Wear indicator construction for rolling bearings based on an enhanced and unsupervised stacked auto-encoder

The degradation state of a bearing can be monitored effectively by using a wear indicator (WI). A WI curve having smoothness and monotonicity can lay a good foundation for predicting the remaining useful life of the bearing. Most traditional models for bearing WI construction, such as time–frequency...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 28; no. 15-16; pp. 8835 - 8848
Main Authors Zeng, Wenhui, Yu, Lisha, Xu, Fan, Huang, Zhelin, Zhou, Shengwen, Guo, Shunsheng, Du, Baigang
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The degradation state of a bearing can be monitored effectively by using a wear indicator (WI). A WI curve having smoothness and monotonicity can lay a good foundation for predicting the remaining useful life of the bearing. Most traditional models for bearing WI construction, such as time–frequency indicators and signal decomposition, are complicated; for example, some WI construction models need several models to select from, and their fusion depends on the manual experience of engineers. For example, single and mixed traditional time–frequency indicators, such as the root mean square (RMS), Kurtosis, multiple time–frequency domain fusion. However, the mentioned-above time–frequency domain indicators are difficult to adaptively reflect the operating status of the equipment when the operating conditions of the mechanical system change. Some signal decomposition models are combined with other models and rely on manual experience to extract WI, such as the selection of effective intrinsic mode function components function, parameter setting of empirical mode decomposition and ensemble empirical mode decomposition model, etc. Deep learning models, such as stacked auto encoder (SAE) and convolution neural network, have been widely used in bearing health monitoring and WI construction, because its powerful learning and feature extraction capabilities of multiple hidden layer structures. But these deep learning models are designed to use output labels. Particularly when the data volume is large, it requires manpower, material resources, and experienced engineers to label the data, or it is difficult to label and distinguish the categories of data samples. Therefore, to solve these problems and eliminate the need for manual labor, such as labeling data and selecting models for fusion, we propose using SAE without an output label layer to extract WI from original signals directly. However, an extracted WI curve without good monotonicity (Mon) will result in a poor remaining useful life prediction accuracy. To improve the monotonicity of the extracted WI and reduce the complexity of the WI construction model, we propose an unsupervised enhanced SAE without an output layer, named SINSAE, by adding a sine function of an average value which is calculated form start time to current at each hidden layer to eliminate concussion. Moreover, to demonstrate that our proposed model is better than other models, such as the RMS, Kurtosis, multiple time–frequency domain fusion, SAE, SAE without an output layer, and signal decomposition models, the Mon indicator in this study is used to compare the monotonicity of the extracted WI. Lastly, the results of our experiments using different bearing datasets and various working conditions show that the smoothness and monotonicity of the WI curve extracted by the SINSAE is better than that of other models. Moreover, compared to the traditional commonly used single and multiple time–frequency domain indicators, supervised deep learning and basic unsupervised deep models, the unsupervised SINSAE model can increase the Mon indicators from [0.1, 0.8], [0.02, 0.1], [0.1, 0.8] to above 0.9, respectively.
AbstractList The degradation state of a bearing can be monitored effectively by using a wear indicator (WI). A WI curve having smoothness and monotonicity can lay a good foundation for predicting the remaining useful life of the bearing. Most traditional models for bearing WI construction, such as time–frequency indicators and signal decomposition, are complicated; for example, some WI construction models need several models to select from, and their fusion depends on the manual experience of engineers. For example, single and mixed traditional time–frequency indicators, such as the root mean square (RMS), Kurtosis, multiple time–frequency domain fusion. However, the mentioned-above time–frequency domain indicators are difficult to adaptively reflect the operating status of the equipment when the operating conditions of the mechanical system change. Some signal decomposition models are combined with other models and rely on manual experience to extract WI, such as the selection of effective intrinsic mode function components function, parameter setting of empirical mode decomposition and ensemble empirical mode decomposition model, etc. Deep learning models, such as stacked auto encoder (SAE) and convolution neural network, have been widely used in bearing health monitoring and WI construction, because its powerful learning and feature extraction capabilities of multiple hidden layer structures. But these deep learning models are designed to use output labels. Particularly when the data volume is large, it requires manpower, material resources, and experienced engineers to label the data, or it is difficult to label and distinguish the categories of data samples. Therefore, to solve these problems and eliminate the need for manual labor, such as labeling data and selecting models for fusion, we propose using SAE without an output label layer to extract WI from original signals directly. However, an extracted WI curve without good monotonicity (Mon) will result in a poor remaining useful life prediction accuracy. To improve the monotonicity of the extracted WI and reduce the complexity of the WI construction model, we propose an unsupervised enhanced SAE without an output layer, named SINSAE, by adding a sine function of an average value which is calculated form start time to current at each hidden layer to eliminate concussion. Moreover, to demonstrate that our proposed model is better than other models, such as the RMS, Kurtosis, multiple time–frequency domain fusion, SAE, SAE without an output layer, and signal decomposition models, the Mon indicator in this study is used to compare the monotonicity of the extracted WI. Lastly, the results of our experiments using different bearing datasets and various working conditions show that the smoothness and monotonicity of the WI curve extracted by the SINSAE is better than that of other models. Moreover, compared to the traditional commonly used single and multiple time–frequency domain indicators, supervised deep learning and basic unsupervised deep models, the unsupervised SINSAE model can increase the Mon indicators from [0.1, 0.8], [0.02, 0.1], [0.1, 0.8] to above 0.9, respectively.
