Activation Volumes in Tribochemistry; What Do They Mean and How to Calculate Them?

Analyzing the effect of pressures and normal and shear stresses on chemical reaction rates, especially those occurring in a contact, remains the subject of controversy in the scientific community. This review article aims to clarify the principles that underpin the calculation of reaction rates base...

Full description

Saved in:
Bibliographic Details
Published inTribology letters Vol. 73; no. 2; p. 40
Main Authors Hopper, Nicholas, Rana, Resham, Sidoroff, François, Cayer-Barrioz, Juliette, Mazuyer, Denis, Tysoe, Wilfred T.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Analyzing the effect of pressures and normal and shear stresses on chemical reaction rates, especially those occurring in a contact, remains the subject of controversy in the scientific community. This review article aims to clarify the principles that underpin the calculation of reaction rates based on transition-state theory (TST) and of activation volumes using a perturbation method of TST proposed by Evans and Polanyi. The goal is to aid researchers to calculate such tribochemical and mechanochemical parameters. In this paper, the fundamental ideas behind the calculation of reaction rates in chemistry are outlined. This article describes how TST is used to account for the large numbers of molecules involved in chemical reactions. The effects of individual stresses, and combination of normal and shear stresses on tribochemical reaction rates can be understood using a thermodynamics analysis. These concepts are illustrated by two examples of normal-stress-modified processes from results in the literature: homogeneous-phase Diels–Alder reactions and the surface decomposition of adsorbed methyl thiolate species on copper. The paper then reviews how to analyze tribochemical processes, which depend on coupled normal and shear stresses, showing that the effective activation volume is composed of multiple elementary-process activation volumes. Compensation effects, in which the pre-exponential factors and the activation volumes are correlated have been found for tribochemical reactions and this arises naturally from the Evans–Polanyi analysis. Finally, the activation volumes themselves depend on the applied stresses due to molecular distortions and a method for gauging the magnitude of these effects is described. Graphical abstract
AbstractList Analyzing the effect of pressures and normal and shear stresses on chemical reaction rates, especially those occurring in a contact, remains the subject of controversy in the scientific community. This review article aims to clarify the principles that underpin the calculation of reaction rates based on transition-state theory (TST) and of activation volumes using a perturbation method of TST proposed by Evans and Polanyi. The goal is to aid researchers to calculate such tribochemical and mechanochemical parameters. In this paper, the fundamental ideas behind the calculation of reaction rates in chemistry are outlined. This article describes how TST is used to account for the large numbers of molecules involved in chemical reactions. The effects of individual stresses, and combination of normal and shear stresses on tribochemical reaction rates can be understood using a thermodynamics analysis. These concepts are illustrated by two examples of normal-stress-modified processes from results in the literature: homogeneous-phase Diels–Alder reactions and the surface decomposition of adsorbed methyl thiolate species on copper. The paper then reviews how to analyze tribochemical processes, which depend on coupled normal and shear stresses, showing that the effective activation volume is composed of multiple elementary-process activation volumes. Compensation effects, in which the pre-exponential factors and the activation volumes are correlated have been found for tribochemical reactions and this arises naturally from the Evans–Polanyi analysis. Finally, the activation volumes themselves depend on the applied stresses due to molecular distortions and a method for gauging the magnitude of these effects is described.
Analyzing the effect of pressures and normal and shear stresses on chemical reaction rates, especially those occurring in a contact, remains the subject of controversy in the scientific community. This review article aims to clarify the principles that underpin the calculation of reaction rates based on transition-state theory (TST) and of activation volumes using a perturbation method of TST proposed by Evans and Polanyi. The goal is to aid researchers to calculate such tribochemical and mechanochemical parameters. In this paper, the fundamental ideas behind the calculation of reaction rates in chemistry are outlined. This article describes how TST is used to account for the large numbers of molecules involved in chemical reactions. The effects of individual stresses, and combination of normal and shear stresses on tribochemical reaction rates can be understood using a thermodynamics analysis. These concepts are illustrated by two examples of normal-stress-modified processes from results in the literature: homogeneous-phase Diels–Alder reactions and the surface decomposition of adsorbed methyl thiolate species on copper. The paper then reviews how to analyze tribochemical processes, which depend on coupled normal and shear stresses, showing that the effective activation volume is composed of multiple elementary-process activation volumes. Compensation effects, in which the pre-exponential factors and the activation volumes are correlated have been found for tribochemical reactions and this arises naturally from the Evans–Polanyi analysis. Finally, the activation volumes themselves depend on the applied stresses due to molecular distortions and a method for gauging the magnitude of these effects is described. Graphical abstract
ArticleNumber 40
Author Hopper, Nicholas
Sidoroff, François
Rana, Resham
Mazuyer, Denis
Tysoe, Wilfred T.
