Electrostatically Assembled Sb2S3/MXene Nanocomposites As Anode Materials for High-Performance Lithium-Ion Batteries

— Antimony sulfide (Sb 2 S 3 ) possesses a high theoretical capacity and excellent reversibility, making it a promising anode material for lithium-ion batteries (LIBs). However, its poor intrinsic conductivity and significant volume changes during charge/discharge cycles severely limit its cycling s...

Full description

Saved in:
Bibliographic Details
Published inRussian Journal of Physical Chemistry A Vol. 99; no. 3; pp. 620 - 628
Main Authors Lei Bai, Cheng, Fangming, Dong, Yuting
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.03.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract — Antimony sulfide (Sb 2 S 3 ) possesses a high theoretical capacity and excellent reversibility, making it a promising anode material for lithium-ion batteries (LIBs). However, its poor intrinsic conductivity and significant volume changes during charge/discharge cycles severely limit its cycling stability and rate performance. In this study, a novel composite material was synthesized by electrostatically assembling Sb 2 S 3 nanowires (Sb 2 S 3 nw) onto MXene nanosheets as a potential anode material (SbSMX). The introduction of highly conductive MXene substrates enhances electron transfer between the distinct interfaces of Sb 2 S 3 and MXene. Additionally, the constructed 1D–2D structure promotes ion transport within the electrode, while the mechanical flexibility of MXene effectively mitigates the severe volume expansion of Sb 2 S 3 . As a result, the SbSMX composite exhibits a high capacity of 813 mA h g –1 at a current of 50 mA g –1 , stable cycling performance with a capacity of 735 mA h g –1 after 100 cycles at 100 mA g –1 (88% retention), and excellent rate capability, achieving 466 mA h g –1 at a current of 3 A g –1 .
AbstractList — Antimony sulfide (Sb 2 S 3 ) possesses a high theoretical capacity and excellent reversibility, making it a promising anode material for lithium-ion batteries (LIBs). However, its poor intrinsic conductivity and significant volume changes during charge/discharge cycles severely limit its cycling stability and rate performance. In this study, a novel composite material was synthesized by electrostatically assembling Sb 2 S 3 nanowires (Sb 2 S 3 nw) onto MXene nanosheets as a potential anode material (SbSMX). The introduction of highly conductive MXene substrates enhances electron transfer between the distinct interfaces of Sb 2 S 3 and MXene. Additionally, the constructed 1D–2D structure promotes ion transport within the electrode, while the mechanical flexibility of MXene effectively mitigates the severe volume expansion of Sb 2 S 3 . As a result, the SbSMX composite exhibits a high capacity of 813 mA h g –1 at a current of 50 mA g –1 , stable cycling performance with a capacity of 735 mA h g –1 after 100 cycles at 100 mA g –1 (88% retention), and excellent rate capability, achieving 466 mA h g –1 at a current of 3 A g –1 .
Abstract—Antimony sulfide (Sb2S3) possesses a high theoretical capacity and excellent reversibility, making it a promising anode material for lithium-ion batteries (LIBs). However, its poor intrinsic conductivity and significant volume changes during charge/discharge cycles severely limit its cycling stability and rate performance. In this study, a novel composite material was synthesized by electrostatically assembling Sb2S3 nanowires (Sb2S3 nw) onto MXene nanosheets as a potential anode material (SbSMX). The introduction of highly conductive MXene substrates enhances electron transfer between the distinct interfaces of Sb2S3 and MXene. Additionally, the constructed 1D–2D structure promotes ion transport within the electrode, while the mechanical flexibility of MXene effectively mitigates the severe volume expansion of Sb2S3. As a result, the SbSMX composite exhibits a high capacity of 813 mA h g–1 at a current of 50 mA g–1, stable cycling performance with a capacity of 735 mA h g–1 after 100 cycles at 100 mA g–1 (88% retention), and excellent rate capability, achieving 466 mA h g–1 at a current of 3 A g–1.