The degradation state of a bearing can be monitored effectively by using a wear indicator (WI). A WI curve having smoothness and monotonicity can lay a good foundation for predicting the remaining useful life of the bearing. Most traditional models for bearing WI construction, such as time–frequency indicators and signal decomposition, are complicated; for example, some WI construction models need several models to select from, and their fusion depends on the manual experience of engineers. For example, single and mixed traditional time–frequency indicators, such as the root mean square (RMS), Kurtosis, multiple time–frequency domain fusion. However, the mentioned-above time–frequency domain indicators are difficult to adaptively reflect the operating status of the equipment when the operating conditions of the mechanical system change. Some signal decomposition models are combined with other models and rely on manual experience to extract WI, such as the selection of effective intrinsic mode function components function, parameter setting of empirical mode decomposition and ensemble empirical mode decomposition model, etc. Deep learning models, such as stacked auto encoder (SAE) and convolution neural network, have been widely used in bearing health monitoring and WI construction, because its powerful learning and feature extraction capabilities of multiple hidden layer structures. But these deep learning models are designed to use output labels. Particularly when the data volume is large, it requires manpower, material resources, and experienced engineers to label the data, or it is difficult to label and distinguish the categories of data samples. Therefore, to solve these problems and eliminate the need for manual labor, such as labeling data and selecting models for fusion, we propose using SAE without an output label layer to extract WI from original signals directly. However, an extracted WI curve without good monotonicity (Mon) will result in a poor remaining useful life prediction accuracy. To improve the monotonicity of the extracted WI and reduce the complexity of the WI construction model, we propose an unsupervised enhanced SAE without an output layer, named SINSAE, by adding a sine function of an average value which is calculated form start time to current at each hidden layer to eliminate concussion. Moreover, to demonstrate that our proposed model is better than other models, such as the RMS, Kurtosis, multiple time–frequency domain fusion, SAE, SAE without an output layer, and signal decomposition models, the Mon indicator in this study is used to compare the monotonicity of the extracted WI. Lastly, the results of our experiments using different bearing datasets and various working conditions show that the smoothness and monotonicity of the WI curve extracted by the SINSAE is better than that of other models. Moreover, compared to the traditional commonly used single and multiple time–frequency domain indicators, supervised deep learning and basic unsupervised deep models, the unsupervised SINSAE model can increase the Mon indicators from [0.1, 0.8], [0.02, 0.1], [0.1, 0.8] to above 0.9, respectively.
