/nav.3800030109 – ident: 6640_CR29 – ident: 6640_CR68 – ident: 6640_CR74 doi: 10.1109/CVPR.2007.383099 – ident: 6640_CR5 – volume: 21 start-page: 1 issue: 105 year: 2020 ident: 6640_CR53 publication-title: Journal of Machine Learning Research – ident: 6640_CR81 – ident: 6640_CR47 – volume: 28 start-page: 96 issue: 1 year: 2018 ident: 6640_CR70 publication-title: SIAM Journal on Optimization doi: 10.1137/16M1093094 – volume: 71 start-page: 291 issue: 3 year: 2005 ident: 6640_CR36 publication-title: Journal of Computer and System Sciences doi: 10.1016/j.jcss.2004.10.016 – volume: 93 start-page: 273 year: 1965 ident: 6640_CR54 publication-title: Bulletin de la Société mathématique de France doi: 10.24033/bsmf.1625 – ident: 6640_CR62 doi: 10.1515/9781400873173 – ident: 6640_CR78 – ident: 6640_CR15 – ident: 6640_CR32 – ident: 6640_CR67 doi: 10.21236/ADA476748 – volume: 103 start-page: 127 issue: 1 year: 2005 ident: 6640_CR55 publication-title: Mathematical Programming doi: 10.1007/s10107-004-0552-5 – ident: 6640_CR11 – ident: 6640_CR34 – volume: 61 start-page: 4034 issue: 7 year: 2015 ident: 6640_CR12 publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2015.2429594 – volume-title: Estimation of simultaneously sparse and low rank matrices year: 2012 ident: 6640_CR61 – ident: 6640_CR40 – volume: 2 start-page: 157 year: 2016 ident: 6640_CR28 publication-title: Foundations and Trends in Optimization doi: 10.1561/2400000013 – ident: 6640_CR44 – ident: 6640_CR82 – ident: 6640_CR3 doi: 10.1007/BFb0083582 – volume-title: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators year: 1950 ident: 6640_CR45 – ident: 6640_CR25 – volume: 15 start-page: 2489 issue: 1 year: 2014 ident: 6640_CR30 publication-title: The Journal of Machine Learning Research – ident: 6640_CR50 – volume: 69 start-page: 115 issue: 2–3 year: 2007 ident: 6640_CR64 publication-title: Machine Learning doi: 10.1007/s10994-007-5014-x – ident: 6640_CR21 – ident: 6640_CR77 – ident: 6640_CR31 – volume-title: Introduction to stochastic programming year: 2011 ident: 6640_CR4 doi: 10.1007/978-1-4614-0237-4 – ident: 6640_CR37 – ident: 6640_CR58 – volume: 49 start-page: 434 issue: 3 year: 2007 ident: 6640_CR16 publication-title: SIAM Review doi: 10.1137/050645506 – ident: 6640_CR35 – ident: 6640_CR14 – ident: 6640_CR71 doi: 10.1007/s10107-020-01583-1 – ident: 6640_CR10 – ident: 6640_CR41 – volume: 32 start-page: 14246 year: 2019 ident: 6640_CR48 publication-title: Advances in Neural Information Processing Systems – ident: 6640_CR66 – volume-title: Prediction, learning, and games year: 2006 ident: 6640_CR8 doi: 10.1017/CBO9780511546921 – volume: 17 start-page: 1 issue: 154 year: 2016 ident: 6640_CR56 publication-title: Journal of Machine Learning Research – ident: 6640_CR24 – ident: 6640_CR20 – volume: 76 start-page: 715 year: 2018 ident: 6640_CR80 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2017.10.003 – start-page: 306 volume-title: Latin American symposium on theoretical informatics year: 2008 ident: 6640_CR27 – volume: 26 start-page: 64 year: 2013 ident: 6640_CR73 publication-title: Advances in Neural Information Processing Systems – ident: 6640_CR17 – volume: 1 start-page: 308 issue: 4 year: 2018 ident: 6640_CR59 publication-title: Big Data Mining and Analytics doi: 10.26599/BDMA.2018.9020008 – volume: 104 start-page: 195 issue: 2 year: 2016 ident: 6640_CR22 publication-title: Machine Learning doi: 10.1007/s10994-016-5578-4 – ident: 6640_CR38 – ident: 6640_CR51 – ident: 6640_CR76 |
