Hairpin-like structure and Jahn–Teller distortions in adenosine monophosphate copper coordination polymers: synthesis and chirality

Nucleotides are fundamental units that make up nucleic acids and can be utilized to create functional materials with specific structures. The Jahn–Teller distortions provide information about the orientation of ligands that are coordinated with copper(II) in coordination materials. Herein, we are go...

Full description

Saved in:
Bibliographic Details
Published inChemical papers Vol. 77; no. 10; pp. 5687 - 5699
Main Authors Iqbal, Muhammad Javed, Shoukat, Rizwan, Talha, Khalid, Riaz, Muhammad Sohail, Khan, Maroof Ahmad, Hussain, Wajid, Li, Hui
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nucleotides are fundamental units that make up nucleic acids and can be utilized to create functional materials with specific structures. The Jahn–Teller distortions provide information about the orientation of ligands that are coordinated with copper(II) in coordination materials. Herein, we are going to report two coordination polymers [Cu(AMP)(bpe)(H 2 O) 3 ]·11H 2 O (1) and [Cu(AMP)(bpe)(H 2 O) 3 ]·8H 2 O constructed by combining bipyridyl ethylene (bpe), adenosine monophosphate (AMP), and copper(II) ions, which were analyzed using single-crystal X-ray diffraction, FTIR, TGA, and chiral dichroism spectroscopy. The coordination polymers were examined to study their structural details related to hairpin-like structure and Jahn–Teller distortions. It was observed that the AMP’s chirality, or the way it twists, is maintained when AMP is combined with copper through noncovalent interactions. Our results indicate that the chirality of AMP with copper can be well preserved and delivered to its supramolecular architecture through noncovalent interactions. This research work sheds light on the self-assembly of purine nucleotide hairpins in coordination polymers and their characterization. To the best of our knowledge, Jahn–Teller distortion and hairpin-like structures in nucleotide coordination polymers have been discussed rarely. Nucleotide coordination polymers can be used for potential applications in the fields such as fluorescent detection, medicine, artificial data storage, and energy devices. Graphical abstract
AbstractList Nucleotides are fundamental units that make up nucleic acids and can be utilized to create functional materials with specific structures. The Jahn–Teller distortions provide information about the orientation of ligands that are coordinated with copper(II) in coordination materials. Herein, we are going to report two coordination polymers [Cu(AMP)(bpe)(H2O)3]·11H2O (1) and [Cu(AMP)(bpe)(H2O)3]·8H2O constructed by combining bipyridyl ethylene (bpe), adenosine monophosphate (AMP), and copper(II) ions, which were analyzed using single-crystal X-ray diffraction, FTIR, TGA, and chiral dichroism spectroscopy. The coordination polymers were examined to study their structural details related to hairpin-like structure and Jahn–Teller distortions. It was observed that the AMP’s chirality, or the way it twists, is maintained when AMP is combined with copper through noncovalent interactions. Our results indicate that the chirality of AMP with copper can be well preserved and delivered to its supramolecular architecture through noncovalent interactions. This research work sheds light on the self-assembly of purine nucleotide hairpins in coordination polymers and their characterization. To the best of our knowledge, Jahn–Teller distortion and hairpin-like structures in nucleotide coordination polymers have been discussed rarely. Nucleotide coordination polymers can be used for potential applications in the fields such as fluorescent detection, medicine, artificial data storage, and energy devices.
Nucleotides are fundamental units that make up nucleic acids and can be utilized to create functional materials with specific structures. The Jahn–Teller distortions provide information about the orientation of ligands that are coordinated with copper(II) in coordination materials. Herein, we are going to report two coordination polymers [Cu(AMP)(bpe)(H 2 O) 3 ]·11H 2 O (1) and [Cu(AMP)(bpe)(H 2 O) 3 ]·8H 2 O constructed by combining bipyridyl ethylene (bpe), adenosine monophosphate (AMP), and copper(II) ions, which were analyzed using single-crystal X-ray diffraction, FTIR, TGA, and chiral dichroism spectroscopy. The coordination polymers were examined to study their structural details related to hairpin-like structure and Jahn–Teller distortions. It was observed that the AMP’s chirality, or the way it twists, is maintained when AMP is combined with copper through noncovalent interactions. Our results indicate that the chirality of AMP with copper can be well preserved and delivered to its supramolecular architecture through noncovalent interactions. This research work sheds light on the self-assembly of purine nucleotide hairpins in coordination polymers and their characterization. To the best of our knowledge, Jahn–Teller distortion and hairpin-like structures in nucleotide coordination polymers have been discussed rarely. Nucleotide coordination polymers can be used for potential applications in the fields such as fluorescent detection, medicine, artificial data storage, and energy devices. Graphical abstract
Author Talha, Khalid
Riaz, Muhammad Sohail
Hussain, Wajid
Li, Hui
Shoukat, Rizwan
Iqbal, Muhammad Javed
Khan, Maroof Ahmad
Author_xml – sequence: 1
  givenname: Muhammad Javed
  orcidid: 0000-0002-3432-3233
  surname: Iqbal
  fullname: Iqbal, Muhammad Javed
  email: javedphd904@gmail.com
  organization: Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Analytical and Testing Centre, Beijing Institute of Technology
– sequence: 2
  givenname: Rizwan
  surname: Shoukat
  fullname: Shoukat, Rizwan
  organization: Department of Mechanical, Chemical and Materials Engineering, The University of Cagliari
– sequence: 3
  givenname: Khalid
  surname: Talha
  fullname: Talha, Khalid
  organization: Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental and Energy Engineering, Beijing University of Technology
– sequence: 4
  givenname: Muhammad Sohail
  surname: Riaz
  fullname: Riaz, Muhammad Sohail
  organization: Energy Research Centre, Rayam Institute, School of Chemical and Biological Sciences, University of Galway
– sequence: 5
  givenname: Maroof Ahmad
  surname: Khan
  fullname: Khan, Maroof Ahmad
  organization: Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Analytical and Testing Centre, Beijing Institute of Technology
– sequence: 6
  givenname: Wajid
  surname: Hussain
  fullname: Hussain, Wajid
  organization: Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Analytical and Testing Centre, Beijing Institute of Technology
– sequence: 7
  givenname: Hui
  orcidid: 0000-0001-7459-6618
  surname: Li
  fullname: Li, Hui
  email: lihui@bit.edu.cn
  organization: Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Analytical and Testing Centre, Beijing Institute of Technology
BookMark eNp9kM1O3DAUhS0EUgfoC3RlqevAje14ku4QKj8VUjd0bTnOdWPI2MHXsxhW3fQJ-oY8CYGp1F0XV3fznXOk75gdxhSRsU81nNUA63Oqa93pCoRcrm3b6vmArWopddXBujlkK5BaV1o24gM7JnoAUAoaWLHfNzbkOcRqCo_IqeStK9uM3MaBf7NjfPn15x6nCTMfApWUS0iReIjcDhgThYh8k2Kax0TzaAtyl-Z5oV1KeQjRvvF8TtNug5m-cNrFMiIFeh9wY8h2CmV3yo68nQg__v0n7MfV1_vLm-ru-_Xt5cVd5cQaStULV7cNir7VzvdSooWuFa4H75wX3vcdKlC6HxzC0MlOeWUVACo_eOHcWp6wz_veOaenLVIxD2mb4zJpRKtF0yrRNAsl9pTLiSijN3MOG5t3pgbzptvsdZtFt3nXbZ6XkNyHaIHjT8z_qv-TegUxc4uO
Cites_doi 10.1021/acsomega.8b01217
10.1039/C7CS00673J
10.1021/acsomega.3c00413
10.56952/ARMA-2022-0822
10.1016/j.arabjc.2023.104807
10.1021/acs.inorgchem.6b02448
10.1039/C2CS35253B
10.1016/j.jallcom.2017.02.070
10.1016/j.matlet.2018.01.111
10.1039/C9CP06843K
10.1007/s13369-022-06941-z
10.1039/D1CE00276G
10.1002/anie.201604093
10.1002/chem.201700930
10.1021/ja068201b
10.1016/j.ica.2018.10.040
10.1021/acs.inorgchem.9b03146
10.1002/adfm.201909409
10.1016/j.jallcom.2021.162204
10.3390/ijms21134783
10.1039/D1DT00133G
10.1134/S0022476618030228
10.1088/1742-6596/1889/2/022072
10.1021/jacs.9b11050
10.1016/j.molimm.2019.08.007
10.1016/j.ccr.2015.02.007
10.1021/ed400370p
10.1021/acs.inorgchem.6b01912
10.1101/cshperspect.a034801
10.21203/rs.3.rs-968925/v1
10.1007/s11243-021-00448-6
10.1039/c1dt10136f
ContentType Journal Article
Copyright Institute of Chemistry, Slovak Academy of Sciences 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Institute of Chemistry, Slovak Academy of Sciences 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1007/s11696-023-02888-z
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1336-9075
2585-7290
EndPage 5699
ExternalDocumentID 10_1007_s11696_023_02888_z
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 21471017
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -58
-5G
-BR
-Y2
.86
.VR
06D
0R~
0VY
1N0
29B
2JY
2LR
2VQ
2WC
2~H
30V
4.4
406
408
40D
53G
5GY
5VS
67Z
6J9
6NX
8FE
8FG
8TC
8UJ
95.
95~
AAAVM
AAFGU
AAFPC
AAPBV
AAQCX
AASQH
AATNV
AATVU
AAXMT
AAYFA
AAYQN
ABAQN
ABFKT
ABFTV
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABOCM
ABQBU
ABRQL
ABTEG
ABTKH
ABTMW
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACOMO
ACREN
ACTFP
ACZBO
ADGYE
ADHHG
ADINQ
ADKNI
ADOXG
ADOZN
ADTPH
ADURQ
ADYFF
AEBTG
AEGNC
AENEX
AEOHA
AEPYU
AESKC
AEXYK
AFBAA
AFCXV
AFGCZ
AFGXO
AFKRA
AFNRJ
AFQWF
AFWTZ
AGDGC
AGMZJ
AGQMX
AHBYD
AHKAY
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
BA0
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
DPUIP
G-Y
G-Z
GJIRD
GQ6
GQ7
HCIFZ
HG6
HLICF
HMJXF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
ISR
ITC
IWAJR
IXC
IXE
IY9
IZQ
I~X
I~Z
JZLTJ
KDC
KOV
L6V
LLZTM
M4Y
M7S
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
OAM
OK1
P2P
P9N
PF0
PT4
PTHSS
QOS
R9I
RNS
ROL
RPX
RSV
S1Z
S27
S3B
SCM
SDH
SHX
SNE
SOJ
SZN
T13
TSK
TSV
TUC
U2A
UG4
VC2
WK8
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
EBLON
FIGPU
H13
SJYHP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c270t-b2c185e2b86cfb33ea0982cb0fccf2ffb9e4046bdce0d9394f4a400e4fdf2cc73
IEDL.DBID U2A
ISSN 0366-6352
IngestDate Thu Oct 10 22:16:39 EDT 2024
Thu Sep 12 19:51:13 EDT 2024
Sat Dec 16 12:05:01 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Chiral copper complexes
Jahn–Teller distortion
Nucleotide complexes
Hairpin structure
Purine nucleotides
Coordination polymer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-b2c185e2b86cfb33ea0982cb0fccf2ffb9e4046bdce0d9394f4a400e4fdf2cc73
ORCID 0000-0002-3432-3233
0000-0001-7459-6618
PQID 2862584255
PQPubID 2039839
PageCount 13
ParticipantIDs proquest_journals_2862584255
crossref_primary_10_1007_s11696_023_02888_z
springer_journals_10_1007_s11696_023_02888_z
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Chemical papers
PublicationTitleAbbrev Chem. Pap
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References SahooJCoordinatively unsaturated lanthanide (III) helicates: luminescence sensors for adenosine monophosphate in aqueous mediaAngew Chem Int Ed20165533962596291:CAS:528:DC%2BC28XhtVKgurnL10.1002/anie.201604093
XuLContinuously tunable nucleotide/lanthanide coordination nanoparticles for DNA adsorption and sensingACS Omega201838904390511:CAS:528:DC%2BC1cXhsVynurbK10.1021/acsomega.8b01217314590386644583
OuyangFSynthesis, structures and magnetic properties of copper(II) complexes with 1, 2, 3-triazole derivate as ligand: a single-crystal-to-single-crystal transformation from mononuclear to polymeric complex of copper(II)Transit Met Chem2021463153221:CAS:528:DC%2BB3MXhvF2gsb4%3D10.1007/s11243-021-00448-6
ConradieJJahn-Teller effect in high spin d4 and d9 octahedral metal-complexesInorganica Chim Acta20194861931991:CAS:528:DC%2BC1cXitVyiurjP10.1016/j.ica.2018.10.040
FlemingAMBurrowsCInterplay of guanine oxidation and G-quadruplex folding in gene promotersJ Am Chem Soc20191421115113610.1021/jacs.9b11050
Iqbal MJ et al (2021b) PH controlled the supramolecular assemblies of two guanosine monophosphate cadmium metal coordination complexes: structure and chirality. https://doi.org/10.21203/rs.3.rs-968925/v1
