Electrostatically Assembled Sb2S3/MXene Nanocomposites As Anode Materials for High-Performance Lithium-Ion Batteries
— Antimony sulfide (Sb 2 S 3 ) possesses a high theoretical capacity and excellent reversibility, making it a promising anode material for lithium-ion batteries (LIBs). However, its poor intrinsic conductivity and significant volume changes during charge/discharge cycles severely limit its cycling s...
Saved in:
Published in | Russian Journal of Physical Chemistry A Vol. 99; no. 3; pp. 620 - 628 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.03.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | —
Antimony sulfide (Sb
2
S
3
) possesses a high theoretical capacity and excellent reversibility, making it a promising anode material for lithium-ion batteries (LIBs). However, its poor intrinsic conductivity and significant volume changes during charge/discharge cycles severely limit its cycling stability and rate performance. In this study, a novel composite material was synthesized by electrostatically assembling Sb
2
S
3
nanowires (Sb
2
S
3
nw) onto MXene nanosheets as a potential anode material (SbSMX). The introduction of highly conductive MXene substrates enhances electron transfer between the distinct interfaces of Sb
2
S
3
and MXene. Additionally, the constructed 1D–2D structure promotes ion transport within the electrode, while the mechanical flexibility of MXene effectively mitigates the severe volume expansion of Sb
2
S
3
. As a result, the SbSMX composite exhibits a high capacity of 813 mA h g
–1
at a current of 50 mA g
–1
, stable cycling performance with a capacity of 735 mA h g
–1
after 100 cycles at 100 mA g
–1
(88% retention), and excellent rate capability, achieving 466 mA h g
–1
at a current of 3 A g
–1
. |
---|---|
AbstractList | —
Antimony sulfide (Sb
2
S
3
) possesses a high theoretical capacity and excellent reversibility, making it a promising anode material for lithium-ion batteries (LIBs). However, its poor intrinsic conductivity and significant volume changes during charge/discharge cycles severely limit its cycling stability and rate performance. In this study, a novel composite material was synthesized by electrostatically assembling Sb
2
S
3
nanowires (Sb
2
S
3
nw) onto MXene nanosheets as a potential anode material (SbSMX). The introduction of highly conductive MXene substrates enhances electron transfer between the distinct interfaces of Sb
2
S
3
and MXene. Additionally, the constructed 1D–2D structure promotes ion transport within the electrode, while the mechanical flexibility of MXene effectively mitigates the severe volume expansion of Sb
2
S
3
. As a result, the SbSMX composite exhibits a high capacity of 813 mA h g
–1
at a current of 50 mA g
–1
, stable cycling performance with a capacity of 735 mA h g
–1
after 100 cycles at 100 mA g
–1
(88% retention), and excellent rate capability, achieving 466 mA h g
–1
at a current of 3 A g
–1
. Abstract—Antimony sulfide (Sb2S3) possesses a high theoretical capacity and excellent reversibility, making it a promising anode material for lithium-ion batteries (LIBs). However, its poor intrinsic conductivity and significant volume changes during charge/discharge cycles severely limit its cycling stability and rate performance. In this study, a novel composite material was synthesized by electrostatically assembling Sb2S3 nanowires (Sb2S3 nw) onto MXene nanosheets as a potential anode material (SbSMX). The introduction of highly conductive MXene substrates enhances electron transfer between the distinct interfaces of Sb2S3 and MXene. Additionally, the constructed 1D–2D structure promotes ion transport within the electrode, while the mechanical flexibility of MXene effectively mitigates the severe volume expansion of Sb2S3. As a result, the SbSMX composite exhibits a high capacity of 813 mA h g–1 at a current of 50 mA g–1, stable cycling performance with a capacity of 735 mA h g–1 after 100 cycles at 100 mA g–1 (88% retention), and excellent rate capability, achieving 466 mA h g–1 at a current of 3 A g–1. |
Author | Lei Bai Dong, Yuting Cheng, Fangming |
Author_xml | – sequence: 1 surname: Lei Bai fullname: Lei Bai email: lei_bai2024@163.com organization: College of Safety Science and Engineering, Xi’an University of Science and Technology – sequence: 2 givenname: Fangming surname: Cheng fullname: Cheng, Fangming organization: College of Safety Science and Engineering, Xi’an University of Science and Technology, Shannxi Engineering Research Center for Industrial Process Safety and Emergency Rescue, Xi’an Key Laboratory of Urban Public Safety and Fire Rescue – sequence: 3 givenname: Yuting surname: Dong fullname: Dong, Yuting organization: College of Safety Science and Engineering, Xi’an University of Science and Technology |
BookMark | eNp1kE9rAjEUxEOxULX9AL0Fet6af2bdoxVbBW0LtuBtyWbf6spuYpN48Ns3i4UeSk9vYH4zD2aAesYaQOiekkdKuRhtCOGSMCGYSKNKsyvUp2NOk4nk2x7qd3bS-Tdo4P2BECEEFX0U5g3o4KwPKtRaNc0ZT72HtmigxJuCbfhovQUD-FUZq217tL4O4COEp8aWgNcqgKtV43FlHV7Uu33yDi7qVhkNeFWHfX1qk6U1-EmFjgV_i66rmIC7nztEn8_zj9kiWb29LGfTVaJZSkJSSFkxxccpV6BTXkhFpMgmEyF5VlasjD7TmQJJeFZMaKVIKWRKCWdjAaUu-RA9XHqPzn6dwIf8YE_OxJc5pxnhdCwYiRS9UDrO4B1U-dHVrXLnnJK8Gzf_M27MsEvGR9bswP02_x_6BqUdfWI |
Cites_doi | 10.1016/j.jallcom.2021.160906 10.1201/9781003306511-29 10.1016/j.ensm.2017.12.002 10.1016/j.carbon.2019.03.006 10.1002/smll.201703419 10.1021/acsnano.8b02861 10.1021/acsnano.1c03516 10.1016/j.jallcom.2021.162089 10.1039/C7NR09441H 10.1016/j.nanoen.2019.05.062 10.1016/j.est.2024.113188 10.1039/d0nr04111d 10.1016/j.cej.2022.138891 10.1039/D0TA07983A 10.1021/acsami.1c22787 10.1016/j.nanoen.2020.105352 10.1016/j.ensm.2021.05.037 10.1021/acs.energyfuels.4c03023 10.1002/adfm.202204231 10.1002/celc.201800016 10.1016/j.electacta.2019.04.104 10.1016/j.nanoen.2017.02.043 10.1016/j.carbon.2020.02.083 10.1016/j.ensm.2018.11.005 10.1016/j.nanoen.2019.04.008 10.1016/j.carbon.2020.05.006 10.1002/smll.201904255 10.1039/C8TA00107C 10.1016/j.cplett.2021.138529 10.1007/s11581-020-03738-8 10.1038/srep09754 10.1039/d0ra07125k 10.1021/acsnano.0c08336 10.1021/am501144q 10.1016/j.electacta.2018.09.070 10.1016/j.jallcom.2019.01.315 10.1039/C7CC05406H 10.1002/aenm.202101650 10.1007/s10853-018-03275-w |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2025 ISSN 0036-0244, Russian Journal of Physical Chemistry A, 2025, Vol. 99, No. 3, pp. 620–628. © Pleiades Publishing, Ltd., 2025. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2025 ISSN 0036-0244, Russian Journal of Physical Chemistry A, 2025, Vol. 99, No. 3, pp. 620–628. © Pleiades Publishing, Ltd., 2025. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1134/S0036024424703679 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1531-863X |
EndPage | 628 |
ExternalDocumentID | 10_1134_S0036024424703679 |
GroupedDBID | -Y2 .VR 06C 06D 0R~ 0VY 29P 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 408 40D 40E 5VS 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFDZB AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGQPQ AGRTI AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHYZX AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BGNMA BSONS CSCUP DDRTE DNIVK DPUIP DU5 EBLON EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 H13 HG6 HLICF HMJXF HRMNR HVGLF H~9 IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O93 O9J P9N PF0 PT4 QOR QOS R89 R9I ROL RSV S16 S1Z S3B SAP SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TSG TUC UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~A9 AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ATHPR CITATION ABRTQ |
ID | FETCH-LOGICAL-c270t-b66f2a3573aec73b6a0649884639df2db662c9ae6039b81fa0d467103254edcd3 |
IEDL.DBID | AGYKE |
ISSN | 0036-0244 |
IngestDate | Sat Jul 12 02:56:56 EDT 2025 Tue Jul 01 05:09:40 EDT 2025 Tue Apr 15 01:11:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | S lithium-ion batteries MXene ion transport MXene nanocomposites Sb electrochemical performance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-b66f2a3573aec73b6a0649884639df2db662c9ae6039b81fa0d467103254edcd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3190315420 |
PQPubID | 2044176 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3190315420 crossref_primary_10_1134_S0036024424703679 springer_journals_10_1134_S0036024424703679 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: Heidelberg |
PublicationSubtitle | Focus on Chemistry |
PublicationTitle | Russian Journal of Physical Chemistry A |
PublicationTitleAbbrev | Russ. J. Phys. Chem |
PublicationYear | 2025 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | 6098_CR21 C. Wei (6098_CR37) 2022; 14 P. Deng (6098_CR12) 2018; 5 X. Jin (6098_CR7) 2018; 12 6098_CR29 6098_CR1 Y. Liu (6098_CR17) 2019; 310 6098_CR27 D. Er (6098_CR20) 2014; 6 H. Zhao (6098_CR26) 2020; 10 C. H. Han (6098_CR14) 2017; 53 H. Liu (6098_CR34) 2021; 40 D. Qiu (6098_CR4) 2020; 162 F. Xie (6098_CR28) 2019; 60 W. Luo (6098_CR32) 2018; 290 X. Shen (6098_CR6) 2018; 12 6098_CR10 6098_CR11 6098_CR13 D.-c. Zuo (6098_CR35) 2019; 62 Y. Luo (6098_CR2) 2018; 6 Y. Dong (6098_CR16) 2018; 10 S. Yao (6098_CR24) 2019; 20 6098_CR31 J. Ma (6098_CR3) 2019; 147 6098_CR19 C. Li (6098_CR33) 2019; 786 6098_CR36 6098_CR15 6098_CR38 6098_CR39 6098_CR5 6098_CR9 J. Yu (6098_CR25) 2020; 26 S. Gao (6098_CR22) 2020; 166 B. Ahmed (6098_CR23) 2017; 34 C. Liu (6098_CR8) 2020; 822 I. Elizabeth (6098_CR30) 2019; 54 M. K. Aslam (6098_CR18) 2020; 12 |
References_xml | – ident: 6098_CR11 doi: 10.1016/j.jallcom.2021.160906 – ident: 6098_CR21 doi: 10.1201/9781003306511-29 – volume: 12 start-page: 161 year: 2018 ident: 6098_CR6 publication-title: J. Energy Storage Mater. doi: 10.1016/j.ensm.2017.12.002 – volume: 147 start-page: 357 year: 2019 ident: 6098_CR3 publication-title: Carbon doi: 10.1016/j.carbon.2019.03.006 – ident: 6098_CR19 doi: 10.1002/smll.201703419 – volume: 12 start-page: 8037 year: 2018 ident: 6098_CR7 publication-title: ACS Nano doi: 10.1021/acsnano.8b02861 – ident: 6098_CR39 doi: 10.1021/acsnano.1c03516 – ident: 6098_CR36 doi: 10.1016/j.jallcom.2021.162089 – volume: 10 start-page: 3159 year: 2018 ident: 6098_CR16 publication-title: Nanoscale doi: 10.1039/C7NR09441H – volume: 62 start-page: 401 year: 2019 ident: 6098_CR35 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.062 – ident: 6098_CR1 doi: 10.1016/j.est.2024.113188 – volume: 12 start-page: 15993 year: 2020 ident: 6098_CR18 publication-title: Nanoscale doi: 10.1039/d0nr04111d – ident: 6098_CR27 doi: 10.1016/j.cej.2022.138891 – volume: 822 start-page: 712 year: 2020 ident: 6098_CR8 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA07983A – volume: 14 start-page: 2979 year: 2022 ident: 6098_CR37 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c22787 – ident: 6098_CR13 doi: 10.1016/j.nanoen.2020.105352 – volume: 40 start-page: 490 year: 2021 ident: 6098_CR34 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.05.037 – ident: 6098_CR10 doi: 10.1021/acs.energyfuels.4c03023 – ident: 6098_CR31 doi: 10.1002/adfm.202204231 – volume: 5 start-page: 811 year: 2018 ident: 6098_CR12 publication-title: ChemElectroChem doi: 10.1002/celc.201800016 – volume: 310 start-page: 26 year: 2019 ident: 6098_CR17 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.04.104 – volume: 34 start-page: 249 year: 2017 ident: 6098_CR23 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.02.043 – volume: 162 start-page: 595 year: 2020 ident: 6098_CR4 publication-title: Carbon doi: 10.1016/j.carbon.2020.02.083 – volume: 20 start-page: 36 year: 2019 ident: 6098_CR24 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.11.005 – volume: 60 start-page: 591 year: 2019 ident: 6098_CR28 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.008 – volume: 166 start-page: 26 year: 2020 ident: 6098_CR22 publication-title: Carbon doi: 10.1016/j.carbon.2020.05.006 – ident: 6098_CR38 doi: 10.1002/smll.201904255 – volume: 6 start-page: 4236 year: 2018 ident: 6098_CR2 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA00107C – ident: 6098_CR9 doi: 10.1016/j.cplett.2021.138529 – volume: 26 start-page: 5915 year: 2020 ident: 6098_CR25 publication-title: Ionics doi: 10.1007/s11581-020-03738-8 – ident: 6098_CR15 doi: 10.1038/srep09754 – volume: 10 start-page: 41403 year: 2020 ident: 6098_CR26 publication-title: RSC Adv. doi: 10.1039/d0ra07125k – ident: 6098_CR29 doi: 10.1021/acsnano.0c08336 – volume: 6 start-page: 11173 year: 2014 ident: 6098_CR20 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am501144q – volume: 290 start-page: 185 year: 2018 ident: 6098_CR32 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.09.070 – volume: 786 start-page: 169 year: 2019 ident: 6098_CR33 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.01.315 – volume: 53 start-page: 9542 year: 2017 ident: 6098_CR14 publication-title: Chem. Commun. doi: 10.1039/C7CC05406H – ident: 6098_CR5 doi: 10.1002/aenm.202101650 – volume: 54 start-page: 7110 year: 2019 ident: 6098_CR30 publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-03275-w |
SSID | ssj0044414 ssj0062791 |
Score | 2.3330367 |
Snippet | —
Antimony sulfide (Sb
2
S
3
) possesses a high theoretical capacity and excellent reversibility, making it a promising anode material for lithium-ion... Abstract—Antimony sulfide (Sb2S3) possesses a high theoretical capacity and excellent reversibility, making it a promising anode material for lithium-ion... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 620 |
SubjectTerms | Anodes Batteries Chemistry Chemistry and Materials Science Composite materials Electrochemistry. Generation and Storage of Energy from Renewable Sources Electrode materials Electron transfer Ion transport Lithium-ion batteries MXenes Nanocomposites Nanowires Physical Chemistry |
Title | Electrostatically Assembled Sb2S3/MXene Nanocomposites As Anode Materials for High-Performance Lithium-Ion Batteries |
URI | https://link.springer.com/article/10.1134/S0036024424703679 https://www.proquest.com/docview/3190315420 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61y4FeWspDbEuRDz2BDMF27PVxQbvl0UVIgLScIjt2xArIVt3sAX59x0msFVAOHCNbVpIZz0PzzXwAP71XxiouaaELTYV3nFqTptQ6heYwzJ2se2FG5_L4WpyO03Hbxz2LaPdYkqwtdcM7IkJPL5foUQQTYWiU0h9hCcOPJO3AUv_XzdkgGmCBHl7EB8lUy5rHA9hWiLay-d8Tn_umRcD5okZau57hF7iKL90gTu725pXdy59ezHN851etwOc2FCX9Rne-wgdfrsLyUWSAW4Nq0HDkhKajIMv7RxJqxA_23jtyadkl3x-N0VYSNNHTgE0PADA_w02kX06dJyNTNQpOMDQmAVJCLxaNCuT3pLqdzB_oybQkzZxPTNvX4Xo4uDo6pi1LA82ZSipqpSyY4anixueKW2kwytE9jGu4dgVzuM5ybbxMuLa9g8IkDo1zmOOXomrkjm9Ap5yWfhOItE5oIT1mpUykShhUG9MrNKacicXUsAs7UT7Zn2YYR1YnMVxkr35kF7aiBLP2Xs4yNDiB1kKwpAu7USCL5TcP-_au3d_hEws0wTVUbQs61d-5_4GxS2W3UVeHh4fn263O_gOQ2OJb |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbhMxEB6V9lAulF-RtoAPcAG5LLbXjg8copKSkKRCaiuF02KvvSJqu0Fko6p9HV6FB2O8u1ZEgQOHShxXtqy1Pb_yN_MBPPdeGau4pIUuNBXecWpNmlLrFJrD0HeyroWZHMrBifgwTadr8D3WwtRo9_gkWVvqhndEhJpeLtGjCCZC0yilWyTlyF9eYJ62eDt8h5f6grGD_vH-gLZUAjRnKqmolbJghqeKG58rbqVBV6y76Hy5dgVzOM5ybbxMuLbdN4VJHFqQ0Gwuxf_PHcd1b8GGwJQfM7yN3vtPo340-AIjChE_JFMtSx8P4F4h2pfUP-7gV1-4CnCvvcnWru5gC37EQ2oQLqd7y8ru5VfX-kf-56d4F-60oTbpNbpxD9Z8eR829yPD3QOo-g0HUCiqCrJ6dknCG_i5PfOOHFl2xF9PpugLCLqgecDeB4CbX-Ak0ivnzpOJqRoFJhj6kwCZoR9XhRhkPKu-zJbndDgvSdPHdOYXD-HkRjb9CNbLeekfA5HWCS2kx6ybiVQJg2phuoXGlDqxmPp24GWUh-xr02wkq5M0LrLfLq4Du1FistbuLDI0qIG2Q7CkA6-iAKyG_7rY9j_Nfgabg-PJOBsPD0c7cJsFSuQalrcL69W3pX-CcVpln7Z6QuDzTQvVTzs-PS4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VVIJeWp4iUMAHuIDcLrbXXh96iNqEhjRVpVIpnLb22iuitpuKbFSVP8Vf4Scx3ociChw49MBx5ZUl2_PUfPMNwGvvlbGKS5rrXFPhHafWxDG1TqE5DLyTVS_M-FDun4iPk3iyAt_bXpgK7d6WJOuehsDSVJTbly5vZpCI0N_LJXoXwUQgkFK6QVWO_PUV5mzzneEePvAbxgb9T7v7tBkrQDOmopJaKXNmeKy48ZniVhp0yzpBR8y1y5nDdZZp42XEtU3e5yZyaE0C8VyMZ8kcx33vwKqIEpV0YLX34fOo3xp_gdGFaD8kU83EPh6AvkI0VdU_nuBXv7gMdm_UZyu3N9iAH-2F1WiXs61Fabeybze4JP-jG70P600ITnq1zjyAFV88hHu77eS7R1D269lAodkqyPD5NQm18Qt77h05tuyYb48n6CMIuqZZwOQH4Juf40-kV8ycJ2NT1opNMCUgAUpDj5YNGuRgWn6ZLi7ocFaQmt906ueP4eRWDv0EOsWs8E-BSOuEFtJjNs5ErIRBdTFJrjHVjiymxF1428pGelmTkKRV8sZF-tvDdWGzlZ60sUfzFA1tGOchWNSFd60wLJf_utmzf_r7Fdw92hukB8PD0XNYY2FScoXW24RO-XXhX2D4VtqXjcoQOL1tmfoJ9PxGEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrostatically+Assembled+Sb2S3%2FMXene+Nanocomposites+As+Anode+Materials+for+High-Performance+Lithium-Ion+Batteries&rft.jtitle=Russian+Journal+of+Physical+Chemistry.+A&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0036-0244&rft.eissn=1531-863X&rft.volume=99&rft.issue=3&rft.spage=620&rft.epage=628&rft_id=info:doi/10.1134%2FS0036024424703679&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-0244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-0244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-0244&client=summon |