Cayer-Barrioz, Juliette
Author_xml – sequence: 1
  givenname: Nicholas
  surname: Hopper
  fullname: Hopper, Nicholas
  organization: Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee
– sequence: 2
  givenname: Resham
  surname: Rana
  fullname: Rana, Resham
  organization: Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee
– sequence: 3
  givenname: François
  surname: Sidoroff
  fullname: Sidoroff, François
  organization: Laboratoire de Tribologie et Dynamique des Systèmes, CNRS UMR5513, Ecole Centrale de Lyon
– sequence: 4
  givenname: Juliette
  surname: Cayer-Barrioz
  fullname: Cayer-Barrioz, Juliette
  organization: Laboratoire de Tribologie et Dynamique des Systèmes, CNRS UMR5513, Ecole Centrale de Lyon
– sequence: 5
  givenname: Denis
  surname: Mazuyer
  fullname: Mazuyer, Denis
  organization: Laboratoire de Tribologie et Dynamique des Systèmes, CNRS UMR5513, Ecole Centrale de Lyon
– sequence: 6
  givenname: Wilfred T.
  surname: Tysoe
  fullname: Tysoe, Wilfred T.
  email: wtt@uwm.edu
  organization: Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee
BookMark eNp9kF1LwzAUhoNMcJv-Aa8CXkfz0TYNXsiYHxMUQaZehtM0cx1tM5NU2b-3s4J3Xp0D533eA88EjVrXWoROGT1nlMqLwBhPFKE8JZQpmZLkAI1ZKgXhkrFRv1MuSJ7n4ghNQthQ2mN5OkbPMxOrT4iVa_Grq7vGBly1eOmrwpm1baoQ_e4Sv60h4muHl2u7w48WWgxtiRfuC0eH51CbroZo9-fm6hgdrqAO9uR3TtHL7c1yviAPT3f389kDMVzSSApuipTxtCyBgUpBqMRyW2RlQg1TtBACbMZkCXlJwRgjyzxbQcJAMppzpcQUnQ29W-8-Ohui3rjOt_1LLZikmcoSkfUpPqSMdyF4u9JbXzXgd5pRvXenB3e6d6d_3Omkh8QAhT7cvlv_V_0P9Q3TwXKS
Cites_doi 10.1103/PhysRevB.71.045413
10.1103/PhysRevB.84.125419
10.1002/anie.201705427
10.1126/science.274.5284.65
10.1016/S0032-5910(99)00200-4
10.1016/j.wear.2011.08.022
10.1126/science.347575
10.1088/0953-8984/24/26/265001
10.1002/jcc.21748
10.1039/D2ME00049K
10.1063/1.1749836
10.1063/1.4932103
10.1039/D0CC02992K
10.1021/cr960068q
10.1098/rspa.1966.0242
10.1088/0022-3719/14/18/001
10.1007/BF00173128
10.1021/ie50583a038
10.1021/jp034447g
10.1007/BF01333114
10.1007/s11249-024-01879-9
10.1002/jcc.24206
10.1103/PhysRevB.86.035443
10.1038/nature07970
10.1021/la010458u
10.1007/s11249-021-01522-x
10.1039/D3CP00980G
10.1007/s11249-021-01407-z
10.1039/tf9383400011
10.1007/BF02590151
10.1007/s11249-016-0664-0
10.1080/10402009808983729
10.1063/1.1858782
10.1002/pssb.2220100212
10.1007/s00214-016-1880-2
10.1139/cjc-2016-0454
10.1063/1.1749604
10.1002/zamm.19280080202
10.1002/zamm.201200097
10.1007/s10910-018-0861-1
10.1007/s11249-017-0832-x
10.1021/acs.jpcb.5b07613
10.1007/s11249-012-0040-7
10.1021/acs.jpca.7b00022
10.1080/00268976.2019.1576930
10.1021/cr030697h
10.1081/CR-100100264
10.1021/ja01868a059
10.1021/ar800202z
10.1002/poc.458
10.1021/la0107852
10.1016/j.bpj.2013.07.039
10.1063/1.1329672
10.1063/1.4994925
10.1039/tf9686400371
10.1021/jp036362l
10.1021/cr60094a007
10.1126/science.1258788
10.1080/14786440608564819
10.1016/B978-0-44-456349-1.00008-8
10.1007/s11249-010-9632-2
10.1021/acs.jpcc.2c03033
10.1039/tf9363201333
10.1039/D4MR00063C
10.1007/s11249-010-9711-4
10.1021/acs.nanolett.6b03457
10.1039/D2FD00123C
10.1016/0022-5096(68)90031-8
10.1007/0-306-46949-9_10
10.1016/j.chom.2008.09.005
10.1088/0953-8984/3/47/026
10.1016/j.bpj.2013.08.016
10.1007/s11249-016-0706-7
10.1002/pssb.19690350116
10.1021/cr9904009
10.1021/cr60314a004
10.1002/jcc.24470
10.1147/rd.165.0504
10.1080/10402009808983731
10.1007/s11249-023-01791-8
10.1103/PhysRevB.80.153408
10.1098/rspa.1982.0048
10.1038/nchem.1540
10.1039/c3cp52181h
10.1038/ncomms7467
10.1007/s11249-015-0544-z
10.1146/annurev.pc.23.100172.001323
10.1023/A:1019151121009
10.1002/qua.25775
10.21203/rs.3.rs-608818/v1
10.1002/qua.25522
10.1007/s11249-021-01419-9
10.1021/cr970461b
10.1063/1.1323224
10.1039/tf9353100875
10.1016/S0032-5910(99)00175-8
10.1021/ja4051108
10.1021/acs.jpcc.3c00756
10.1016/j.susc.2010.12.026
10.1351/pac200173081349
10.1063/1.481330
10.1063/1.4960955
10.1016/0042-207X(62)90978-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
DOI 10.1007/s11249-025-01975-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-2711
ExternalDocumentID 10_1007_s11249_025_01975_4
GrantInformation_xml – fundername: US National Science Foundation
GroupedDBID -Y2
-~C
.86
06C
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
MQGED
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PDBOC
PF0
PHGZM
PHGZT
PT4
PT5
PTHSS
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
YLTOR
Z45
ZMTXR
~EX
~KM
AAYXX
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-b2cb5125dda1a95a394e2eb6d40c190b33ae617da8d0accc7d86fa41a71082993
IEDL.DBID U2A
ISSN 1023-8883
IngestDate Fri Jul 25 11:08:47 EDT 2025
Thu Jul 03 08:47:15 EDT 2025
Wed Jun 25 02:38:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Tribochemistry
Evans-Polanyi
Compenation effect
Shear activation
Activation volume
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-b2cb5125dda1a95a394e2eb6d40c190b33ae617da8d0accc7d86fa41a71082993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3170696436
PQPubID 2043827
ParticipantIDs proquest_journals_3170696436
crossref_primary_10_1007_s11249_025_01975_4
springer_journals_10_1007_s11249_025_01975_4
PublicationCentury 2000
PublicationDate 20250600
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Tribology letters
PublicationTitleAbbrev Tribol Lett
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References PV Kotvis (1975_CR3) 1998; 41
MG Evans (1975_CR16) 1936; 32
FH Branin (1975_CR102) 1972; 16
PA Redhead (1975_CR89) 1962; 12
W Quapp (1975_CR99) 2018; 118
JM Georges (1975_CR79) 1991; 3
G Henkelman (1975_CR10) 2000; 113
1975_CR19
TL Hill (1975_CR52) 1956
S Vollmer (1975_CR74) 2001; 17
C Zhu (1975_CR108) 2005; 2
1975_CR93
DA Davis (1975_CR28) 2009; 459
F Ree (1975_CR46) 1958; 50
G Henkelman (1975_CR11) 2002
OV Prezhdo (1975_CR105) 2009; 42
GC Bond (1975_CR92) 2000; 42
HM Klukovich (1975_CR29) 2013; 5
MK Beyer (1975_CR23) 2000; 112
D Sheppard (1975_CR12) 2011; 32
NN Gosvami (1975_CR110) 2015; 348
H Spikes (1975_CR22) 2015; 59
1975_CR85
L Prandtl (1975_CR35) 1928; 8
JA Greenwood (1975_CR81) 1966; 295
E Gnecco (1975_CR43) 2012; 86
1975_CR80
J Gao (1975_CR83) 2004; 108
RW Carpick (1975_CR76) 1997; 97
T Asano (1975_CR7) 1978; 78
W Quapp (1975_CR96) 2016; 37
W Quapp (1975_CR101) 2019; 117
JN Murrell (1975_CR21) 1968; 64
B Chen (1975_CR62) 2017; 56
N Hopper (1975_CR55) 2023; 71
P Seema (1975_CR31) 2013; 15
JR Rice (1975_CR51) 1983; 121
SSM Konda (1975_CR57) 2013; 135
R Hill (1975_CR5) 1968; 16
B Derjaguin (1975_CR82) 1934; 88
M Remoissenet (1975_CR103) 1981; 14
1975_CR71
R Rana (1975_CR72) 2021; 69
W Quapp (1975_CR95) 2016; 135
1975_CR70
JM Bofill (1975_CR98) 2017; 147
AE Stearn (1975_CR73) 1941; 29
C Fusco (1975_CR38) 2005; 71
M Müser (1975_CR40) 2011; 84
E Cremer (1975_CR91) 1955
1975_CR63
TL Hill (1975_CR54) 2012
O Furlong (1975_CR88) 2011; 605
OJ Furlong (1975_CR66) 2011; 41
A Boscoboinik (1975_CR64) 2020; 56
TJ Blunt (1975_CR2) 1996; 2
S Raghuraman (1975_CR109) 2017; 17
E Pollak (1975_CR53) 2005; 15
EV Sokurenko (1975_CR107) 2008; 4
BJ Briscoe (1975_CR84) 1982; 380
T Bligaard (1975_CR90) 2003; 107
W Tysoe (1975_CR48) 2017; 65
H Adams (1975_CR67) 2016; 62
OJ Furlong (1975_CR47) 2010; 39
GA Tomlinson (1975_CR36) 1929; 7
Y Dong (1975_CR42) 2012; 24
1975_CR50
R Cammi (1975_CR61) 2015; 36
1975_CR1
1975_CR49
H Eyring (1975_CR44) 1936; 4
J Zhang (1975_CR75) 2016; 63
1975_CR8
O Furlong (1975_CR68) 2012; 274–275
F Abouhadid (1975_CR78) 2021; 69
B Peters (1975_CR13) 2017
CA Eckert (1975_CR6) 1972; 23
G Henkelman (1975_CR9) 2000; 113
VL Popov (1975_CR41) 2012; 92
R Rana (1975_CR86) 2024; 72
1975_CR39
J Zhang (1975_CR94) 2022; 7
G Bell (1975_CR59) 1978; 200
TJ Blunt (1975_CR4) 1998; 41
FK Urakaev (1975_CR25) 2000; 107
1975_CR30
W Quapp (1975_CR34) 2018; 118
G Jenner (1975_CR18) 2002; 15
SM Avdoshenko (1975_CR58) 2016; 120
N Hopper (1975_CR65) 2023; 25
1975_CR104
1975_CR106
H Eyring (1975_CR20) 1935; 3
MK Beyer (1975_CR27) 2005; 105
J Spooner (1975_CR14) 2016; 95
W Quapp (1975_CR97) 2017; 121
N Sasaki (1975_CR37) 1998; 4
SK Jha (1975_CR33) 2016; 145
J Tomasi (1975_CR60) 2005; 105
1975_CR26
MG Evans (1975_CR15) 1935; 31
G Subramanian (1975_CR32) 2015; 143
A Martini (1975_CR87) 2021; 69
W Kauzmann (1975_CR45) 1940; 62
B Miller (1975_CR69) 2013; 49
W Quapp (1975_CR100) 2018; 56
JJ Gilman (1975_CR24) 1996; 274
MG Evans (1975_CR17) 1938; 34
RA Alberty (1975_CR56) 2001; 73
O Piétrement (1975_CR77) 2001; 17
References_xml – volume: 71
  year: 2005
  ident: 1975_CR38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.045413
– volume: 84
  year: 2011
  ident: 1975_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.125419
– volume-title: An Introduction to Statistical Thermodynamics
  year: 2012
  ident: 1975_CR54
– volume: 56
  start-page: 11126
  year: 2017
  ident: 1975_CR62
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201705427
– volume: 274
  start-page: 65
  year: 1996
  ident: 1975_CR24
  publication-title: Science
  doi: 10.1126/science.274.5284.65
– ident: 1975_CR26
  doi: 10.1016/S0032-5910(99)00200-4
– volume: 274–275
  start-page: 183
  year: 2012
  ident: 1975_CR68
  publication-title: Wear
  doi: 10.1016/j.wear.2011.08.022
– volume: 200
  start-page: 618
  year: 1978
  ident: 1975_CR59
  publication-title: Science
  doi: 10.1126/science.347575
– volume: 24
  year: 2012
  ident: 1975_CR42
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/24/26/265001
– volume: 32
  start-page: 1769
  year: 2011
  ident: 1975_CR12
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21748
– volume: 7
  start-page: 1045
  year: 2022
  ident: 1975_CR94
  publication-title: Mol. Syst. Des. Eng.
  doi: 10.1039/D2ME00049K
– volume: 4
  start-page: 283
  year: 1936
  ident: 1975_CR44
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1749836
– volume: 143
  year: 2015
  ident: 1975_CR32
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4932103
– volume: 56
  start-page: 7730
  year: 2020
  ident: 1975_CR64
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC02992K
– volume: 97
  start-page: 1163
  year: 1997
  ident: 1975_CR76
  publication-title: Chem. Rev.
  doi: 10.1021/cr960068q
– volume: 295
  start-page: 300
  year: 1966
  ident: 1975_CR81
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1966.0242
– volume: 14
  start-page: L481
  year: 1981
  ident: 1975_CR103
  publication-title: J. Phys. C
  doi: 10.1088/0022-3719/14/18/001
– volume: 2
  start-page: 221
  year: 1996
  ident: 1975_CR2
  publication-title: Tribol. Lett.
  doi: 10.1007/BF00173128
– volume: 2
  start-page: 91
  year: 2005
  ident: 1975_CR108
  publication-title: Mol. Cell. Biomech.
– volume: 50
  start-page: 1036
  year: 1958
  ident: 1975_CR46
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50583a038
– volume: 107
  start-page: 9325
  year: 2003
  ident: 1975_CR90
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp034447g
– volume: 88
  start-page: 661
  year: 1934
  ident: 1975_CR82
  publication-title: Z. Phys.
  doi: 10.1007/BF01333114
– ident: 1975_CR1
– volume: 72
  start-page: 76
  year: 2024
  ident: 1975_CR86
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-024-01879-9
– volume: 36
  start-page: 2246
  year: 2015
  ident: 1975_CR61
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24206
– volume: 86
  year: 2012
  ident: 1975_CR43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.035443
– volume: 459
  start-page: 68
  year: 2009
  ident: 1975_CR28
  publication-title: Nature
  doi: 10.1038/nature07970
– volume: 17
  start-page: 6540
  year: 2001
  ident: 1975_CR77
  publication-title: Langmuir
  doi: 10.1021/la010458u
– volume: 69
  start-page: 150
  year: 2021
  ident: 1975_CR87
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-021-01522-x
– volume: 25
  start-page: 15855
  year: 2023
  ident: 1975_CR65
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D3CP00980G
– volume: 69
  start-page: 32
  year: 2021
  ident: 1975_CR72
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-021-01407-z
– volume: 34
  start-page: 11
  year: 1938
  ident: 1975_CR17
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9383400011
– volume: 121
  start-page: 443
  year: 1983
  ident: 1975_CR51
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/BF02590151
– volume: 62
  start-page: 1
  year: 2016
  ident: 1975_CR67
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-016-0664-0
– volume: 41
  start-page: 117
  year: 1998
  ident: 1975_CR3
  publication-title: Tribol. Trans.
  doi: 10.1080/10402009808983729
– volume: 15
  year: 2005
  ident: 1975_CR53
  publication-title: Chaos
  doi: 10.1063/1.1858782
– ident: 1975_CR49
  doi: 10.1002/pssb.2220100212
– volume: 135
  start-page: 113
  year: 2016
  ident: 1975_CR95
  publication-title: Theoret. Chem. Acc.
  doi: 10.1007/s00214-016-1880-2
– volume: 95
  start-page: 149
  year: 2016
  ident: 1975_CR14
  publication-title: Can. J. Chem.
  doi: 10.1139/cjc-2016-0454
– volume: 3
  start-page: 107
  year: 1935
  ident: 1975_CR20
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1749604
– volume: 8
  start-page: 85
  year: 1928
  ident: 1975_CR35
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.19280080202
– volume: 92
  start-page: 683
  year: 2012
  ident: 1975_CR41
  publication-title: ZAMM
  doi: 10.1002/zamm.201200097
– volume: 56
  start-page: 1339
  year: 2018
  ident: 1975_CR100
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-018-0861-1
– volume: 65
  start-page: 48
  year: 2017
  ident: 1975_CR48
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-017-0832-x
– volume: 120
  start-page: 1537
  year: 2016
  ident: 1975_CR58
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.5b07613
– volume: 49
  start-page: 39
  year: 2013
  ident: 1975_CR69
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-012-0040-7
– volume: 121
  start-page: 2820
  year: 2017
  ident: 1975_CR97
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.7b00022
– volume: 117
  start-page: 1541
  year: 2019
  ident: 1975_CR101
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2019.1576930
– volume: 105
  start-page: 2921
  year: 2005
  ident: 1975_CR27
  publication-title: Chem. Rev.
  doi: 10.1021/cr030697h
– volume: 42
  start-page: 323
  year: 2000
  ident: 1975_CR92
  publication-title: Catal. Rev.
  doi: 10.1081/CR-100100264
– volume: 62
  start-page: 3113
  year: 1940
  ident: 1975_CR45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01868a059
– volume: 42
  start-page: 693
  year: 2009
  ident: 1975_CR105
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800202z
– volume: 15
  start-page: 1
  year: 2002
  ident: 1975_CR18
  publication-title: J. Phys. Org. Chem.
  doi: 10.1002/poc.458
– volume: 17
  start-page: 7560
  year: 2001
  ident: 1975_CR74
  publication-title: Langmuir
  doi: 10.1021/la0107852
– ident: 1975_CR106
  doi: 10.1016/j.bpj.2013.07.039
– volume: 113
  start-page: 9901
  year: 2000
  ident: 1975_CR9
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– ident: 1975_CR80
– volume: 147
  year: 2017
  ident: 1975_CR98
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4994925
– volume: 64
  start-page: 371
  year: 1968
  ident: 1975_CR21
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9686400371
– volume: 108
  start-page: 3410
  year: 2004
  ident: 1975_CR83
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp036362l
– volume: 29
  start-page: 509
  year: 1941
  ident: 1975_CR73
  publication-title: Chem. Rev.
  doi: 10.1021/cr60094a007
– volume: 348
  start-page: 102
  year: 2015
  ident: 1975_CR110
  publication-title: Science
  doi: 10.1126/science.1258788
– volume: 7
  start-page: 905
  year: 1929
  ident: 1975_CR36
  publication-title: Phil. Mag.
  doi: 10.1080/14786440608564819
– start-page: 183
  volume-title: Reaction Rate Theory and Rare Events Simulations
  year: 2017
  ident: 1975_CR13
  doi: 10.1016/B978-0-44-456349-1.00008-8
– volume: 39
  start-page: 177
  year: 2010
  ident: 1975_CR47
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-010-9632-2
– ident: 1975_CR70
  doi: 10.1021/acs.jpcc.2c03033
– volume: 32
  start-page: 1333
  year: 1936
  ident: 1975_CR16
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9363201333
– ident: 1975_CR63
  doi: 10.1039/D4MR00063C
– volume: 41
  start-page: 257
  year: 2011
  ident: 1975_CR66
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-010-9711-4
– volume: 17
  start-page: 2111
  year: 2017
  ident: 1975_CR109
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03457
– volume-title: Statistical Mechanics: Principles and Selected Applications
  year: 1956
  ident: 1975_CR52
– ident: 1975_CR85
  doi: 10.1039/D2FD00123C
– volume: 16
  start-page: 229
  year: 1968
  ident: 1975_CR5
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(68)90031-8
– start-page: 269
  volume-title: Theoretical Methods in Condensed Phase Chemistry
  year: 2002
  ident: 1975_CR11
  doi: 10.1007/0-306-46949-9_10
– volume: 4
  start-page: 314
  year: 2008
  ident: 1975_CR107
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2008.09.005
– volume: 3
  start-page: 9545
  year: 1991
  ident: 1975_CR79
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/3/47/026
– ident: 1975_CR104
  doi: 10.1016/j.bpj.2013.08.016
– volume: 63
  start-page: 1
  year: 2016
  ident: 1975_CR75
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-016-0706-7
– ident: 1975_CR50
  doi: 10.1002/pssb.19690350116
– volume: 105
  start-page: 2999
  year: 2005
  ident: 1975_CR60
  publication-title: Chem. Rev.
  doi: 10.1021/cr9904009
– volume: 78
  start-page: 407
  year: 1978
  ident: 1975_CR7
  publication-title: Chem. Rev.
  doi: 10.1021/cr60314a004
– volume: 37
  start-page: 2467
  year: 2016
  ident: 1975_CR96
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24470
– volume: 16
  start-page: 504
  year: 1972
  ident: 1975_CR102
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.165.0504
– volume: 41
  start-page: 129
  year: 1998
  ident: 1975_CR4
  publication-title: Tribol. Trans.
  doi: 10.1080/10402009808983731
– start-page: 75
  volume-title: Advances in Catalysis
  year: 1955
  ident: 1975_CR91
– volume: 71
  start-page: 121
  year: 2023
  ident: 1975_CR55
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-023-01791-8
– ident: 1975_CR39
  doi: 10.1103/PhysRevB.80.153408
– volume: 380
  start-page: 389
  year: 1982
  ident: 1975_CR84
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1982.0048
– volume: 5
  start-page: 110
  year: 2013
  ident: 1975_CR29
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1540
– volume: 15
  start-page: 16001
  year: 2013
  ident: 1975_CR31
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp52181h
– ident: 1975_CR30
  doi: 10.1038/ncomms7467
– volume: 59
  start-page: 1
  year: 2015
  ident: 1975_CR22
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-015-0544-z
– volume: 23
  start-page: 239
  year: 1972
  ident: 1975_CR6
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.23.100172.001323
– volume: 4
  start-page: 125
  year: 1998
  ident: 1975_CR37
  publication-title: Tribol. Lett.
  doi: 10.1023/A:1019151121009
– volume: 118
  year: 2018
  ident: 1975_CR34
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.25775
– ident: 1975_CR93
  doi: 10.21203/rs.3.rs-608818/v1
– volume: 118
  year: 2018
  ident: 1975_CR99
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.25522
– volume: 69
  start-page: 46
  year: 2021
  ident: 1975_CR78
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-021-01419-9
– ident: 1975_CR19
– ident: 1975_CR8
  doi: 10.1021/cr970461b
– volume: 113
  start-page: 9978
  year: 2000
  ident: 1975_CR10
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1323224
– volume: 31
  start-page: 875
  year: 1935
  ident: 1975_CR15
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9353100875
– volume: 107
  start-page: 93
  year: 2000
  ident: 1975_CR25
  publication-title: Theory. Powder Technol.
  doi: 10.1016/S0032-5910(99)00175-8
– volume: 135
  start-page: 12722
  year: 2013
  ident: 1975_CR57
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4051108
– ident: 1975_CR71
  doi: 10.1021/acs.jpcc.3c00756
– volume: 605
  start-page: 606
  year: 2011
  ident: 1975_CR88
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2010.12.026
– volume: 73
  start-page: 1349
  year: 2001
  ident: 1975_CR56
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200173081349
– volume: 112
  start-page: 7307
  year: 2000
  ident: 1975_CR23
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481330
– volume: 145
  year: 2016
  ident: 1975_CR33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4960955
– volume: 12
  start-page: 203
  year: 1962
  ident: 1975_CR89
  publication-title: Vacuum
  doi: 10.1016/0042-207X(62)90978-8
SSID ssj0010085
Score 2.4373827
SecondaryResourceType review_article
Snippet Analyzing the effect of pressures and normal and shear stresses on chemical reaction rates, especially those occurring in a contact, remains the subject of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 40
SubjectTerms Chemical reactions
Chemistry and Materials Science
Contact stresses
Corrosion and Coatings
Decomposition reactions
Diels-Alder reactions
Materials Science
Mathematical analysis
Nanotechnology
Perturbation methods
Physical Chemistry
Review
Shear stress
Surfaces and Interfaces
Theoretical and Applied Mechanics
Thin Films
Tribochemistry
Tribology
Title Activation Volumes in Tribochemistry; What Do They Mean and How to Calculate Them?
URI https://link.springer.com/article/10.1007/s11249-025-01975-4
https://www.proquest.com/docview/3170696436
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66XfQg_sTpHDl400DNjzbFg5S5OZR5ECfzVNIkA0FbcRXxv_cla62KHjynpPBemve9vve-D6HDwAiRSRUTOgsZ4UproiRlRBvBokCHMvPagOPrcDThl1MxrYbC5nW3e12S9Dd1M-zmdJKJk18FWBIJwpdRW0Du7hq5JjT5rB04FOFrnPBKyO9YNSrz-x7fw1GDMX-URX20Ga6jtQom4mTh1w20ZPNNtPqFPHAL3SS6libDd_6OmeOHHDsqEKeCtZBxO8WOmxufFxjOwzseW5VjlRs8Kt5wWeC-enR9qKV1y09n22gyHNz2R6RSSCCaRkFJMqoziNjCGHWiYqFYzC21WWh4oCHSZ4wpCxDFKGkCcIOOjAxnip8owBUSAhHbQa28yO0uwpCZUKslt1bMOGQdMbgJ4IBUmmaAEqIOOqoNlT4viDDShvLYmTUFs6berCnvoG5ty7T6KOYpc1Q9jv8r7KDj2r7N8t-77f3v8X20Qr2L3b-SLmqVL6_2AKBDmfVQO7m4vxr0_In5ALLXufk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NSwMxEB20HtSD-In1Mwc9aWBNsrspIlKsUrXtQVrxtmaTFATdil0R_48_1Em6a1X04MFzlpBMJpk3O8l7ADuBCcNUqhpl_YhTobSmSjJOtQl5HOhIpl4bsN2Jmj1xcRPeTMBb-RbG33YvS5L-pB4_dnM6ydTJryIsiUMqiquUl_b1BRO14dF5A1d1l7Gz0-5JkxZaAlSzOMhpynSKsS00Rh2oWqh4TVhm08iIQGNMTDlXFoO5UdIEOGAdGxn1lThQGIElHtkc-52EKQQf0u2dHqt_1CocavE1VZwi5pO8eJrz85i_hr8xpv1WhvXR7Wwe5gpYSuojP1qACZstwuwnssIluKrrUgqNXPszbUjuMuKoR5zq1kg27pA4LnDSGBD0v1fStiojKjOkOXgh-YCcqHt37zW3rvnheBl6_2LFFahkg8yuAsFMiFkthbVhX2CWU0O3QPghlWYpopK4CnuloZLHEfFGMqZYdmZN0KyJN2siqrBR2jIpNuEw4Y4ayPGNRVXYL-07bv69t7W_fb4N081uu5W0zjuX6zDD_HK7_zQbUMmfnu0mwpY83fJeQ-D2v930HUOq9hQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB60guhBfGK1ag560uCaZB9FREprqU9ErHhbs0kWBN0Vu1L6r_yJTra7VkUPHnreJWQnk8w3O5nvA9h2tOtGgaxTFnucCqkUlQHjVGmX-47ygijXBry88jpdcXbv3k_Ae9kLk992L0uSw54Gy9KUZPsvOt4fNb5ZzWRqpVgRovguFcW1ynMz6GPS1js6beEK7zDWPrltdmihK0AV852MRkxFGOdcreWBrLuS14VhJvK0cBTGx4hzaTCwaxloByevfB14sRQHEqNxgMc3x3EnYUrY7mPcQV3W-KxbWAST11fxczG35EWbzu9z_h4KR_j2R0k2j3TteZgrICppDH1qASZMsgizX4gLl-CmoUpZNHKXn2898pgQS0NiFbiGEnKHxPKCk1ZK0BcH5NLIhMhEk07aJ1lKmvLJ3oHNjH38fLwM3bFYcQUqSZqYVSCYFTGjAmGMGwvMeOroIghFAqlYhAjFr8JuaajwZUjCEY7olq1ZQzRrmJs1FFWolbYMiw3ZC7mlCbLcY14V9kr7jh7_Pdra_17fgunrVju8OL06X4cZlq-2_WVTg0r2-mY2EMFk0WbuNAQexu2lHwLJ-kc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activation+Volumes+in+Tribochemistry%3B+What+Do+They+Mean+and+How+to+Calculate+Them%3F&rft.jtitle=Tribology+letters&rft.au=Hopper%2C+Nicholas&rft.au=Rana%2C+Resham&rft.au=Sidoroff%2C+Fran%C3%A7ois&rft.au=Cayer-Barrioz%2C+Juliette&rft.date=2025-06-01&rft.issn=1023-8883&rft.eissn=1573-2711&rft.volume=73&rft.issue=2&rft_id=info:doi/10.1007%2Fs11249-025-01975-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11249_025_01975_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1023-8883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1023-8883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1023-8883&client=summon