QiuQCytosine-cytosine base-pair mismatch and chirality in nucleotide supramolecular coordination complexesEur Chem20172330720172061:CAS:528:DC%2BC2sXmsFGju7Y%3D10.1002/chem.201700930
GuiDJahn-Teller effect on framework flexibility of hybrid organic–inorganic perovskitesJ Phys Chem2018947517551:CAS:528:DC%2BC1cXhsVarsr0%3D
FreitagRConradieJUnderstanding the Jahn-Teller effect in octahedral transition-metal complexes: a molecular orbital view of the Mn (β-diketonato) 3 complexJ Chem Edu20139012169216961:CAS:528:DC%2BC3sXhslGgsrrN10.1021/ed400370p
IqbalMJStudies on the structure and chirality of A-motif in adenosine monophosphate nucleotide metal coordination complexesCrystEngComm20212323417541801:CAS:528:DC%2BB3MXhtVGiu7vN10.1039/D1CE00276G
AlkhamisKSynthesis and investigation of bivalent thiosemicarbazone complexes: conformational analysis, methyl green DNA binding and in-silico studiesArab J Sci Eng20234812732901:CAS:528:DC%2BB38Xhs1SrsbjN10.1007/s13369-022-06941-z
SongWControllable synthesis of two adenosine 5′-monophosphate nucleotide coordination polymers via pH regulation: crystal structure and chiralityDalton Trans20215013471347191:CAS:528:DC%2BB3MXlsV2ntbc%3D10.1039/D1DT00133G33729226
Al-Wasidi AS et al (2023) Functionalization of silica nanoparticles by 5-chloro-8-quinolinol as a new nanocomposite for the efficient removal and preconcentration of Al3+ ions from water samples. ACS omega
HalcrowMJahn-Teller distortions in transition metal compounds, and their importance in functional molecular and inorganic materialsChem Soc Rev2013424178417951:CAS:528:DC%2BC3sXhsV2ku78%3D10.1039/C2CS35253B22968285
JoyceGSzostakJProtocells and RNA self-replicationCold Spring Harb2018109a03480110.1101/cshperspect.a034801
Sanchez-MovellanILocal structure and excitations in systems with CuF 6 4 units: lack of Jahn-Teller effect in the low symmetry compound Na2CuF4Phys Chem Phys20202215787578871:CAS:528:DC%2BB3cXksFegsLk%3D10.1039/C9CP06843K
ArmentanoDA new octanuclear copper(II)− nucleoside wheelJ Am Chem Soci200712910274027411:CAS:528:DC%2BD2sXhslaitbg%3D10.1021/ja068201b
Abdelaal A et al (2023) Data-driven framework for real-time rheological properties prediction of flat rheology synthetic oil-based drilling fluids. ACS omega
MohantySMukherjeeSEffect of Jahn-Teller distortion on microstructural and dielectric properties of La based double perovskitesJ Alloys Compd20228921622041:CAS:528:DC%2BB3MXitF2nt7zN10.1016/j.jallcom.2021.162204
BerardanDControlled Jahn-Teller distortion in (MgCoNiCuZn) O-based high entropy oxidesJ Alloys Compd20177046937001:CAS:528:DC%2BC2sXjsVSitbw%3D10.1016/j.jallcom.2017.02.070
RákZEvidence for Jahn-Teller compression in the (Mg Co, Ni, Cu, Zn) O entropy-stabilized oxide: a DFT studyMater Lett201821730030310.1016/j.matlet.2018.01.111
SukhikhAJahn-teller effect in the [CuEn3] CrO4 structureJ Struct Chem20185936576631:CAS:528:DC%2BC1cXhtlSjsr%2FO10.1134/S0022476618030228
ZhouPHuiLChirality delivery from a chiral copper(II) nucleotide complex molecule to its supramolecular architectureDalton Trans20114018483448371:CAS:528:DC%2BC3MXkvFahtb4%3D10.1039/c1dt10136f21465017
ImazIMetal–biomolecule frameworks (MBioFs)ChemComm20114726728773021:CAS:528:DC%2BC3MXnslSntLk%3D
LongSJahn-Teller driven electronic instability in thermoelectric tetrahedriteAdv Funct Mater2020301219094091:CAS:528:DC%2BB3cXisVWgu7g%3D10.1002/adfm.201909409
BrunoRCytosine nucleobase ligand: a suitable choice for modulating magnetic anisotropy in tetrahedrally coordinated mononuclear CoII compoundsInorg Chem2017564185718641:CAS:528:DC%2BC2sXhs1CisLw%3D10.1021/acs.inorgchem.6b0244828134516
GeorgopoulouANDynamic versus static character of the magnetic Jahn-Teller effect: magnetostructural studies of [Fe3O (O2CPh) 6 (Py) 3] ClO4· pyInorg Chem20175627627721:CAS:528:DC%2BC2sXitFSl10.1021/acs.inorgchem.6b0191228045513
LivshitsMTrifluoromethylated phenanthroline ligands reduce excited-state distortion in homoleptic copper (I) complexesInorg Chem2020595278127901:CAS:528:DC%2BB3cXis1Whsbc%3D10.1021/acs.inorgchem.9b0314632049510
MartinsLEvaluating the performance of a non-bonded Cu2+ model including Jahn−Teller effect into the binding of tyrosinase inhibitorsInt J Mol Sci2020211347831:CAS:528:DC%2BB3cXitValsLvK10.3390/ijms21134783326407307369908
MogharbelAGreen synthesis and characterization of new carbothioamide complexes; cyclic voltammetry and DNA/methyl green assay supported by silico ways versus DNA-polymeraseArab J Chem20231671048071:CAS:528:DC%2BB3sXmsFersbw%3D10.1016/j.arabjc.2023.104807
PuFNucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterialsChem Soc Rev2018474128513061:CAS:528:DC%2BC2sXitVWnsLfF10.1039/C7CS00673J29265140
TakaevaMPreparation of solutions of copper and nickel en and dien complexes-an illustration of the Jahn-Teller effectJ Phys Conf Ser202118890220721:CAS:528:DC%2BB3MXhtl2rtLzP10.1088/1742-6596/1889/2/022072
ZhouPSupramolecular self-assembly of nucleotide–metal coordination complexes: from simple molecules to nanomaterialsCoord Chem Rev20152921071431:CAS:528:DC%2BC2MXktFKmsrY%3D10.1016/j.ccr.2015.02.007
SuiHsiRNA containing a unique 5-nucleotide motif acts as a quencher of IFI16-mediated innate immune responseMol Immunol20191143303401:CAS:528:DC%2BC1MXhs1ahsLjF10.1016/j.molimm.2019.08.00731445477
2888_CR1
G Joyce (2888_CR16) 2018; 10
2888_CR3
J Conradie (2888_CR7) 2019; 486
F Pu (2888_CR23) 2018; 47
S Mohanty (2888_CR21) 2022; 892
W Song (2888_CR28) 2021; 50
2888_CR15
S Long (2888_CR18) 2020; 30
D Armentano (2888_CR4) 2007; 129
L Martins (2888_CR19) 2020; 21
Z Rák (2888_CR25) 2018; 217
I Sanchez-Movellan (2888_CR27) 2020; 22
R Freitag (2888_CR9) 2013; 90
M Livshits (2888_CR17) 2020; 59
R Bruno (2888_CR6) 2017; 56
K Alkhamis (2888_CR2) 2023; 48
D Gui (2888_CR11) 2018; 9
AN Georgopoulou (2888_CR10) 2017; 56
I Imaz (2888_CR13) 2011; 47
AM Fleming (2888_CR8) 2019; 142
L Xu (2888_CR32) 2018; 3
A Sukhikh (2888_CR30) 2018; 59
Q Qiu (2888_CR24) 2017; 23
MJ Iqbal (2888_CR14) 2021; 23
A Mogharbel (2888_CR20) 2023; 16
M Halcrow (2888_CR12) 2013; 42
F Ouyang (2888_CR22) 2021; 46
P Zhou (2888_CR34) 2015; 292
D Berardan (2888_CR5) 2017; 704
M Takaeva (2888_CR31) 2021; 1889
J Sahoo (2888_CR26) 2016; 55
H Sui (2888_CR29) 2019; 114
P Zhou (2888_CR33) 2011; 40
References_xml – volume: 3
  start-page: 9043
  issue: 8
  year: 2018
  ident: 2888_CR32
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b01217
  contributor:
    fullname: L Xu
– volume: 47
  start-page: 1285
  issue: 4
  year: 2018
  ident: 2888_CR23
  publication-title: Chem Soc Rev
  doi: 10.1039/C7CS00673J
  contributor:
    fullname: F Pu
– ident: 2888_CR3
  doi: 10.1021/acsomega.3c00413
– ident: 2888_CR1
  doi: 10.56952/ARMA-2022-0822
– volume: 16
  start-page: 104807
  issue: 7
  year: 2023
  ident: 2888_CR20
  publication-title: Arab J Chem
  doi: 10.1016/j.arabjc.2023.104807
  contributor:
    fullname: A Mogharbel
– volume: 56
  start-page: 1857
  issue: 4
  year: 2017
  ident: 2888_CR6
  publication-title: Inorg Chem
  doi: 10.1021/acs.inorgchem.6b02448
  contributor:
    fullname: R Bruno
– volume: 42
  start-page: 1784
  issue: 4
  year: 2013
  ident: 2888_CR12
  publication-title: Chem Soc Rev
  doi: 10.1039/C2CS35253B
  contributor:
    fullname: M Halcrow
– volume: 704
  start-page: 693
  year: 2017
  ident: 2888_CR5
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2017.02.070
  contributor:
    fullname: D Berardan
– volume: 217
  start-page: 300
  year: 2018
  ident: 2888_CR25
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2018.01.111
  contributor:
    fullname: Z Rák
– volume: 22
  start-page: 7875
  issue: 15
  year: 2020
  ident: 2888_CR27
  publication-title: Phys Chem Phys
  doi: 10.1039/C9CP06843K
  contributor:
    fullname: I Sanchez-Movellan
– volume: 48
  start-page: 273
  issue: 1
  year: 2023
  ident: 2888_CR2
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-022-06941-z
  contributor:
    fullname: K Alkhamis
– volume: 23
  start-page: 4175
  issue: 23
  year: 2021
  ident: 2888_CR14
  publication-title: CrystEngComm
  doi: 10.1039/D1CE00276G
  contributor:
    fullname: MJ Iqbal
– volume: 55
  start-page: 9625
  issue: 33
  year: 2016
  ident: 2888_CR26
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201604093
  contributor:
    fullname: J Sahoo
– volume: 23
  start-page: 7201
  issue: 30
  year: 2017
  ident: 2888_CR24
  publication-title: Eur Chem
  doi: 10.1002/chem.201700930
  contributor:
    fullname: Q Qiu
– volume: 129
  start-page: 2740
  issue: 10
  year: 2007
  ident: 2888_CR4
  publication-title: J Am Chem Soci
  doi: 10.1021/ja068201b
  contributor:
    fullname: D Armentano
– volume: 486
  start-page: 193
  year: 2019
  ident: 2888_CR7
  publication-title: Inorganica Chim Acta
  doi: 10.1016/j.ica.2018.10.040
  contributor:
    fullname: J Conradie
– volume: 59
  start-page: 2781
  issue: 5
  year: 2020
  ident: 2888_CR17
  publication-title: Inorg Chem
  doi: 10.1021/acs.inorgchem.9b03146
  contributor:
    fullname: M Livshits
– volume: 30
  start-page: 1909409
  issue: 12
  year: 2020
  ident: 2888_CR18
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201909409
  contributor:
    fullname: S Long
– volume: 892
  start-page: 162204
  year: 2022
  ident: 2888_CR21
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2021.162204
  contributor:
    fullname: S Mohanty
– volume: 21
  start-page: 4783
  issue: 13
  year: 2020
  ident: 2888_CR19
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21134783
  contributor:
    fullname: L Martins
– volume: 50
  start-page: 4713
  issue: 13
  year: 2021
  ident: 2888_CR28
  publication-title: Dalton Trans
  doi: 10.1039/D1DT00133G
  contributor:
    fullname: W Song
– volume: 47
  start-page: 7287
  issue: 26
  year: 2011
  ident: 2888_CR13
  publication-title: ChemComm
  contributor:
    fullname: I Imaz
– volume: 59
  start-page: 657
  issue: 3
  year: 2018
  ident: 2888_CR30
  publication-title: J Struct Chem
  doi: 10.1134/S0022476618030228
  contributor:
    fullname: A Sukhikh
– volume: 1889
  start-page: 022072
  year: 2021
  ident: 2888_CR31
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1889/2/022072
  contributor:
    fullname: M Takaeva
– volume: 142
  start-page: 1115
  year: 2019
  ident: 2888_CR8
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.9b11050
  contributor:
    fullname: AM Fleming
– volume: 114
  start-page: 330
  year: 2019
  ident: 2888_CR29
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2019.08.007
  contributor:
    fullname: H Sui
– volume: 9
  start-page: 751
  issue: 4
  year: 2018
  ident: 2888_CR11
  publication-title: J Phys Chem
  contributor:
    fullname: D Gui
– volume: 292
  start-page: 107
  year: 2015
  ident: 2888_CR34
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2015.02.007
  contributor:
    fullname: P Zhou
– volume: 90
  start-page: 1692
  issue: 12
  year: 2013
  ident: 2888_CR9
  publication-title: J Chem Edu
  doi: 10.1021/ed400370p
  contributor:
    fullname: R Freitag
– volume: 56
  start-page: 762
  issue: 2
  year: 2017
  ident: 2888_CR10
  publication-title: Inorg Chem
  doi: 10.1021/acs.inorgchem.6b01912
  contributor:
    fullname: AN Georgopoulou
– volume: 10
  start-page: a034801
  issue: 9
  year: 2018
  ident: 2888_CR16
  publication-title: Cold Spring Harb
  doi: 10.1101/cshperspect.a034801
  contributor:
    fullname: G Joyce
– ident: 2888_CR15
  doi: 10.21203/rs.3.rs-968925/v1
– volume: 46
  start-page: 315
  year: 2021
  ident: 2888_CR22
  publication-title: Transit Met Chem
  doi: 10.1007/s11243-021-00448-6
  contributor:
    fullname: F Ouyang
– volume: 40
  start-page: 4834
  issue: 18
  year: 2011
  ident: 2888_CR33
  publication-title: Dalton Trans
  doi: 10.1039/c1dt10136f
  contributor:
    fullname: P Zhou
SSID ssj0044050
ssib044732867
ssib029106359
Score 2.358315
Snippet Nucleotides are fundamental units that make up nucleic acids and can be utilized to create functional materials with specific structures. The Jahn–Teller...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 5687
SubjectTerms Adenosine
Adenosine monophosphate
Biochemistry
Biotechnology
Chemical synthesis
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Chirality
Coordination polymers
Copper
Data storage
Dichroism
Energy storage
Fluorescence
Functional materials
Industrial Chemistry/Chemical Engineering
Jahn-Teller effect
Materials Science
Medicinal Chemistry
Nucleic acids
Nucleotides
Original Paper
Polymers
Self-assembly
Single crystals
Title Hairpin-like structure and Jahn–Teller distortions in adenosine monophosphate copper coordination polymers: synthesis and chirality
URI https://link.springer.com/article/10.1007/s11696-023-02888-z
https://www.proquest.com/docview/2862584255
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLAgnqJQkAc2sBQc58VWVVQVEkyt1C2KX2pElURNGdqJhV_AP-SXcHaSRiAYmGPFkr-zv-_ufGeErsNQgSWAm-oljBEWSYdwoSRhniuY8iWQgol3PD37owl7nHrTto7bXnZvMpL2oG5r3e58e1_WpB3BbSPrbbRjxIPxuCa03xgRBf4DEt1wNGOmHY2_8cIYKBSnSmD6BAbSupLm9zm-s1UrQX9kTS0ZDQ_Qfq0icb-C_RBtqewI7Q6ax9uO0fsoSRdFmpF5-qJw1ST2daFwkkn8mMyyz7ePsQnZL7C0fUKs9eE0w4k03cNBemKwz7yY5WUxAzmKRV4UMFrk4KymVQQRF_l8ZcLe97hcZSAky7S0E4hZurDy_gRNhg_jwYjULy4QQQNnSTgVwN-K8tAXmruuSpwopII7WghNteaRYuBQcymUIyM3YpolcAgopqWmQgTuKepkeabOEDa1J8IXAeDtMdAgPAGxoligeagjnwdddNOsbFxUjTXitoWywSEGHGKLQ7zuol6z-HG9ycoYYKWeSSN6XXTbANJ-_vtv5_8bfoH2zCPz1RW-HuoAZuoSpMiSX1nT-wJzMdgM
link.rule.ids 315,786,790,27955,27956,41556,42625,52267
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgDGVBPEWhgAc2sBQc58WGEFWBwtRK3aL4pUagJErKABMLX8Af8iVcOwkVCAbmWLGUc-Nz7tMIHYehAksAN9VLGCMskg7hQknCPFcw5UsgBRPvuLv3hxN2M_WmTVNY1Va7tylJe1Ivmt3OfFswa_KO4LeRl2W0Yuapm0K-Cb1orYgCAQKLfpE0Y2Yejf_lhjGQKE6dwfQJLKRNK83ve3ynq4UG_ZE2tWw0WEdrjYzEFzXuG2hJZZuoe9ne3raF3oZJWhZpRh7TB4XrKbFPpcJJJvFNMss-Xt_HJmZfYmkHhVjzw2mGE2nGh4P2xGCgeTHLq2IGehSLvChgtcjBW03rECIu8sdnE_c-x9VzBkqySiu7gZilpdX322gyuBpfDklz5QIRNHDmhFMBBK4oD32hueuqxIlCKrijhdBUax4pBh41l0I5MnIjplkCp4BiWmoqRODuoE6WZ2oXYdN8InwRAOAeAxHCE1ArigWahzryedBDJ-2XjYt6ska8mKFscIgBh9jiEL_0UL_9-HHzl1UxwEo9k0f0eui0BWTx-O-37f1v-RHqDsd3o3h0fX-7j1bNjfN1PV8fdQA_dQC6ZM4PrRl-Av4o22c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsQwELU4JKBBnGI5XdCBRXCciw4Bq-UUBSvRRfGljVg50WYpoKLhC_hDvoSxs2EBQUGdUSx5XvLezHjGCO3GsQIkQJgaZIwRlkiPcKEkYYEvmAolkILNd1zfhJ0uu7gP7r908bvT7k1Jsu5psFOazPCglPpg3Ph2GLrDs7YGCTEceZ5E05YaLca79LhBFAUyBEb9JGzG7Gya8DMkYyBXvLqaGRIwpKO2mt_X-E5dYz36o4TqmKm9gOZHkhIf1xhYRBPKLKHZk-Ymt2X02snyQZkb0s8fFK4nxj4OFM6MxBdZz7y_vN3Z_P0ASzc0xEER5wZn0o4SBx2KAaxF2SuqsgfaFIuiLMFaFBC55nU6EZdF_8nmwI9w9WRAVVZ55RYQvXzgtP4K6rbP7k46ZHT9AhE08oaEUwFkriiPQ6G576vMS2IquKeF0FRrnigG0TWXQnky8ROmWQZ_BMW01FSIyF9FU6Ywag1h24giQhGB8wMGgoRnoFwUizSPdRLyqIX2mp1Ny3rKRjqep2z9kIIfUueH9LmFNpvNT0dfXJWCW2lga4pBC-03Dhk__vtt6_8z30Ezt6ft9Or85nIDzdnL5-ujfZtoCtyntkCiDPm2Q-EHri3frA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hairpin-like+structure+and+Jahn%E2%80%93Teller+distortions+in+adenosine+monophosphate+copper+coordination+polymers%3A+synthesis+and+chirality&rft.jtitle=Chemical+papers&rft.au=Iqbal%2C+Muhammad+Javed&rft.au=Shoukat+Rizwan&rft.au=Talha+Khalid&rft.au=Riaz%2C+Muhammad+Sohail&rft.date=2023-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0366-6352&rft.eissn=1336-9075&rft.volume=77&rft.issue=10&rft.spage=5687&rft.epage=5699&rft_id=info:doi/10.1007%2Fs11696-023-02888-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0366-6352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0366-6352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0366-6352&client=summon