SSID | ssj0002686 |
Score | 2.454554 |
Snippet | We consider Online Convex Optimization (OCO) problems subject to a compact convex set. An important class of projection-free online methods known as... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 93 |
SubjectTerms | Artificial Intelligence Computer Science Computing costs Control Convex analysis Convexity Decision theory Machine Learning Mechatronics Natural Language Processing (NLP) Optimization Robotics Simulation and Modeling Variance |
Title | Efficient projection-free online convex optimization using stochastic gradients |
URI | https://link.springer.com/article/10.1007/s10994-024-06640-w https://www.proquest.com/docview/3168503446 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu7DwjSiUygMbWHKc2GnHFrUgEGWhUpkif5aFFrVB5edjuw4FBANThiQ3vPjunuO7dwDnWUKsdpkCp8Km2LdC-vNdg42VbaU50ySI6dwP-c0oux2zcWwKW1TV7tWRZIjUX5rdgowtzXzXvLO-3IQ6c3t3X8g1ot3P-Et5mO_o3Idhn79jq8zvNr6nozXH_HEsGrLNYBe2I01E3dV33YMNM92HnWoEA4oeeQAP_SAB4TIHiv9UHM7Yzo1BKw0MFMrK39HMhYaX2HOJfLH7BDnap56F12lGk3mo_CoXhzAa9B-vbnCckYAVzUmJpXUEh6TadpjIDSOmTdOUCG4zRZhNrLJcSJ0bQTTPtWNrkgslqcocUXDvJOkR1KazqTkGlKpMUi05zYTIOokVieoQxf0WhQmlTQMuKqiK15UURrEWPfbAFg7YIgBbLBvQrNAsolssCj8li3mRQd6Aywrh9e2_rZ387_FT2KJ-Tm-osGlCrZy_mTNHHkrZgnp30OsN_fX66a7fCmvnA7dCwLA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0UD3rx24ii9uBNm3S7bYEjMRBUwAsk3Jp-4kUwsAZ_vm3piho9eN7dObztzLzdmXkDwDXNsDM-U6BcuhyFUchQ37XIOtXQhjODo5hOf8C7I_owZuM0FLYou93LkmSM1F-G3aKMLaFhat5bX26CLU8GGuEsj0jrM_4SHvc7evdhKOTvNCrzu43v6WjNMX-URWO26eyD3UQTYWv1Xg_Ahp0egr1yBQNMHnkEntpRAsJnDpj-qXickZtbC1caGDC2lb_DmQ8NL2nmEoZm9wn0tE8_y6DTDCfz2PlVLI7BqNMe3nVR2pGANKnjAinnCQ7OjWsyWbcM2wbJcyy5oxozlzntuFSmbiU2vG48W1NcakU09UTBP5PlJ6AynU3tKYC5pooYxQmVkjYzJzPdxJqHTxQmtbFVcFNCJV5XUhhiLXocgBUeWBGBFcsqqJVoiuQWCxG2ZLEgMsir4LZEeH35b2tn_7v9Cmx3h_2e6N0PHs_BDgk7e2O3TQ1UivmbvfBEolCX8dx8ANymwJM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgSIiFN6JQwAMbWHUc22nHClrxLAxU6mY5fpSFtGqDyudjOwktCAbmJI5yYvue5N5zLgDnNMJWu0iBYmlj5KWQPr9rkLFpS2nONA5mOo99fjOgd0M2XFLxh2r3KiVZaBq8S1OWNyfaNpeEb8HSllCvoHd3mq-CNerVwG5GD0jnay8mPPR6dEuJIR_LS9nM72N8D00LvvkjRRoiT28bbJaUEXaKd7wDVky2C7aqdgywXJ174Kkb7CDcU8Dy_4rDHNmpMbDww4ChxPwDjt028VbqL6EvfB9BRwHVq_SezXA0DVVg-WwfDHrdl6sbVPZLQIokOEepdWQHx9q2mUwMw6ZF4hhLbqnCzEZWWS5TnRiJNU-0Y24plyolijrS4K6J4gNQy8aZOQQwVjQlOuWESknbkZWRamPF_ecKk0qbOriooBKTwhZDLAyQPbDCASsCsGJeB40KTVEukZnwHbOYNxzkdXBZIbw4_PdoR_87_QysP1_3xMNt__4YbBDfvjcU3jRALZ--mxPHKfL0NEybTxOjxMY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+projection-free+online+convex+optimization+using+stochastic+gradients&rft.jtitle=Machine+learning&rft.date=2025-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=114&rft.issue=4&rft.spage=93&rft_id=info:doi/10.1007%2Fs10994-024-06640-w&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |