Nested solitons in two-field fuzzy dark matter
Dark matter as scalar particles consisting of multiple species is well motivated in string theory where axion fields are ubiquitous. A two-field fuzzy dark matter (FDM) model features two species of ultralight axion particles with different masses, m1 ≠ m2, which is extended from the standard one-fi...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 527; no. 2; pp. 4162 - 4172 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
09.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dark matter as scalar particles consisting of multiple species is well motivated in string theory where axion fields are ubiquitous. A two-field fuzzy dark matter (FDM) model features two species of ultralight axion particles with different masses, m1 ≠ m2, which is extended from the standard one-field model with $m_a \sim 10^{-22} \, {\rm eV}$. Here we perform numerical simulations to explore the properties of two-field FDM haloes. We find that the central soliton has a nested structure when m2 ≫ m1, which is distinguishable from the generic flat-core soliton in one-field haloes. However, the formation of this nested soliton is subject to many factors, including the density fraction and mass ratio of the two fields. Finally, we study non-linear structure formation in two-field cosmological simulations with self-consistent initial conditions and find that the small-scale structure in two-field cosmology is also distinct from the one-field model in terms of DM halo counts and soliton formation time. |
---|---|
AbstractList | Dark matter as scalar particles consisting of multiple species is well motivated in string theory where axion fields are ubiquitous. A two-field fuzzy dark matter (FDM) model features two species of ultralight axion particles with different masses, m1 ≠ m2, which is extended from the standard one-field model with ma ~ 10-22 eV. Here we perform numerical simulations to explore the properties of two-field FDM haloes. We find that the central soliton has a nested structure when m2 $\gg$ m1, which is distinguishable from the generic flat-core soliton in one-field haloes. However, the formation of this nested soliton is subject to many factors, including the density fraction and mass ratio of the two fields. Finally, we study non-linear structure formation in two-field cosmological simulations with self-consistent initial conditions and find that the small-scale structure in two-field cosmology is also distinct from the one-field model in terms of DM halo counts and soliton formation time. Dark matter as scalar particles consisting of multiple species is well motivated in string theory where axion fields are ubiquitous. A two-field fuzzy dark matter (FDM) model features two species of ultralight axion particles with different masses, m1 ≠ m2, which is extended from the standard one-field model with $m_a \sim 10^{-22} \, {\rm eV}$. Here we perform numerical simulations to explore the properties of two-field FDM haloes. We find that the central soliton has a nested structure when m2 ≫ m1, which is distinguishable from the generic flat-core soliton in one-field haloes. However, the formation of this nested soliton is subject to many factors, including the density fraction and mass ratio of the two fields. Finally, we study non-linear structure formation in two-field cosmological simulations with self-consistent initial conditions and find that the small-scale structure in two-field cosmology is also distinct from the one-field model in terms of DM halo counts and soliton formation time. |
Author | Borrow, Josh Mocz, Philip Luu, Hoang Nhan Tye, S-H Henry Vogelsberger, Mark Broadhurst, Tom May, Simon |
Author_xml | – sequence: 1 givenname: Hoang Nhan orcidid: 0000-0001-9483-1099 surname: Luu fullname: Luu, Hoang Nhan email: hnluu@connect.ust.hk – sequence: 2 givenname: Philip orcidid: 0000-0001-6631-2566 surname: Mocz fullname: Mocz, Philip – sequence: 3 givenname: Mark orcidid: 0000-0001-8593-7692 surname: Vogelsberger fullname: Vogelsberger, Mark – sequence: 4 givenname: Simon orcidid: 0000-0002-2781-6304 surname: May fullname: May, Simon – sequence: 5 givenname: Josh orcidid: 0000-0002-1327-1921 surname: Borrow fullname: Borrow, Josh – sequence: 6 givenname: S-H Henry surname: Tye fullname: Tye, S-H Henry – sequence: 7 givenname: Tom surname: Broadhurst fullname: Broadhurst, Tom |
BackLink | https://www.osti.gov/servlets/purl/2229583$$D View this record in Osti.gov |
BookMark | eNqFkLFOwzAQQC1UJNrCyhyxMaT12YnjjKiCglTBAnN0iW1hSO3KdoXaryfQsiAhlrvlvdPpTcjIeacJuQQ6A1rz-doFjPOYUPFCshMyBi7KnNVCjMiYUl7msgI4I5MY3yilBWdiTGaPOiatsuh7m7yLmXVZ-vC5sbpXmdnu97tMYXjP1piSDufk1GAf9cVxT8nL3e3z4j5fPS0fFjervGMVTXnLCgBZKzSMmlYCDKNmyAFBghDYIgpptEJJK0GhbEFWRdV2hSyMUkbzKbk63PUx2SZ2NunutfPO6S41jLG6lHyAigPUBR9j0KYZOEzWuxTQ9g3Q5itM8x2m-QkzaLNf2ibYNYbd38L18Znt5j_2E6MAeJ8 |
CitedBy_id | crossref_primary_10_1093_mnras_staf005 crossref_primary_10_1088_1475_7516_2024_04_077 crossref_primary_10_1093_mnras_stae1912 crossref_primary_10_1093_mnras_stae2370 crossref_primary_10_3847_2041_8213_ad9aa8 |
Cites_doi | 10.3847/2041-8213/abf501 10.1103/PhysRevD.102.083518 10.1088/1475-7516/2021/10/028 10.1103/PhysRevLett.119.031302 10.1093/mnras/stab1764 10.1093/mnras/stt1891 10.1038/nphys2996 10.1103/PhysRevD.105.055005 10.1103/PhysRevD.95.043541 10.1103/PhysRevLett.84.3760 10.1086/309179 10.1111/j.1745-3933.2011.01074.x 10.1103/PhysRevD.107.023513 10.1093/mnras/stv2380 10.1103/PhysRevD.101.083014 10.1155/2010/789293 10.1051/0004-6361/201833910 10.1103/PhysRevD.103.083533 10.1103/PhysRevD.97.083519 10.1016/j.physrep.2016.06.005 10.1038/s42254-019-0127-2 10.1103/PhysRevD.81.123530 10.1111/j.1365-2966.2012.20696.x 10.1093/mnras/stx1870 10.1103/PhysRevD.106.063517 10.1088/1475-7516/2022/08/014 10.1016/j.dark.2020.100636 10.1088/1361-6633/aab913 10.1103/PhysRevLett.123.141301 10.1146/annurev-astro-120920-010024 10.1086/143864 10.1103/PhysRevLett.113.261302 10.1111/j.1365-2966.2011.20200.x 10.3847/1538-4365/ab908c 10.1093/mnras/stad998 10.1093/mnras/stx1887 10.1103/PhysRevD.50.3655 10.1088/1475-7516/2020/10/020 10.1103/PhysRevD.96.123514 10.1093/mnras/stad2031 10.1111/j.1365-2966.2009.15715.x 10.1103/PhysRevLett.123.051103 10.1088/1126-6708/2006/06/051 10.1103/PhysRevD.94.043513 10.1103/PhysRevD.96.063522 10.1103/PhysRevD.107.063520 10.1093/mnras/stad694 10.1103/PhysRevD.107.083014 10.1093/mnras/stu1477 10.1103/PhysRevLett.85.1158 10.1086/177173 10.1007/s00159-021-00135-6 10.1093/mnras/stv1504 10.1093/mnrasl/slad074 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of Royal Astronomical Society. 2023 |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Royal Astronomical Society. 2023 |
CorporateAuthor | Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) |
DBID | TOX AAYXX CITATION OIOZB OTOTI |
DOI | 10.1093/mnras/stad3482 |
DatabaseName | Oxford Journals Open Access Collection CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access (Activated by CARLI) url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 4172 |
ExternalDocumentID | 2229583 10_1093_mnras_stad3482 10.1093/mnras/stad3482 |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AANHP AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABAZT ABCQN ABCQX ABEJV ABEML ABEUO ABFSI ABGNP ABIXL ABNGD ABNKS ABPEJ ABPTD ABQLI ABSMQ ABVLG ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACRPL ACSCC ACUFI ACUKT ACUTJ ACUXJ ACXQS ACYRX ACYTK ACYXJ ADEYI ADGZP ADHKW ADHZD ADNMO ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFZJQ AGINJ AGMDO AGQPQ AGSYK AHGBF AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APJGH ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EBS EE~ EJD F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF JXSIZ K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RNS ROL ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX CITATION AABJS AABMN AAESY AAIYJ AAPBV ABJNI ABPTK ABSAR ADEIU ADIPN ADORX ADQLU ADRIX AFXEN AIKOY ARQIP AUCZF AZQFJ BCRHZ BYORX CASEJ DPORF DPPUQ ESX OIOZB OJZSN OTOTI OWPYF RHF ROX WRC |
ID | FETCH-LOGICAL-c270t-b241189daf20fb811fb892a31a18166abaa68feda8076015b18747bc484fddfe3 |
IEDL.DBID | TOX |
ISSN | 0035-8711 |
IngestDate | Mon Dec 18 05:07:04 EST 2023 Tue Jul 01 03:32:42 EDT 2025 Thu Apr 24 23:07:36 EDT 2025 Mon Jun 30 08:34:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | methods: numerical dark matter cosmology: theory |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-b241189daf20fb811fb892a31a18166abaa68feda8076015b18747bc484fddfe3 |