Author Lei Bai
Dong, Yuting
Cheng, Fangming
Author_xml – sequence: 1
  surname: Lei Bai
  fullname: Lei Bai
  email: lei_bai2024@163.com
  organization: College of Safety Science and Engineering, Xi’an University of Science and Technology
– sequence: 2
  givenname: Fangming
  surname: Cheng
  fullname: Cheng, Fangming
  organization: College of Safety Science and Engineering, Xi’an University of Science and Technology, Shannxi Engineering Research Center for Industrial Process Safety and Emergency Rescue, Xi’an Key Laboratory of Urban Public Safety and Fire Rescue
– sequence: 3
  givenname: Yuting
  surname: Dong
  fullname: Dong, Yuting
  organization: College of Safety Science and Engineering, Xi’an University of Science and Technology
BookMark eNp1kE9rAjEUxEOxULX9AL0Fet6af2bdoxVbBW0LtuBtyWbf6spuYpN48Ns3i4UeSk9vYH4zD2aAesYaQOiekkdKuRhtCOGSMCGYSKNKsyvUp2NOk4nk2x7qd3bS-Tdo4P2BECEEFX0U5g3o4KwPKtRaNc0ZT72HtmigxJuCbfhovQUD-FUZq217tL4O4COEp8aWgNcqgKtV43FlHV7Uu33yDi7qVhkNeFWHfX1qk6U1-EmFjgV_i66rmIC7nztEn8_zj9kiWb29LGfTVaJZSkJSSFkxxccpV6BTXkhFpMgmEyF5VlasjD7TmQJJeFZMaKVIKWRKCWdjAaUu-RA9XHqPzn6dwIf8YE_OxJc5pxnhdCwYiRS9UDrO4B1U-dHVrXLnnJK8Gzf_M27MsEvGR9bswP02_x_6BqUdfWI
Cites_doi 10.1016/j.jallcom.2021.160906
10.1201/9781003306511-29
10.1016/j.ensm.2017.12.002
10.1016/j.carbon.2019.03.006
10.1002/smll.201703419
10.1021/acsnano.8b02861
10.1021/acsnano.1c03516
10.1016/j.jallcom.2021.162089
10.1039/C7NR09441H
10.1016/j.nanoen.2019.05.062
10.1016/j.est.2024.113188
10.1039/d0nr04111d
10.1016/j.cej.2022.138891
10.1039/D0TA07983A
10.1021/acsami.1c22787
10.1016/j.nanoen.2020.105352
10.1016/j.ensm.2021.05.037
10.1021/acs.energyfuels.4c03023
10.1002/adfm.202204231
10.1002/celc.201800016
10.1016/j.electacta.2019.04.104
10.1016/j.nanoen.2017.02.043
10.1016/j.carbon.2020.02.083
10.1016/j.ensm.2018.11.005
10.1016/j.nanoen.2019.04.008
10.1016/j.carbon.2020.05.006
10.1002/smll.201904255
10.1039/C8TA00107C
10.1016/j.cplett.2021.138529
10.1007/s11581-020-03738-8
10.1038/srep09754
10.1039/d0ra07125k
10.1021/acsnano.0c08336
10.1021/am501144q
10.1016/j.electacta.2018.09.070
10.1016/j.jallcom.2019.01.315
10.1039/C7CC05406H
10.1002/aenm.202101650
10.1007/s10853-018-03275-w
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2025 ISSN 0036-0244, Russian Journal of Physical Chemistry A, 2025, Vol. 99, No. 3, pp. 620–628. © Pleiades Publishing, Ltd., 2025.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Pleiades Publishing, Ltd. 2025 ISSN 0036-0244, Russian Journal of Physical Chemistry A, 2025, Vol. 99, No. 3, pp. 620–628. © Pleiades Publishing, Ltd., 2025.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1134/S0036024424703679
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1531-863X
EndPage 628
ExternalDocumentID 10_1134_S0036024424703679
GroupedDBID -Y2
.VR
06C
06D
0R~
0VY
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
408
40D
40E
5VS
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGQPQ
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHYZX
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HG6
HLICF
HMJXF
HRMNR
HVGLF
H~9
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9J
P9N
PF0
PT4
QOR
QOS
R89
R9I
ROL
RSV
S16
S1Z
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-b66f2a3573aec73b6a0649884639df2db662c9ae6039b81fa0d467103254edcd3
IEDL.DBID AGYKE
ISSN 0036-0244
IngestDate Sat Jul 12 02:56:56 EDT 2025
Tue Jul 01 05:09:40 EDT 2025
Tue Apr 15 01:11:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords S
lithium-ion batteries
MXene
ion transport
MXene nanocomposites
Sb
electrochemical performance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-b66f2a3573aec73b6a0649884639df2db662c9ae6039b81fa0d467103254edcd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3190315420
PQPubID 2044176
PageCount 9
ParticipantIDs proquest_journals_3190315420
crossref_primary_10_1134_S0036024424703679
springer_journals_10_1134_S0036024424703679
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationSubtitle Focus on Chemistry
PublicationTitle Russian Journal of Physical Chemistry A
PublicationTitleAbbrev Russ. J. Phys. Chem
PublicationYear 2025
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References 6098_CR21
C. Wei (6098_CR37) 2022; 14
P. Deng (6098_CR12) 2018; 5
X. Jin (6098_CR7) 2018; 12
6098_CR29
6098_CR1
Y. Liu (6098_CR17) 2019; 310
6098_CR27
D. Er (6098_CR20) 2014; 6
H. Zhao (6098_CR26) 2020; 10
C. H. Han (6098_CR14) 2017; 53
H. Liu (6098_CR34) 2021; 40
D. Qiu (6098_CR4) 2020; 162
F. Xie (6098_CR28) 2019; 60
W. Luo (6098_CR32) 2018; 290
X. Shen (6098_CR6) 2018; 12
6098_CR10
6098_CR11
6098_CR13
D.-c. Zuo (6098_CR35) 2019; 62
Y. Luo (6098_CR2) 2018; 6
Y. Dong (6098_CR16) 2018; 10
S. Yao (6098_CR24) 2019; 20
6098_CR31
J. Ma (6098_CR3) 2019; 147
6098_CR19
C. Li (6098_CR33) 2019; 786
6098_CR36
6098_CR15
6098_CR38
6098_CR39
6098_CR5
6098_CR9
J. Yu (6098_CR25) 2020; 26
S. Gao (6098_CR22) 2020; 166
B. Ahmed (6098_CR23) 2017; 34
C. Liu (6098_CR8) 2020; 822
I. Elizabeth (6098_CR30) 2019; 54
M. K. Aslam (6098_CR18) 2020; 12
References_xml – ident: 6098_CR11
  doi: 10.1016/j.jallcom.2021.160906
– ident: 6098_CR21
  doi: 10.1201/9781003306511-29
– volume: 12
  start-page: 161
  year: 2018
  ident: 6098_CR6
  publication-title: J. Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.12.002
– volume: 147
  start-page: 357
  year: 2019
  ident: 6098_CR3
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.03.006
– ident: 6098_CR19
  doi: 10.1002/smll.201703419
– volume: 12
  start-page: 8037
  year: 2018
  ident: 6098_CR7
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02861
– ident: 6098_CR39
  doi: 10.1021/acsnano.1c03516
– ident: 6098_CR36
  doi: 10.1016/j.jallcom.2021.162089
– volume: 10
  start-page: 3159
  year: 2018
  ident: 6098_CR16
  publication-title: Nanoscale
  doi: 10.1039/C7NR09441H
– volume: 62
  start-page: 401
  year: 2019
  ident: 6098_CR35
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.062
– ident: 6098_CR1
  doi: 10.1016/j.est.2024.113188
– volume: 12
  start-page: 15993
  year: 2020
  ident: 6098_CR18
  publication-title: Nanoscale
  doi: 10.1039/d0nr04111d
– ident: 6098_CR27
  doi: 10.1016/j.cej.2022.138891
– volume: 822
  start-page: 712
  year: 2020
  ident: 6098_CR8