Author Zhou, Shengwen
Guo, Shunsheng
Xu, Fan
Huang, Zhelin
Du, Baigang
Zeng, Wenhui
Yu, Lisha
Author_xml – sequence: 1
  givenname: Wenhui
  surname: Zeng
  fullname: Zeng, Wenhui
  organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology
– sequence: 2
  givenname: Lisha
  surname: Yu
  fullname: Yu, Lisha
  organization: School of Design, The Hong Kong Polytechnic University
– sequence: 3
  givenname: Fan
  orcidid: 0000-0002-2222-7949
  surname: Xu
  fullname: Xu, Fan
  organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology
– sequence: 4
  givenname: Zhelin
  surname: Huang
  fullname: Huang, Zhelin
  email: huangzl@szu.edu.cn
  organization: Department of Statistics, College of Economics, Shenzhen University
– sequence: 5
  givenname: Shengwen
  surname: Zhou
  fullname: Zhou, Shengwen
  organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology
– sequence: 6
  givenname: Shunsheng
  surname: Guo
  fullname: Guo, Shunsheng
  organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology
– sequence: 7
  givenname: Baigang
  surname: Du
  fullname: Du, Baigang
  organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology
BookMark eNp9kEtLxDAUhYOM4MzoH3AVcB29eU3apQy-YMCN4jKkaaqdGZOatDL-e1MruHN1H-ece-FboJkP3iF0TuGSAqirBCABCDBOoIRVQQ5HaE4F50QJVc5-ekbUSvATtEhpC8CoknyOdi_ORNz6urWmDxHb4FMfB9u3weMmL2LY71v_iqvsyzXhyiRX46waj51_M97m0fgaDz4NnYuf7ain3tjdKAx9IM7bULt4io4bs0_u7Lcu0fPtzdP6nmwe7x7W1xtimYKeVJWgVtYgGdDCMebKyhXAqVTU1mCcVYUEyVeKCbCWgTKFcXVDRaEEq43gS3Qx3e1i-Bhc6vU2DNHnl5pDWUhJyxKyi00uG0NK0TW6i-27iV-agh6h6gmqzlD1D1R9yCE-hVI30nDx7_Q_qW-N1X2K
Cites_doi 10.4028/www.scientific.net/AMM.493.343
10.1016/j.ymssp.2017.02.003
10.1016/j.measurement.2019.107371
10.1002/cem.2912
10.1016/j.neucom.2017.02.045
10.3901/JME.2013.02.183
10.1016/j.neucom.2019.03.024
10.1016/j.measurement.2021.108973
10.1109/TR.2013.2285318
10.1016/j.jmsy.2017.02.013
10.1016/j.neunet.2021.10.021
10.1016/j.asoc.2020.106119
10.1016/j.ins.2021.08.042
10.1109/TIM.2016.2601004
10.1007/s00500-018-3178-x
10.1016/j.eswa.2017.05.039
10.1016/j.asoc.2018.09.037
10.1016/j.jsv.2009.10.021
10.1016/j.ymssp.2008.06.009
10.1007/s11042-020-10486-4
10.1109/ACCESS.2017.2728010
10.1177/1077546315604522
10.1016/j.neucom.2018.02.083
10.1109/TIM.2017.2759418
10.1016/j.neucom.2014.08.092
10.1016/j.measurement.2018.11.040
10.7551/mitpress/1888.003.0013
10.1016/j.jsv.2011.07.014
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00500-023-09068-x
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 8848
ExternalDocumentID 10_1007_s00500_023_09068_x
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51705386; 52205168; 51905396; 62203482
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2023A1515011367
– fundername: Natural Science Foundation of Hubei Province
  grantid: 2021CFB316
  funderid: http://dx.doi.org/10.13039/501100003819
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c270t-bb41c5d052018e22e9be8031571cd0aec78505367240cc207a8aedf148742da43
IEDL.DBID U2A
ISSN 1432-7643
IngestDate Wed Sep 25 02:15:03 EDT 2024
Thu Sep 12 20:33:35 EDT 2024
Fri Aug 30 01:10:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 15-16
Keywords Deep learning
Stacked auto-encoder
Wear indicator
Sine function
Roller bearings
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-bb41c5d052018e22e9be8031571cd0aec78505367240cc207a8aedf148742da43
ORCID 0000-0002-2222-7949
PQID 3098551990
PQPubID 2043697
PageCount 14
ParticipantIDs proquest_journals_3098551990
crossref_primary_10_1007_s00500_023_09068_x
springer_journals_10_1007_s00500_023_09068_x
PublicationCentury 2000
PublicationDate 20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 20240801
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Sarath, Lauly, Larochelle, Khapra (CR21) 2014; 3
Xu, Tse, Tse (CR27) 2018; 73
Tse, Wang (CR26) 2017; 23
Guo, Lei, Li, Yan, Li (CR7) 2018; 292
Ren, Cui, Cheng (CR17) 2017; 43
CR19
Ali, Zhu, Zakarya (CR2) 2021; 80
Sun, Zhang, Xie, Zhang (CR24) 2017; 25
Xu, Tse (CR28) 2019; 23
CR14
Lei, Li, Lin (CR11) 2016; 65
Shen, Chen, He (CR23) 2013; 49
Theodoros, Dimitrios, George (CR20) 2013; 62
Xu, Huang, Yang, Wang, Tsui (CR29) 2020; 89
Lv, Wen, Liu (CR13) 2017; 31
Resta, Ripamonti, Cazzluani (CR18) 2011; 329
Qi, Shen, Wang (CR15) 2017; 5
Guo, Li, Feng, Lei, Lin (CR6) 2017; 240
Heng, Zhang, Tan (CR8) 2009; 23
Ali, Zhu, Zakarya (CR4) 2022; 145
Kosasih, Caesarendra, Tieu, Widodo, Moodie, Tieu (CR10) 2014; 493
Sun, Yan, Wen (CR25) 2018; 67
CR5
Li, Struzik, Zhang, Cichocki (CR12) 2014; 165
Xu, Yang, Fan, Huang, Tsui (CR30) 2020; 152
Zhao, Xianmin Zhang, Zhan, Wu (CR32) 2021; 174
Rai, Upadhyay (CR16) 2017; 93
Huang, Wu, Wang (CR9) 2012; 31
Affonso, Rossi, Vieira, Carvalho (CR1) 2017; 85
Zhang, Jiao, Ma, Duan, Zhang (CR31) 2019; 351
CR22
Ali, Zhu, Zakarya (CR3) 2021; 577
F Xu (9068_CR28) 2019; 23
L Guo (9068_CR6) 2017; 240
F Xu (9068_CR30) 2020; 152
J Li (9068_CR12) 2014; 165
JD Sun (9068_CR25) 2018; 67
F Resta (9068_CR18) 2011; 329
S Sun (9068_CR24) 2017; 25
F Xu (9068_CR29) 2020; 89
9068_CR19
F Xu (9068_CR27) 2018; 73
Y Huang (9068_CR9) 2012; 31
CAP Sarath (9068_CR21) 2014; 3
A Heng (9068_CR8) 2009; 23
9068_CR14
ZH Shen (9068_CR23) 2013; 49
B Zhao (9068_CR32) 2021; 174
A Ali (9068_CR2) 2021; 80
YM Qi (9068_CR15) 2017; 5
A Rai (9068_CR16) 2017; 93
A Ali (9068_CR4) 2022; 145
L Ren (9068_CR17) 2017; 43
C Affonso (9068_CR1) 2017; 85
L Zhang (9068_CR31) 2019; 351
Y Lei (9068_CR11) 2016; 65
PW Tse (9068_CR26) 2017; 23
HL Theodoros (9068_CR20) 2013; 62
L Guo (9068_CR7) 2018; 292
9068_CR5
A Ali (9068_CR3) 2021; 577
9068_CR22
FY Lv (9068_CR13) 2017; 31
BY Kosasih (9068_CR10) 2014; 493
References_xml – volume: 493
  start-page: 343
  year: 2014
  end-page: 348
  ident: CR10
  article-title: Degradation trend estimation and prognosis of large low speed slewing bearing lifetime
  publication-title: Appl Mech Mater
  doi: 10.4028/www.scientific.net/AMM.493.343
  contributor:
    fullname: Tieu
– volume: 3
  start-page: 1853
  year: 2014
  end-page: 1861
  ident: CR21
  article-title: An autoencoder approach to learning bilingual word representations
  publication-title: Adv Neural Inf Process Syst
  contributor:
    fullname: Khapra
– ident: CR22
– volume: 93
  start-page: 16
  year: 2017
  end-page: 29
  ident: CR16
  article-title: Bearing performance degradation assessment based on a combination of empirical mode decomposition and K-medoids clustering
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.02.003
  contributor:
    fullname: Upadhyay
– ident: CR14
– volume: 152
  year: 2020
  ident: CR30
  article-title: Extracting degradation trends for roller bearings by using a moving-average stacked auto-encoder and a novel exponential function
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107371
  contributor:
    fullname: Tsui
– volume: 31
  start-page: 1
  issue: 9
  year: 2017
  end-page: 16
  ident: CR13
  article-title: Weighted time series fault diagnosis based on a stacked sparse autoencoder
  publication-title: J Chemom
  doi: 10.1002/cem.2912
  contributor:
    fullname: Liu
– volume: 25
  start-page: 779
  year: 2017
  end-page: 787
  ident: CR24
  article-title: An unsupervised deep domain adaptation approach for robust speech recognition
  publication-title: Neurocomputing
  contributor:
    fullname: Zhang
– volume: 240
  start-page: 98
  issue: 31
  year: 2017
  end-page: 109
  ident: CR6
  article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.045
  contributor:
    fullname: Lin
– volume: 49
  start-page: 183
  issue: 2
  year: 2013
  end-page: 189
  ident: CR23
  article-title: remaining life predictions of rolling bearing based on relative features and multivariable support vector machine
  publication-title: J Mech Eng
  doi: 10.3901/JME.2013.02.183
  contributor:
    fullname: He
– volume: 351
  start-page: 167
  year: 2019
  end-page: 179
  ident: CR31
  article-title: PolSAR image classification based on multi-scale stacked sparse autoencoder
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.024
  contributor:
    fullname: Zhang
– volume: 174
  year: 2021
  ident: CR32
  article-title: A robust construction of normalized CNN for online intelligent condition monitoring of rolling bearings considering variable working conditions and sources
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.108973
  contributor:
    fullname: Wu
– volume: 62
  start-page: 821
  issue: 4
  year: 2013
  end-page: 832
  ident: CR20
  article-title: Remaining useful life estimation in rolling bearings utilizing data-driven probabilistic e-support vectors regression
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2013.2285318
  contributor:
    fullname: George
– volume: 43
  start-page: 248
  issue: 2
  year: 2017
  end-page: 256
  ident: CR17
  article-title: Multi-bearing remaining useful life collaborative prediction: a deep learning approach
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2017.02.013
  contributor:
    fullname: Cheng
– volume: 145
  start-page: 233
  year: 2022
  end-page: 247
  ident: CR4
  article-title: Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2021.10.021
  contributor:
    fullname: Zakarya
– volume: 89
  year: 2020
  ident: CR29
  article-title: Constructing a health indicator for roller bearings by using a stacked auto-encoder with an exponential function to eliminate concussion
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2020.106119
  contributor:
    fullname: Tsui
– volume: 577
  start-page: 852
  year: 2021
  end-page: 870
  ident: CR3
  article-title: Exploiting dynamic spatio-temporal correlations for citywide traffic flow prediction using attention based neural networks
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.08.042
  contributor:
    fullname: Zakarya
– volume: 65
  start-page: 2671
  issue: 12
  year: 2016
  end-page: 2684
  ident: CR11
  article-title: A new method based on stochastic process models for machine remaining useful life prediction’,’
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2016.2601004
  contributor:
    fullname: Lin
– ident: CR19
– volume: 23
  start-page: 5117
  issue: 13
  year: 2019
  end-page: 5128
  ident: CR28
  article-title: Automatic roller bearings fault diagnosis using DSAE in deep learning and CFS algorithm
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3178-x
  contributor:
    fullname: Tse
– volume: 85
  start-page: 114
  year: 2017
  end-page: 122
  ident: CR1
  article-title: Deep learning for biological image classification
  publication-title: Expert System with Applications
  doi: 10.1016/j.eswa.2017.05.039
  contributor:
    fullname: Carvalho
– volume: 73
  start-page: 898
  year: 2018
  end-page: 913
  ident: CR27
  article-title: Roller bearing fault diagnosis using stacked denoising autoencoder in deep learning and Gath-Geva clustering algorithm without principal component analysis and data label
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.09.037
  contributor:
    fullname: Tse
– volume: 329
  start-page: 961
  issue: 8
  year: 2011
  end-page: 972
  ident: CR18
  article-title: Independent modal control for nonlinear flexible structures: an experimental test rig
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2009.10.021
  contributor:
    fullname: Cazzluani
– volume: 23
  start-page: 724
  issue: 3
  year: 2009
  end-page: 739
  ident: CR8
  article-title: Rotating machinery prognostics: state of the art, challenges and opportunities
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2008.06.009
  contributor:
    fullname: Tan
– volume: 80
  start-page: 31401
  issue: 20
  year: 2021
  end-page: 31433
  ident: CR2
  article-title: A data aggregation based approach to exploit dynamic spatio-temporal correlations for citywide crowd flows prediction in fog computing
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-020-10486-4
  contributor:
    fullname: Zakarya
– volume: 31
  start-page: 91
  issue: 2
  year: 2012
  end-page: 94
  ident: CR9
  article-title: Test for active control of boom vibration of a concrete pump truck
  publication-title: J Vib Shock
  contributor:
    fullname: Wang
– volume: 5
  start-page: 15066
  year: 2017
  end-page: 15079
  ident: CR15
  article-title: Stacked Sparse Autoencoder-Based Deep Network for Fault Diagnosis of Rotating Machinery
  publication-title: IEEE ACCESS
  doi: 10.1109/ACCESS.2017.2728010
  contributor:
    fullname: Wang
– ident: CR5
– volume: 23
  start-page: 1925
  issue: 12
  year: 2017
  end-page: 1937
  ident: CR26
  article-title: Enhancing the abilities in assessing slurry pumps’ performance degradation and estimating their remaining useful lives by using captured vibration signals
  publication-title: J Vib Control
  doi: 10.1177/1077546315604522
  contributor:
    fullname: Wang
– volume: 292
  start-page: 142
  year: 2018
  end-page: 150
  ident: CR7
  article-title: Machinery health indicator construction based on convolution neural network considering trend burr
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.083
  contributor:
    fullname: Li
– volume: 67
  start-page: 185
  year: 2018
  end-page: 195
  ident: CR25
  article-title: Intelligent Bearing Fault Diagnosis Method Combining Compressed Data Acquisition and Deep Learning
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2017.2759418
  contributor:
    fullname: Wen
– volume: 165
  start-page: 23
  year: 2014
  end-page: 31
  ident: CR12
  article-title: Feature learning from incomplete EEG with denoising autoencoder
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.092
  contributor:
    fullname: Cichocki
– volume: 23
  start-page: 1925
  issue: 12
  year: 2017
  ident: 9068_CR26
  publication-title: J Vib Control
  doi: 10.1177/1077546315604522
  contributor:
    fullname: PW Tse
– volume: 80
  start-page: 31401
  issue: 20
  year: 2021
  ident: 9068_CR2
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-020-10486-4
  contributor:
    fullname: A Ali
– volume: 25
  start-page: 779
  year: 2017
  ident: 9068_CR24
  publication-title: Neurocomputing
  contributor:
    fullname: S Sun
– volume: 351
  start-page: 167
  year: 2019
  ident: 9068_CR31
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.024
  contributor:
    fullname: L Zhang
– volume: 5
  start-page: 15066
  year: 2017
  ident: 9068_CR15
  publication-title: IEEE ACCESS
  doi: 10.1109/ACCESS.2017.2728010
  contributor:
    fullname: YM Qi
– volume: 65
  start-page: 2671
  issue: 12
  year: 2016
  ident: 9068_CR11
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2016.2601004
  contributor:
    fullname: Y Lei
– volume: 31
  start-page: 91
  issue: 2
  year: 2012
  ident: 9068_CR9
  publication-title: J Vib Shock
  contributor:
    fullname: Y Huang
– ident: 9068_CR14
– volume: 152
  year: 2020
  ident: 9068_CR30
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107371
  contributor:
    fullname: F Xu
– volume: 73
  start-page: 898
  year: 2018
  ident: 9068_CR27
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.09.037
  contributor:
    fullname: F Xu
– volume: 145
  start-page: 233
  year: 2022
  ident: 9068_CR4
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2021.10.021
  contributor:
    fullname: A Ali
– volume: 3
  start-page: 1853
  year: 2014
  ident: 9068_CR21
  publication-title: Adv Neural Inf Process Syst
  contributor:
    fullname: CAP Sarath
– volume: 23
  start-page: 724
  issue: 3
  year: 2009
  ident: 9068_CR8
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2008.06.009
  contributor:
    fullname: A Heng
– volume: 85
  start-page: 114
  year: 2017
  ident: 9068_CR1
  publication-title: Expert System with Applications
  doi: 10.1016/j.eswa.2017.05.039
  contributor:
    fullname: C Affonso
– volume: 329
  start-page: 961
  issue: 8
  year: 2011
  ident: 9068_CR18
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2009.10.021
  contributor:
    fullname: F Resta
– volume: 493
  start-page: 343
  year: 2014
  ident: 9068_CR10
  publication-title: Appl Mech Mater
  doi: 10.4028/www.scientific.net/AMM.493.343
  contributor:
    fullname: BY Kosasih
– volume: 67
  start-page: 185
  year: 2018
  ident: 9068_CR25
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2017.2759418
  contributor:
    fullname: JD Sun
– ident: 9068_CR22
  doi: 10.1016/j.measurement.2018.11.040
– volume: 23
  start-page: 5117
  issue: 13
  year: 2019
  ident: 9068_CR28
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3178-x
  contributor:
    fullname: F Xu
– volume: 31
  start-page: 1
  issue: 9
  year: 2017
  ident: 9068_CR13
  publication-title: J Chemom
  doi: 10.1002/cem.2912
  contributor:
    fullname: FY Lv
– volume: 292
  start-page: 142
  year: 2018
  ident: 9068_CR7
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.083
  contributor:
    fullname: L Guo
– volume: 89
  year: 2020
  ident: 9068_CR29
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2020.106119
  contributor:
    fullname: F Xu
– ident: 9068_CR19
  doi: 10.7551/mitpress/1888.003.0013
– volume: 174
  year: 2021
  ident: 9068_CR32
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.108973
  contributor:
    fullname: B Zhao
– volume: 43
  start-page: 248
  issue: 2
  year: 2017
  ident: 9068_CR17
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2017.02.013
  contributor:
    fullname: L Ren
– volume: 93
  start-page: 16
  year: 2017
  ident: 9068_CR16
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.02.003
  contributor:
    fullname: A Rai
– volume: 49
  start-page: 183
  issue: 2
  year: 2013
  ident: 9068_CR23
  publication-title: J Mech Eng
  doi: 10.3901/JME.2013.02.183
  contributor:
    fullname: ZH Shen
– volume: 577
  start-page: 852
  year: 2021
  ident: 9068_CR3
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.08.042
  contributor:
    fullname: A Ali
– volume: 240
  start-page: 98
  issue: 31
  year: 2017
  ident: 9068_CR6
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.045
  contributor:
    fullname: L Guo
– volume: 62
  start-page: 821
  issue: 4
  year: 2013
  ident: 9068_CR20
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2013.2285318
  contributor:
    fullname: HL Theodoros
– ident: 9068_CR5
  doi: 10.1016/j.jsv.2011.07.014
– volume: 165
  start-page: 23
  year: 2014
  ident: 9068_CR12
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.092
  contributor:
    fullname: J Li
SSID ssj0021753
Score 2.409775
Snippet The degradation state of a bearing can be monitored effectively by using a wear indicator (WI). A WI curve having smoothness and monotonicity can lay a good...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 8835
SubjectTerms Application of Soft Computing
Artificial Intelligence
Artificial neural networks
Bearings
Coders
Computational Intelligence
Construction
Control
Deep learning
Depth indicators
Engineering
Engineers
Fault diagnosis
Frequency domain analysis
Indicators
Kurtosis
Labeling
Labels
Life prediction
Machine learning
Mathematical Logic and Foundations
Mechanical systems
Mechatronics
Neural networks
Physical work
Robotics
Roller bearings
Smoothness
Time-frequency analysis
Unsupervised learning
Useful life
Title Wear indicator construction for rolling bearings based on an enhanced and unsupervised stacked auto-encoder
URI https://link.springer.com/article/10.1007/s00500-023-09068-x
https://www.proquest.com/docview/3098551990/abstract/
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQdoEDjwFiMFAO3CBSm3ZtetzQxgRiJybGqcprQkLqpj0kfj52HysgOHBqJUc5xHb8ObG_AFx30Wpi5VNRu7Q8FDbhGoEyR_RrrJOxiBT1Oz-No9EkfJh2p3Ufd17sXt1I5hv1tteNmEo8jiGGjhYiyRE4Ngk8kClPRG-bZZXUk4gDEDpivC07ZX6f43s0qiHmj1vRPNgMD2G_RImsV6j1CHZc1oKD6gUGVjpkC_a-0Akew_sLmi2jS2hDqTQz85oeliE4ZcuCgZtpHEcn5IximGUoVRlz2VteDYD_lm2y1WZB2wjJEUCir6Ngs55zIr60bnkCk-Hg-W7Ey8cUuBGxt-Zah77pWip78aUTwiXaSXriIfaN9ZQzsUQwFEQxhnhjBCpQKmdnmC1h8mxVGJxCI5tn7gxYpJ11ke9rbV3ozQKldBjGONzTSkVe0oabalHTRcGZkW7ZkXMVpKiCNFdB-tGGTrXuaek_qzTwEolYDkNlG24rXdTiv2c7_9_wC9gViFKKir4ONFAp7hJRxlpfQbM37PfH9L1_fRxc5Vb2CZ_NzZg
link.rule.ids 315,786,790,27957,27958,41116,41558,42185,42627,52146,52269
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6kHtSDj6pYrZqDNw3sptvd7LGIUrXtqcXeQl5FELalD_DnO7OPVkUP3gITcsiXZL5JZr4A3LRx1SQ6pKR26XgkXMoNEmWO7Nc6LxMRa6p37g_i7ih6HrfHZVHYosp2r54k85N6XexGUiUBRx9Ddwux5Mgct0lPnUKukeisw6xSexKJAHJHdLhlqczvY3x3RxuO-eNZNPc2j4ewX9JE1ilwPYItn9XhoPqCgZU7sg57X_QEj-H9Fdcto1doS7E0s9ONPixDdsrmhQQ3M9iPrsgZOTHH0Koz5rO3PB0A246tssVqRucI2ZFB4mZHw2o55aR86fz8BEaPD8P7Li9_U-BWJMGSGxOFtu0o7yWUXgifGi_pj4cktC7Q3iYS2VArTtDHWysQQam9m2C4hNGz01HrFGrZNPNnwGLjnY_D0Bjno2DS0tpEUYLdA6N1HKQNuK0mVc0K0Qy1lkfOIVAIgcohUB8NaFbzrsoNtFCtIJVI5tBXNuCuwmJj_nu08_91v4ad7rDfU72nwcsF7AqkLEV6XxNqCJC_RMqxNFf5CvsEtG3N4w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5EQfTgoypWq-bgTUN30-0-jkUt9VU8WOwt5FUEYVvaLfjzndlHW0UP3hYm5JDJ7PdNMvMF4LKNuyZSPhW1x5YHwiZcI1HmyH6NdXEkQkX9zs_9sDcIHobt4UoXf17tXl1JFj0NpNKUZs2JHTUXjW8kW-JxxBs6Zwhjjixyg6CRiroGorNIuUodSiQFyCMRfMu2md_n-A5NS77544o0R57uHuyUlJF1Ch_vw5pLa7BbPcfAyuiswfaKtuABfLzhHmZ0I20or2ZmvNSKZchU2bSQ42Yax9FxOSNAswytKmUufc9LA_Dbsnk6m0_on0J2ZJMY-GiYZ2NOKpjWTQ9h0L17venx8mUFbkTkZVzrwDdtSzUwfuyEcIl2Mb33EPnGesqZKEZm1AojxHtjBHozVs6OMHXCTNqqoHUE6-k4dcfAQu2sC31fa-sCb9RSSgdBhMM9rVToJXW4qhZVTgoBDbmQSs5dINEFMneB_KxDo1p3WQbTTLa8JEZih7hZh-vKF0vz37Od_G_4BWy-3Hbl033_8RS2BLKXotKvAevoH3eG7CPT5_kG-wLE1tIo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wear+indicator+construction+for+rolling+bearings+based+on+an+enhanced+and+unsupervised+stacked+auto-encoder&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Zeng%2C+Wenhui&rft.au=Yu%2C+Lisha&rft.au=Xu%2C+Fan&rft.au=Huang%2C+Zhelin&rft.date=2024-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=28&rft.issue=15-16&rft.spage=8835&rft.epage=8848&rft_id=info:doi/10.1007%2Fs00500-023-09068-x&rft.externalDocID=10_1007_s00500_023_09068_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon