Activation Volumes in Tribochemistry; What Do They Mean and How to Calculate Them?
Analyzing the effect of pressures and normal and shear stresses on chemical reaction rates, especially those occurring in a contact, remains the subject of controversy in the scientific community. This review article aims to clarify the principles that underpin the calculation of reaction rates base...
Saved in:
Published in | Tribology letters Vol. 73; no. 2; p. 40 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Analyzing the effect of pressures and normal and shear stresses on chemical reaction rates, especially those occurring in a contact, remains the subject of controversy in the scientific community. This review article aims to clarify the principles that underpin the calculation of reaction rates based on transition-state theory (TST) and of activation volumes using a perturbation method of TST proposed by Evans and Polanyi. The goal is to aid researchers to calculate such tribochemical and mechanochemical parameters. In this paper, the fundamental ideas behind the calculation of reaction rates in chemistry are outlined. This article describes how TST is used to account for the large numbers of molecules involved in chemical reactions. The effects of individual stresses, and combination of normal and shear stresses on tribochemical reaction rates can be understood using a thermodynamics analysis. These concepts are illustrated by two examples of normal-stress-modified processes from results in the literature: homogeneous-phase Diels–Alder reactions and the surface decomposition of adsorbed methyl thiolate species on copper. The paper then reviews how to analyze tribochemical processes, which depend on coupled normal and shear stresses, showing that the effective activation volume is composed of multiple elementary-process activation volumes. Compensation effects, in which the pre-exponential factors and the activation volumes are correlated have been found for tribochemical reactions and this arises naturally from the Evans–Polanyi analysis. Finally, the activation volumes themselves depend on the applied stresses due to molecular distortions and a method for gauging the magnitude of these effects is described.
Graphical abstract |
---|---|
AbstractList | Analyzing the effect of pressures and normal and shear stresses on chemical reaction rates, especially those occurring in a contact, remains the subject of controversy in the scientific community. This review article aims to clarify the principles that underpin the calculation of reaction rates based on transition-state theory (TST) and of activation volumes using a perturbation method of TST proposed by Evans and Polanyi. The goal is to aid researchers to calculate such tribochemical and mechanochemical parameters. In this paper, the fundamental ideas behind the calculation of reaction rates in chemistry are outlined. This article describes how TST is used to account for the large numbers of molecules involved in chemical reactions. The effects of individual stresses, and combination of normal and shear stresses on tribochemical reaction rates can be understood using a thermodynamics analysis. These concepts are illustrated by two examples of normal-stress-modified processes from results in the literature: homogeneous-phase Diels–Alder reactions and the surface decomposition of adsorbed methyl thiolate species on copper. The paper then reviews how to analyze tribochemical processes, which depend on coupled normal and shear stresses, showing that the effective activation volume is composed of multiple elementary-process activation volumes. Compensation effects, in which the pre-exponential factors and the activation volumes are correlated have been found for tribochemical reactions and this arises naturally from the Evans–Polanyi analysis. Finally, the activation volumes themselves depend on the applied stresses due to molecular distortions and a method for gauging the magnitude of these effects is described. Analyzing the effect of pressures and normal and shear stresses on chemical reaction rates, especially those occurring in a contact, remains the subject of controversy in the scientific community. This review article aims to clarify the principles that underpin the calculation of reaction rates based on transition-state theory (TST) and of activation volumes using a perturbation method of TST proposed by Evans and Polanyi. The goal is to aid researchers to calculate such tribochemical and mechanochemical parameters. In this paper, the fundamental ideas behind the calculation of reaction rates in chemistry are outlined. This article describes how TST is used to account for the large numbers of molecules involved in chemical reactions. The effects of individual stresses, and combination of normal and shear stresses on tribochemical reaction rates can be understood using a thermodynamics analysis. These concepts are illustrated by two examples of normal-stress-modified processes from results in the literature: homogeneous-phase Diels–Alder reactions and the surface decomposition of adsorbed methyl thiolate species on copper. The paper then reviews how to analyze tribochemical processes, which depend on coupled normal and shear stresses, showing that the effective activation volume is composed of multiple elementary-process activation volumes. Compensation effects, in which the pre-exponential factors and the activation volumes are correlated have been found for tribochemical reactions and this arises naturally from the Evans–Polanyi analysis. Finally, the activation volumes themselves depend on the applied stresses due to molecular distortions and a method for gauging the magnitude of these effects is described. Graphical abstract |
ArticleNumber | 40 |
Author | Hopper, Nicholas Sidoroff, François Rana, Resham Mazuyer, Denis Tysoe, Wilfred T. Cayer-Barrioz, Juliette |
Author_xml | – sequence: 1 givenname: Nicholas surname: Hopper fullname: Hopper, Nicholas organization: Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee – sequence: 2 givenname: Resham surname: Rana fullname: Rana, Resham organization: Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee – sequence: 3 givenname: François surname: Sidoroff fullname: Sidoroff, François organization: Laboratoire de Tribologie et Dynamique des Systèmes, CNRS UMR5513, Ecole Centrale de Lyon – sequence: 4 givenname: Juliette surname: Cayer-Barrioz fullname: Cayer-Barrioz, Juliette organization: Laboratoire de Tribologie et Dynamique des Systèmes, CNRS UMR5513, Ecole Centrale de Lyon – sequence: 5 givenname: Denis surname: Mazuyer fullname: Mazuyer, Denis organization: Laboratoire de Tribologie et Dynamique des Systèmes, CNRS UMR5513, Ecole Centrale de Lyon – sequence: 6 givenname: Wilfred T. surname: Tysoe fullname: Tysoe, Wilfred T. email: wtt@uwm.edu organization: Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee |
BookMark | eNp9kF1LwzAUhoNMcJv-Aa8CXkfz0TYNXsiYHxMUQaZehtM0cx1tM5NU2b-3s4J3Xp0D533eA88EjVrXWoROGT1nlMqLwBhPFKE8JZQpmZLkAI1ZKgXhkrFRv1MuSJ7n4ghNQthQ2mN5OkbPMxOrT4iVa_Grq7vGBly1eOmrwpm1baoQ_e4Sv60h4muHl2u7w48WWgxtiRfuC0eH51CbroZo9-fm6hgdrqAO9uR3TtHL7c1yviAPT3f389kDMVzSSApuipTxtCyBgUpBqMRyW2RlQg1TtBACbMZkCXlJwRgjyzxbQcJAMppzpcQUnQ29W-8-Ohui3rjOt_1LLZikmcoSkfUpPqSMdyF4u9JbXzXgd5pRvXenB3e6d6d_3Omkh8QAhT7cvlv_V_0P9Q3TwXKS |
Cites_doi | 10.1103/PhysRevB.71.045413 10.1103/PhysRevB.84.125419 10.1002/anie.201705427 10.1126/science.274.5284.65 10.1016/S0032-5910(99)00200-4 10.1016/j.wear.2011.08.022 10.1126/science.347575 10.1088/0953-8984/24/26/265001 10.1002/jcc.21748 10.1039/D2ME00049K 10.1063/1.1749836 10.1063/1.4932103 10.1039/D0CC02992K 10.1021/cr960068q 10.1098/rspa.1966.0242 10.1088/0022-3719/14/18/001 10.1007/BF00173128 10.1021/ie50583a038 10.1021/jp034447g 10.1007/BF01333114 10.1007/s11249-024-01879-9 10.1002/jcc.24206 10.1103/PhysRevB.86.035443 10.1038/nature07970 10.1021/la010458u 10.1007/s11249-021-01522-x 10.1039/D3CP00980G 10.1007/s11249-021-01407-z 10.1039/tf9383400011 10.1007/BF02590151 10.1007/s11249-016-0664-0 10.1080/10402009808983729 10.1063/1.1858782 10.1002/pssb.2220100212 10.1007/s00214-016-1880-2 10.1139/cjc-2016-0454 10.1063/1.1749604 10.1002/zamm.19280080202 10.1002/zamm.201200097 10.1007/s10910-018-0861-1 10.1007/s11249-017-0832-x 10.1021/acs.jpcb.5b07613 10.1007/s11249-012-0040-7 10.1021/acs.jpca.7b00022 10.1080/00268976.2019.1576930 10.1021/cr030697h 10.1081/CR-100100264 10.1021/ja01868a059 10.1021/ar800202z 10.1002/poc.458 10.1021/la0107852 10.1016/j.bpj.2013.07.039 10.1063/1.1329672 10.1063/1.4994925 10.1039/tf9686400371 10.1021/jp036362l 10.1021/cr60094a007 10.1126/science.1258788 10.1080/14786440608564819 10.1016/B978-0-44-456349-1.00008-8 10.1007/s11249-010-9632-2 10.1021/acs.jpcc.2c03033 10.1039/tf9363201333 10.1039/D4MR00063C 10.1007/s11249-010-9711-4 10.1021/acs.nanolett.6b03457 10.1039/D2FD00123C 10.1016/0022-5096(68)90031-8 10.1007/0-306-46949-9_10 10.1016/j.chom.2008.09.005 10.1088/0953-8984/3/47/026 10.1016/j.bpj.2013.08.016 10.1007/s11249-016-0706-7 10.1002/pssb.19690350116 10.1021/cr9904009 10.1021/cr60314a004 10.1002/jcc.24470 10.1147/rd.165.0504 10.1080/10402009808983731 10.1007/s11249-023-01791-8 10.1103/PhysRevB.80.153408 10.1098/rspa.1982.0048 10.1038/nchem.1540 10.1039/c3cp52181h 10.1038/ncomms7467 10.1007/s11249-015-0544-z 10.1146/annurev.pc.23.100172.001323 10.1023/A:1019151121009 10.1002/qua.25775 10.21203/rs.3.rs-608818/v1 10.1002/qua.25522 10.1007/s11249-021-01419-9 10.1021/cr970461b 10.1063/1.1323224 10.1039/tf9353100875 10.1016/S0032-5910(99)00175-8 10.1021/ja4051108 10.1021/acs.jpcc.3c00756 10.1016/j.susc.2010.12.026 10.1351/pac200173081349 10.1063/1.481330 10.1063/1.4960955 10.1016/0042-207X(62)90978-8 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jun 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jun 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11249-025-01975-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-2711 |
ExternalDocumentID | 10_1007_s11249_025_01975_4 |
GrantInformation_xml | – fundername: US National Science Foundation |
GroupedDBID | -Y2 -~C .86 06C 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- MQGED N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PDBOC PF0 PHGZM PHGZT PT4 PT5 PTHSS QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 YLTOR Z45 ZMTXR ~EX ~KM AAYXX CITATION ABRTQ |
ID | FETCH-LOGICAL-c270t-b2cb5125dda1a95a394e2eb6d40c190b33ae617da8d0accc7d86fa41a71082993 |
IEDL.DBID | U2A |
ISSN | 1023-8883 |
IngestDate | Fri Jul 25 11:08:47 EDT 2025 Thu Jul 03 08:47:15 EDT 2025 Wed Jun 25 02:38:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Tribochemistry Evans-Polanyi Compenation effect Shear activation Activation volume |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-b2cb5125dda1a95a394e2eb6d40c190b33ae617da8d0accc7d86fa41a71082993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3170696436 |
PQPubID | 2043827 |
ParticipantIDs | proquest_journals_3170696436 crossref_primary_10_1007_s11249_025_01975_4 springer_journals_10_1007_s11249_025_01975_4 |
PublicationCentury | 2000 |
PublicationDate | 20250600 2025-06-00 20250601 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 6 year: 2025 text: 20250600 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Tribology letters |
PublicationTitleAbbrev | Tribol Lett |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | PV Kotvis (1975_CR3) 1998; 41 MG Evans (1975_CR16) 1936; 32 FH Branin (1975_CR102) 1972; 16 PA Redhead (1975_CR89) 1962; 12 W Quapp (1975_CR99) 2018; 118 JM Georges (1975_CR79) 1991; 3 G Henkelman (1975_CR10) 2000; 113 1975_CR19 TL Hill (1975_CR52) 1956 S Vollmer (1975_CR74) 2001; 17 C Zhu (1975_CR108) 2005; 2 1975_CR93 DA Davis (1975_CR28) 2009; 459 F Ree (1975_CR46) 1958; 50 G Henkelman (1975_CR11) 2002 OV Prezhdo (1975_CR105) 2009; 42 GC Bond (1975_CR92) 2000; 42 HM Klukovich (1975_CR29) 2013; 5 MK Beyer (1975_CR23) 2000; 112 D Sheppard (1975_CR12) 2011; 32 NN Gosvami (1975_CR110) 2015; 348 H Spikes (1975_CR22) 2015; 59 1975_CR85 L Prandtl (1975_CR35) 1928; 8 JA Greenwood (1975_CR81) 1966; 295 E Gnecco (1975_CR43) 2012; 86 1975_CR80 J Gao (1975_CR83) 2004; 108 RW Carpick (1975_CR76) 1997; 97 T Asano (1975_CR7) 1978; 78 W Quapp (1975_CR96) 2016; 37 W Quapp (1975_CR101) 2019; 117 JN Murrell (1975_CR21) 1968; 64 B Chen (1975_CR62) 2017; 56 N Hopper (1975_CR55) 2023; 71 P Seema (1975_CR31) 2013; 15 JR Rice (1975_CR51) 1983; 121 SSM Konda (1975_CR57) 2013; 135 R Hill (1975_CR5) 1968; 16 B Derjaguin (1975_CR82) 1934; 88 M Remoissenet (1975_CR103) 1981; 14 1975_CR71 R Rana (1975_CR72) 2021; 69 W Quapp (1975_CR95) 2016; 135 1975_CR70 JM Bofill (1975_CR98) 2017; 147 AE Stearn (1975_CR73) 1941; 29 C Fusco (1975_CR38) 2005; 71 M Müser (1975_CR40) 2011; 84 E Cremer (1975_CR91) 1955 1975_CR63 TL Hill (1975_CR54) 2012 O Furlong (1975_CR88) 2011; 605 OJ Furlong (1975_CR66) 2011; 41 A Boscoboinik (1975_CR64) 2020; 56 TJ Blunt (1975_CR2) 1996; 2 S Raghuraman (1975_CR109) 2017; 17 E Pollak (1975_CR53) 2005; 15 EV Sokurenko (1975_CR107) 2008; 4 BJ Briscoe (1975_CR84) 1982; 380 T Bligaard (1975_CR90) 2003; 107 W Tysoe (1975_CR48) 2017; 65 H Adams (1975_CR67) 2016; 62 OJ Furlong (1975_CR47) 2010; 39 GA Tomlinson (1975_CR36) 1929; 7 Y Dong (1975_CR42) 2012; 24 1975_CR50 R Cammi (1975_CR61) 2015; 36 1975_CR1 1975_CR49 H Eyring (1975_CR44) 1936; 4 J Zhang (1975_CR75) 2016; 63 1975_CR8 O Furlong (1975_CR68) 2012; 274–275 F Abouhadid (1975_CR78) 2021; 69 B Peters (1975_CR13) 2017 CA Eckert (1975_CR6) 1972; 23 G Henkelman (1975_CR9) 2000; 113 VL Popov (1975_CR41) 2012; 92 R Rana (1975_CR86) 2024; 72 1975_CR39 J Zhang (1975_CR94) 2022; 7 G Bell (1975_CR59) 1978; 200 TJ Blunt (1975_CR4) 1998; 41 FK Urakaev (1975_CR25) 2000; 107 1975_CR30 W Quapp (1975_CR34) 2018; 118 G Jenner (1975_CR18) 2002; 15 SM Avdoshenko (1975_CR58) 2016; 120 N Hopper (1975_CR65) 2023; 25 1975_CR104 1975_CR106 H Eyring (1975_CR20) 1935; 3 MK Beyer (1975_CR27) 2005; 105 J Spooner (1975_CR14) 2016; 95 W Quapp (1975_CR97) 2017; 121 N Sasaki (1975_CR37) 1998; 4 SK Jha (1975_CR33) 2016; 145 J Tomasi (1975_CR60) 2005; 105 1975_CR26 MG Evans (1975_CR15) 1935; 31 G Subramanian (1975_CR32) 2015; 143 A Martini (1975_CR87) 2021; 69 W Kauzmann (1975_CR45) 1940; 62 B Miller (1975_CR69) 2013; 49 W Quapp (1975_CR100) 2018; 56 JJ Gilman (1975_CR24) 1996; 274 MG Evans (1975_CR17) 1938; 34 RA Alberty (1975_CR56) 2001; 73 O Piétrement (1975_CR77) 2001; 17 |
References_xml | – volume: 71 year: 2005 ident: 1975_CR38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.045413 – volume: 84 year: 2011 ident: 1975_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.125419 – volume-title: An Introduction to Statistical Thermodynamics year: 2012 ident: 1975_CR54 – volume: 56 start-page: 11126 year: 2017 ident: 1975_CR62 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201705427 – volume: 274 start-page: 65 year: 1996 ident: 1975_CR24 publication-title: Science doi: 10.1126/science.274.5284.65 – ident: 1975_CR26 doi: 10.1016/S0032-5910(99)00200-4 – volume: 274–275 start-page: 183 year: 2012 ident: 1975_CR68 publication-title: Wear doi: 10.1016/j.wear.2011.08.022 – volume: 200 start-page: 618 year: 1978 ident: 1975_CR59 publication-title: Science doi: 10.1126/science.347575 – volume: 24 year: 2012 ident: 1975_CR42 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/24/26/265001 – volume: 32 start-page: 1769 year: 2011 ident: 1975_CR12 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21748 – volume: 7 start-page: 1045 year: 2022 ident: 1975_CR94 publication-title: Mol. Syst. Des. Eng. doi: 10.1039/D2ME00049K – volume: 4 start-page: 283 year: 1936 ident: 1975_CR44 publication-title: J. Chem. Phys. doi: 10.1063/1.1749836 – volume: 143 year: 2015 ident: 1975_CR32 publication-title: J. Chem. Phys. doi: 10.1063/1.4932103 – volume: 56 start-page: 7730 year: 2020 ident: 1975_CR64 publication-title: Chem. Commun. doi: 10.1039/D0CC02992K – volume: 97 start-page: 1163 year: 1997 ident: 1975_CR76 publication-title: Chem. Rev. doi: 10.1021/cr960068q – volume: 295 start-page: 300 year: 1966 ident: 1975_CR81 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1966.0242 – volume: 14 start-page: L481 year: 1981 ident: 1975_CR103 publication-title: J. Phys. C doi: 10.1088/0022-3719/14/18/001 – volume: 2 start-page: 221 year: 1996 ident: 1975_CR2 publication-title: Tribol. Lett. doi: 10.1007/BF00173128 – volume: 2 start-page: 91 year: 2005 ident: 1975_CR108 publication-title: Mol. Cell. Biomech. – volume: 50 start-page: 1036 year: 1958 ident: 1975_CR46 publication-title: Ind. Eng. Chem. doi: 10.1021/ie50583a038 – volume: 107 start-page: 9325 year: 2003 ident: 1975_CR90 publication-title: J. Phys. Chem. B doi: 10.1021/jp034447g – volume: 88 start-page: 661 year: 1934 ident: 1975_CR82 publication-title: Z. Phys. doi: 10.1007/BF01333114 – ident: 1975_CR1 – volume: 72 start-page: 76 year: 2024 ident: 1975_CR86 publication-title: Tribol. Lett. doi: 10.1007/s11249-024-01879-9 – volume: 36 start-page: 2246 year: 2015 ident: 1975_CR61 publication-title: J. Comput. Chem. doi: 10.1002/jcc.24206 – volume: 86 year: 2012 ident: 1975_CR43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.035443 – volume: 459 start-page: 68 year: 2009 ident: 1975_CR28 publication-title: Nature doi: 10.1038/nature07970 – volume: 17 start-page: 6540 year: 2001 ident: 1975_CR77 publication-title: Langmuir doi: 10.1021/la010458u – volume: 69 start-page: 150 year: 2021 ident: 1975_CR87 publication-title: Tribol. Lett. doi: 10.1007/s11249-021-01522-x – volume: 25 start-page: 15855 year: 2023 ident: 1975_CR65 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D3CP00980G – volume: 69 start-page: 32 year: 2021 ident: 1975_CR72 publication-title: Tribol. Lett. doi: 10.1007/s11249-021-01407-z – volume: 34 start-page: 11 year: 1938 ident: 1975_CR17 publication-title: Trans. Faraday Soc. doi: 10.1039/tf9383400011 – volume: 121 start-page: 443 year: 1983 ident: 1975_CR51 publication-title: Pure Appl. Geophys. doi: 10.1007/BF02590151 – volume: 62 start-page: 1 year: 2016 ident: 1975_CR67 publication-title: Tribol. Lett. doi: 10.1007/s11249-016-0664-0 – volume: 41 start-page: 117 year: 1998 ident: 1975_CR3 publication-title: Tribol. Trans. doi: 10.1080/10402009808983729 – volume: 15 year: 2005 ident: 1975_CR53 publication-title: Chaos doi: 10.1063/1.1858782 – ident: 1975_CR49 doi: 10.1002/pssb.2220100212 – volume: 135 start-page: 113 year: 2016 ident: 1975_CR95 publication-title: Theoret. Chem. Acc. doi: 10.1007/s00214-016-1880-2 – volume: 95 start-page: 149 year: 2016 ident: 1975_CR14 publication-title: Can. J. Chem. doi: 10.1139/cjc-2016-0454 – volume: 3 start-page: 107 year: 1935 ident: 1975_CR20 publication-title: J. Chem. Phys. doi: 10.1063/1.1749604 – volume: 8 start-page: 85 year: 1928 ident: 1975_CR35 publication-title: Z. Angew. Math. Mech. doi: 10.1002/zamm.19280080202 – volume: 92 start-page: 683 year: 2012 ident: 1975_CR41 publication-title: ZAMM doi: 10.1002/zamm.201200097 – volume: 56 start-page: 1339 year: 2018 ident: 1975_CR100 publication-title: J. Math. Chem. doi: 10.1007/s10910-018-0861-1 – volume: 65 start-page: 48 year: 2017 ident: 1975_CR48 publication-title: Tribol. Lett. doi: 10.1007/s11249-017-0832-x – volume: 120 start-page: 1537 year: 2016 ident: 1975_CR58 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.5b07613 – volume: 49 start-page: 39 year: 2013 ident: 1975_CR69 publication-title: Tribol. Lett. doi: 10.1007/s11249-012-0040-7 – volume: 121 start-page: 2820 year: 2017 ident: 1975_CR97 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.7b00022 – volume: 117 start-page: 1541 year: 2019 ident: 1975_CR101 publication-title: Mol. Phys. doi: 10.1080/00268976.2019.1576930 – volume: 105 start-page: 2921 year: 2005 ident: 1975_CR27 publication-title: Chem. Rev. doi: 10.1021/cr030697h – volume: 42 start-page: 323 year: 2000 ident: 1975_CR92 publication-title: Catal. Rev. doi: 10.1081/CR-100100264 – volume: 62 start-page: 3113 year: 1940 ident: 1975_CR45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01868a059 – volume: 42 start-page: 693 year: 2009 ident: 1975_CR105 publication-title: Acc. Chem. Res. doi: 10.1021/ar800202z – volume: 15 start-page: 1 year: 2002 ident: 1975_CR18 publication-title: J. Phys. Org. Chem. doi: 10.1002/poc.458 – volume: 17 start-page: 7560 year: 2001 ident: 1975_CR74 publication-title: Langmuir doi: 10.1021/la0107852 – ident: 1975_CR106 doi: 10.1016/j.bpj.2013.07.039 – volume: 113 start-page: 9901 year: 2000 ident: 1975_CR9 publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – ident: 1975_CR80 – volume: 147 year: 2017 ident: 1975_CR98 publication-title: J. Chem. Phys. doi: 10.1063/1.4994925 – volume: 64 start-page: 371 year: 1968 ident: 1975_CR21 publication-title: Trans. Faraday Soc. doi: 10.1039/tf9686400371 – volume: 108 start-page: 3410 year: 2004 ident: 1975_CR83 publication-title: J. Phys. Chem. B doi: 10.1021/jp036362l – volume: 29 start-page: 509 year: 1941 ident: 1975_CR73 publication-title: Chem. Rev. doi: 10.1021/cr60094a007 – volume: 348 start-page: 102 year: 2015 ident: 1975_CR110 publication-title: Science doi: 10.1126/science.1258788 – volume: 7 start-page: 905 year: 1929 ident: 1975_CR36 publication-title: Phil. Mag. doi: 10.1080/14786440608564819 – start-page: 183 volume-title: Reaction Rate Theory and Rare Events Simulations year: 2017 ident: 1975_CR13 doi: 10.1016/B978-0-44-456349-1.00008-8 – volume: 39 start-page: 177 year: 2010 ident: 1975_CR47 publication-title: Tribol. Lett. doi: 10.1007/s11249-010-9632-2 – ident: 1975_CR70 doi: 10.1021/acs.jpcc.2c03033 – volume: 32 start-page: 1333 year: 1936 ident: 1975_CR16 publication-title: Trans. Faraday Soc. doi: 10.1039/tf9363201333 – ident: 1975_CR63 doi: 10.1039/D4MR00063C – volume: 41 start-page: 257 year: 2011 ident: 1975_CR66 publication-title: Tribol. Lett. doi: 10.1007/s11249-010-9711-4 – volume: 17 start-page: 2111 year: 2017 ident: 1975_CR109 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03457 – volume-title: Statistical Mechanics: Principles and Selected Applications year: 1956 ident: 1975_CR52 – ident: 1975_CR85 doi: 10.1039/D2FD00123C – volume: 16 start-page: 229 year: 1968 ident: 1975_CR5 publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(68)90031-8 – start-page: 269 volume-title: Theoretical Methods in Condensed Phase Chemistry year: 2002 ident: 1975_CR11 doi: 10.1007/0-306-46949-9_10 – volume: 4 start-page: 314 year: 2008 ident: 1975_CR107 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2008.09.005 – volume: 3 start-page: 9545 year: 1991 ident: 1975_CR79 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/3/47/026 – ident: 1975_CR104 doi: 10.1016/j.bpj.2013.08.016 – volume: 63 start-page: 1 year: 2016 ident: 1975_CR75 publication-title: Tribol. Lett. doi: 10.1007/s11249-016-0706-7 – ident: 1975_CR50 doi: 10.1002/pssb.19690350116 – volume: 105 start-page: 2999 year: 2005 ident: 1975_CR60 publication-title: Chem. Rev. doi: 10.1021/cr9904009 – volume: 78 start-page: 407 year: 1978 ident: 1975_CR7 publication-title: Chem. Rev. doi: 10.1021/cr60314a004 – volume: 37 start-page: 2467 year: 2016 ident: 1975_CR96 publication-title: J. Comput. Chem. doi: 10.1002/jcc.24470 – volume: 16 start-page: 504 year: 1972 ident: 1975_CR102 publication-title: IBM J. Res. Dev. doi: 10.1147/rd.165.0504 – volume: 41 start-page: 129 year: 1998 ident: 1975_CR4 publication-title: Tribol. Trans. doi: 10.1080/10402009808983731 – start-page: 75 volume-title: Advances in Catalysis year: 1955 ident: 1975_CR91 – volume: 71 start-page: 121 year: 2023 ident: 1975_CR55 publication-title: Tribol. Lett. doi: 10.1007/s11249-023-01791-8 – ident: 1975_CR39 doi: 10.1103/PhysRevB.80.153408 – volume: 380 start-page: 389 year: 1982 ident: 1975_CR84 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1982.0048 – volume: 5 start-page: 110 year: 2013 ident: 1975_CR29 publication-title: Nat. Chem. doi: 10.1038/nchem.1540 – volume: 15 start-page: 16001 year: 2013 ident: 1975_CR31 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp52181h – ident: 1975_CR30 doi: 10.1038/ncomms7467 – volume: 59 start-page: 1 year: 2015 ident: 1975_CR22 publication-title: Tribol. Lett. doi: 10.1007/s11249-015-0544-z – volume: 23 start-page: 239 year: 1972 ident: 1975_CR6 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.23.100172.001323 – volume: 4 start-page: 125 year: 1998 ident: 1975_CR37 publication-title: Tribol. Lett. doi: 10.1023/A:1019151121009 – volume: 118 year: 2018 ident: 1975_CR34 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.25775 – ident: 1975_CR93 doi: 10.21203/rs.3.rs-608818/v1 – volume: 118 year: 2018 ident: 1975_CR99 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.25522 – volume: 69 start-page: 46 year: 2021 ident: 1975_CR78 publication-title: Tribol. Lett. doi: 10.1007/s11249-021-01419-9 – ident: 1975_CR19 – ident: 1975_CR8 doi: 10.1021/cr970461b – volume: 113 start-page: 9978 year: 2000 ident: 1975_CR10 publication-title: J. Chem. Phys. doi: 10.1063/1.1323224 – volume: 31 start-page: 875 year: 1935 ident: 1975_CR15 publication-title: Trans. Faraday Soc. doi: 10.1039/tf9353100875 – volume: 107 start-page: 93 year: 2000 ident: 1975_CR25 publication-title: Theory. Powder Technol. doi: 10.1016/S0032-5910(99)00175-8 – volume: 135 start-page: 12722 year: 2013 ident: 1975_CR57 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4051108 – ident: 1975_CR71 doi: 10.1021/acs.jpcc.3c00756 – volume: 605 start-page: 606 year: 2011 ident: 1975_CR88 publication-title: Surf. Sci. doi: 10.1016/j.susc.2010.12.026 – volume: 73 start-page: 1349 year: 2001 ident: 1975_CR56 publication-title: Pure Appl. Chem. doi: 10.1351/pac200173081349 – volume: 112 start-page: 7307 year: 2000 ident: 1975_CR23 publication-title: J. Chem. Phys. doi: 10.1063/1.481330 – volume: 145 year: 2016 ident: 1975_CR33 publication-title: J. Chem. Phys. doi: 10.1063/1.4960955 – volume: 12 start-page: 203 year: 1962 ident: 1975_CR89 publication-title: Vacuum doi: 10.1016/0042-207X(62)90978-8 |
SSID | ssj0010085 |
Score | 2.4373827 |
SecondaryResourceType | review_article |
Snippet | Analyzing the effect of pressures and normal and shear stresses on chemical reaction rates, especially those occurring in a contact, remains the subject of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 40 |
SubjectTerms | Chemical reactions Chemistry and Materials Science Contact stresses Corrosion and Coatings Decomposition reactions Diels-Alder reactions Materials Science Mathematical analysis Nanotechnology Perturbation methods Physical Chemistry Review Shear stress Surfaces and Interfaces Theoretical and Applied Mechanics Thin Films Tribochemistry Tribology |
Title | Activation Volumes in Tribochemistry; What Do They Mean and How to Calculate Them? |
URI | https://link.springer.com/article/10.1007/s11249-025-01975-4 https://www.proquest.com/docview/3170696436 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66XfQg_sTpHDl400DNjzbFg5S5OZR5ECfzVNIkA0FbcRXxv_cla62KHjynpPBemve9vve-D6HDwAiRSRUTOgsZ4UproiRlRBvBokCHMvPagOPrcDThl1MxrYbC5nW3e12S9Dd1M-zmdJKJk18FWBIJwpdRW0Du7hq5JjT5rB04FOFrnPBKyO9YNSrz-x7fw1GDMX-URX20Ga6jtQom4mTh1w20ZPNNtPqFPHAL3SS6libDd_6OmeOHHDsqEKeCtZBxO8WOmxufFxjOwzseW5VjlRs8Kt5wWeC-enR9qKV1y09n22gyHNz2R6RSSCCaRkFJMqoziNjCGHWiYqFYzC21WWh4oCHSZ4wpCxDFKGkCcIOOjAxnip8owBUSAhHbQa28yO0uwpCZUKslt1bMOGQdMbgJ4IBUmmaAEqIOOqoNlT4viDDShvLYmTUFs6berCnvoG5ty7T6KOYpc1Q9jv8r7KDj2r7N8t-77f3v8X20Qr2L3b-SLmqVL6_2AKBDmfVQO7m4vxr0_In5ALLXufk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NSwMxEB20HtSD-In1Mwc9aWBNsrspIlKsUrXtQVrxtmaTFATdil0R_48_1Em6a1X04MFzlpBMJpk3O8l7ADuBCcNUqhpl_YhTobSmSjJOtQl5HOhIpl4bsN2Jmj1xcRPeTMBb-RbG33YvS5L-pB4_dnM6ydTJryIsiUMqiquUl_b1BRO14dF5A1d1l7Gz0-5JkxZaAlSzOMhpynSKsS00Rh2oWqh4TVhm08iIQGNMTDlXFoO5UdIEOGAdGxn1lThQGIElHtkc-52EKQQf0u2dHqt_1CocavE1VZwi5pO8eJrz85i_hr8xpv1WhvXR7Wwe5gpYSuojP1qACZstwuwnssIluKrrUgqNXPszbUjuMuKoR5zq1kg27pA4LnDSGBD0v1fStiojKjOkOXgh-YCcqHt37zW3rvnheBl6_2LFFahkg8yuAsFMiFkthbVhX2CWU0O3QPghlWYpopK4CnuloZLHEfFGMqZYdmZN0KyJN2siqrBR2jIpNuEw4Y4ayPGNRVXYL-07bv69t7W_fb4N081uu5W0zjuX6zDD_HK7_zQbUMmfnu0mwpY83fJeQ-D2v930HUOq9hQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB60guhBfGK1ag560uCaZB9FREprqU9ErHhbs0kWBN0Vu1L6r_yJTra7VkUPHnreJWQnk8w3O5nvA9h2tOtGgaxTFnucCqkUlQHjVGmX-47ygijXBry88jpdcXbv3k_Ae9kLk992L0uSw54Gy9KUZPsvOt4fNb5ZzWRqpVgRovguFcW1ynMz6GPS1js6beEK7zDWPrltdmihK0AV852MRkxFGOdcreWBrLuS14VhJvK0cBTGx4hzaTCwaxloByevfB14sRQHEqNxgMc3x3EnYUrY7mPcQV3W-KxbWAST11fxczG35EWbzu9z_h4KR_j2R0k2j3TteZgrICppDH1qASZMsgizX4gLl-CmoUpZNHKXn2898pgQS0NiFbiGEnKHxPKCk1ZK0BcH5NLIhMhEk07aJ1lKmvLJ3oHNjH38fLwM3bFYcQUqSZqYVSCYFTGjAmGMGwvMeOroIghFAqlYhAjFr8JuaajwZUjCEY7olq1ZQzRrmJs1FFWolbYMiw3ZC7mlCbLcY14V9kr7jh7_Pdra_17fgunrVju8OL06X4cZlq-2_WVTg0r2-mY2EMFk0WbuNAQexu2lHwLJ-kc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activation+Volumes+in+Tribochemistry%3B+What+Do+They+Mean+and+How+to+Calculate+Them%3F&rft.jtitle=Tribology+letters&rft.au=Hopper%2C+Nicholas&rft.au=Rana%2C+Resham&rft.au=Sidoroff%2C+Fran%C3%A7ois&rft.au=Cayer-Barrioz%2C+Juliette&rft.date=2025-06-01&rft.issn=1023-8883&rft.eissn=1573-2711&rft.volume=73&rft.issue=2&rft_id=info:doi/10.1007%2Fs11249-025-01975-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11249_025_01975_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1023-8883&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1023-8883&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1023-8883&client=summon |