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA07983A
– volume: 14
  start-page: 2979
  year: 2022
  ident: 6098_CR37
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c22787
– ident: 6098_CR13
  doi: 10.1016/j.nanoen.2020.105352
– volume: 40
  start-page: 490
  year: 2021
  ident: 6098_CR34
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.05.037
– ident: 6098_CR10
  doi: 10.1021/acs.energyfuels.4c03023
– ident: 6098_CR31
  doi: 10.1002/adfm.202204231
– volume: 5
  start-page: 811
  year: 2018
  ident: 6098_CR12
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201800016
– volume: 310
  start-page: 26
  year: 2019
  ident: 6098_CR17
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.04.104
– volume: 34
  start-page: 249
  year: 2017
  ident: 6098_CR23
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.02.043
– volume: 162
  start-page: 595
  year: 2020
  ident: 6098_CR4
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.02.083
– volume: 20
  start-page: 36
  year: 2019
  ident: 6098_CR24
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.11.005
– volume: 60
  start-page: 591
  year: 2019
  ident: 6098_CR28
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.008
– volume: 166
  start-page: 26
  year: 2020
  ident: 6098_CR22
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.05.006
– ident: 6098_CR38
  doi: 10.1002/smll.201904255
– volume: 6
  start-page: 4236
  year: 2018
  ident: 6098_CR2
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA00107C
– ident: 6098_CR9
  doi: 10.1016/j.cplett.2021.138529
– volume: 26
  start-page: 5915
  year: 2020
  ident: 6098_CR25
  publication-title: Ionics
  doi: 10.1007/s11581-020-03738-8
– ident: 6098_CR15
  doi: 10.1038/srep09754
– volume: 10
  start-page: 41403
  year: 2020
  ident: 6098_CR26
  publication-title: RSC Adv.
  doi: 10.1039/d0ra07125k
– ident: 6098_CR29
  doi: 10.1021/acsnano.0c08336
– volume: 6
  start-page: 11173
  year: 2014
  ident: 6098_CR20
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am501144q
– volume: 290
  start-page: 185
  year: 2018
  ident: 6098_CR32
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.09.070
– volume: 786
  start-page: 169
  year: 2019
  ident: 6098_CR33
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.01.315
– volume: 53
  start-page: 9542
  year: 2017
  ident: 6098_CR14
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC05406H
– ident: 6098_CR5
  doi: 10.1002/aenm.202101650
– volume: 54
  start-page: 7110
  year: 2019
  ident: 6098_CR30
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-03275-w
SSID ssj0044414
ssj0062791
Score 2.3330367
Snippet — Antimony sulfide (Sb 2 S 3 ) possesses a high theoretical capacity and excellent reversibility, making it a promising anode material for lithium-ion...
Abstract—Antimony sulfide (Sb2S3) possesses a high theoretical capacity and excellent reversibility, making it a promising anode material for lithium-ion...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 620
SubjectTerms Anodes
Batteries
Chemistry
Chemistry and Materials Science
Composite materials
Electrochemistry. Generation and Storage of Energy from Renewable Sources
Electrode materials
Electron transfer
Ion transport
Lithium-ion batteries
MXenes
Nanocomposites
Nanowires
Physical Chemistry
Title Electrostatically Assembled Sb2S3/MXene Nanocomposites As Anode Materials for High-Performance Lithium-Ion Batteries
URI https://link.springer.com/article/10.1134/S0036024424703679
https://www.proquest.com/docview/3190315420
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61y4FeWspDbEuRDz2BDMF27PVxQbvl0UVIgLScIjt2xArIVt3sAX59x0msFVAOHCNbVpIZz0PzzXwAP71XxiouaaELTYV3nFqTptQ6heYwzJ2se2FG5_L4WpyO03Hbxz2LaPdYkqwtdcM7IkJPL5foUQQTYWiU0h9hCcOPJO3AUv_XzdkgGmCBHl7EB8lUy5rHA9hWiLay-d8Tn_umRcD5okZau57hF7iKL90gTu725pXdy59ezHN851etwOc2FCX9Rne-wgdfrsLyUWSAW4Nq0HDkhKajIMv7RxJqxA_23jtyadkl3x-N0VYSNNHTgE0PADA_w02kX06dJyNTNQpOMDQmAVJCLxaNCuT3pLqdzB_oybQkzZxPTNvX4Xo4uDo6pi1LA82ZSipqpSyY4anixueKW2kwytE9jGu4dgVzuM5ybbxMuLa9g8IkDo1zmOOXomrkjm9Ap5yWfhOItE5oIT1mpUykShhUG9MrNKacicXUsAs7UT7Zn2YYR1YnMVxkr35kF7aiBLP2Xs4yNDiB1kKwpAu7USCL5TcP-_au3d_hEws0wTVUbQs61d-5_4GxS2W3UVeHh4fn263O_gOQ2OJb
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbhMxEB6V9lAulF-RtoAPcAG5LLbXjg8copKSkKRCaiuF02KvvSJqu0Fko6p9HV6FB2O8u1ZEgQOHShxXtqy1Pb_yN_MBPPdeGau4pIUuNBXecWpNmlLrFJrD0HeyroWZHMrBifgwTadr8D3WwtRo9_gkWVvqhndEhJpeLtGjCCZC0yilWyTlyF9eYJ62eDt8h5f6grGD_vH-gLZUAjRnKqmolbJghqeKG58rbqVBV6y76Hy5dgVzOM5ybbxMuLbdN4VJHFqQ0Gwuxf_PHcd1b8GGwJQfM7yN3vtPo340-AIjChE_JFMtSx8P4F4h2pfUP-7gV1-4CnCvvcnWru5gC37EQ2oQLqd7y8ru5VfX-kf-56d4F-60oTbpNbpxD9Z8eR829yPD3QOo-g0HUCiqCrJ6dknCG_i5PfOOHFl2xF9PpugLCLqgecDeB4CbX-Ak0ivnzpOJqRoFJhj6kwCZoR9XhRhkPKu-zJbndDgvSdPHdOYXD-HkRjb9CNbLeekfA5HWCS2kx6ybiVQJg2phuoXGlDqxmPp24GWUh-xr02wkq5M0LrLfLq4Du1FistbuLDI0qIG2Q7CkA6-iAKyG_7rY9j_Nfgabg-PJOBsPD0c7cJsFSuQalrcL69W3pX-CcVpln7Z6QuDzTQvVTzs-PS4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VVIJeWp4iUMAHuIDcLrbXXh96iNqEhjRVpVIpnLb22iuitpuKbFSVP8Vf4Scx3ociChw49MBx5ZUl2_PUfPMNwGvvlbGKS5rrXFPhHafWxDG1TqE5DLyTVS_M-FDun4iPk3iyAt_bXpgK7d6WJOuehsDSVJTbly5vZpCI0N_LJXoXwUQgkFK6QVWO_PUV5mzzneEePvAbxgb9T7v7tBkrQDOmopJaKXNmeKy48ZniVhp0yzpBR8y1y5nDdZZp42XEtU3e5yZyaE0C8VyMZ8kcx33vwKqIEpV0YLX34fOo3xp_gdGFaD8kU83EPh6AvkI0VdU_nuBXv7gMdm_UZyu3N9iAH-2F1WiXs61Fabeybze4JP-jG70P600ITnq1zjyAFV88hHu77eS7R1D269lAodkqyPD5NQm18Qt77h05tuyYb48n6CMIuqZZwOQH4Juf40-kV8ycJ2NT1opNMCUgAUpDj5YNGuRgWn6ZLi7ocFaQmt906ueP4eRWDv0EOsWs8E-BSOuEFtJjNs5ErIRBdTFJrjHVjiymxF1428pGelmTkKRV8sZF-tvDdWGzlZ60sUfzFA1tGOchWNSFd60wLJf_utmzf_r7Fdw92hukB8PD0XNYY2FScoXW24RO-XXhX2D4VtqXjcoQOL1tmfoJ9PxGEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrostatically+Assembled+Sb2S3%2FMXene+Nanocomposites+As+Anode+Materials+for+High-Performance+Lithium-Ion+Batteries&rft.jtitle=Russian+Journal+of+Physical+Chemistry.+A&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0036-0244&rft.eissn=1531-863X&rft.volume=99&rft.issue=3&rft.spage=620&rft.epage=628&rft_id=info:doi/10.1134%2FS0036024424703679&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-0244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-0244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-0244&client=summon