Notes | AC52-07NA27344; 2108931 National Science Foundation (NSF) LLNL-JRNL-853841 USDOE National Nuclear Security Administration (NNSA) |
ORCID | 0000-0001-6631-2566 0000-0002-1327-1921 0000-0002-2781-6304 0000-0001-9483-1099 0000-0001-8593-7692 0000000194831099 0000000185937692 0000000213271921 0000000166312566 0000000227816304 |
OpenAccessLink | https://dx.doi.org/10.1093/mnras/stad3482 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_2229583 crossref_citationtrail_10_1093_mnras_stad3482 crossref_primary_10_1093_mnras_stad3482 oup_primary_10_1093_mnras_stad3482 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-09 |
PublicationDateYYYYMMDD | 2023-11-09 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Hui (2024013110075177800_bib23) 2021; 59 May (2024013110075177800_bib36) 2023; 524 Navarro (2024013110075177800_bib41) 1996; 462 Lovell (2024013110075177800_bib30) 2012; 420 Guo (2024013110075177800_bib19) 2021; 10 Arvanitaki (2024013110075177800_bib6) 2020; 101 Spergel (2024013110075177800_bib51) 2000; 84 Zwicky (2024013110075177800_bib58) 1937; 86 Boylan-Kolchin (2024013110075177800_bib7) 2011; 415 Mocz (2024013110075177800_bib40) 2023; 521 Roszkowski (2024013110075177800_bib46) 2018; 81 Amin (2024013110075177800_bib3) 2022; 08 Jain (2024013110075177800_bib26) 2023 Alam (2024013110075177800_bib2) 2021; 103 Cyncynates (2024013110075177800_bib8) 2022; 105 Oman (2024013110075177800_bib42) 2015; 452 Governato (2024013110075177800_bib17) 2012; 422 Hu (2024013110075177800_bib21) 2000; 85 Armengaud (2024013110075177800_bib4) 2017; 471 Springel (2024013110075177800_bib52) 2010; 401 Marsh (2024013110075177800_bib34) 2019; 123 Di Cintio (2024013110075177800_bib11) 2014; 437 Luu (2024013110075177800_bib31) 2023; 107 Luu (2024013110075177800_bib32) 2020; 30 Marsh (2024013110075177800_bib33) 2016; 643 Huang (2024013110075177800_bib22) 2023; 522 Ji (2024013110075177800_bib27) 1994; 50 Ferreira (2024013110075177800_bib13) 2021; 29 Gosenca (2024013110075177800_bib16) 2023; 107 Eby (2024013110075177800_bib12) 2020; 10 Powell (2024013110075177800_bib44) 2023; 524 Aghanim (2024013110075177800_bib1) 2020; 641 Svrcek (2024013110075177800_bib54) 2006; 06 Arvanitaki (2024013110075177800_bib5) 2010; 81 May (2024013110075177800_bib35) 2021; 506 Pozo (2024013110075177800_bib45) 2023 Kobayashi (2024013110075177800_bib28) 2017; 96 Vogelsberger (2024013110075177800_bib55) 2020; 2 Lewis (2024013110075177800_bib29) 2000; 538 Pakmor (2024013110075177800_bib43) 2016; 455 Schwabe (2024013110075177800_bib49) 2016; 94 de Blok (2024013110075177800_bib10) 2010; 2010 Weinberger (2024013110075177800_bib56) 2020; 248 Schive (2024013110075177800_bib48) 2014; 113 Mocz (2024013110075177800_bib37) 2017; 471 Mocz (2024013110075177800_bib38) 2018; 97 Schive (2024013110075177800_bib47) 2014; 10 Zhang (2024013110075177800_bib57) 2017; 96 Mocz (2024013110075177800_bib39) 2019; 123 Schwabe (2024013110075177800_bib50) 2020; 102 Grin (2024013110075177800_bib18) 2022 Glennon (2024013110075177800_bib15) 2023; 107 Iršič (2024013110075177800_bib25) 2017; 119 Springel (2024013110075177800_bib53) 2015 Dalal (2024013110075177800_bib9) 2022; 106 Garrison-Kimmel (2024013110075177800_bib14) 2014; 444 Hui (2024013110075177800_bib24) 2017; 95 Hayashi (2024013110075177800_bib20) 2021; 912 |
References_xml | – volume: 912 start-page: L3 year: 2021 ident: 2024013110075177800_bib20 publication-title: ApJ doi: 10.3847/2041-8213/abf501 – volume: 102 start-page: 083518 year: 2020 ident: 2024013110075177800_bib50 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.083518 – volume: 10 start-page: 028 year: 2021 ident: 2024013110075177800_bib19 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2021/10/028 – volume-title: N-GenIC: Cosmological structure initial conditions, Astrophysics Source Code Library year: 2015 ident: 2024013110075177800_bib53 – volume: 119 start-page: 031302 year: 2017 ident: 2024013110075177800_bib25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.031302 – volume: 506 start-page: 2603 year: 2021 ident: 2024013110075177800_bib35 publication-title: MNRAS doi: 10.1093/mnras/stab1764 – volume: 437 start-page: 415 year: 2014 ident: 2024013110075177800_bib11 publication-title: MNRAS doi: 10.1093/mnras/stt1891 – volume: 10 start-page: 496 year: 2014 ident: 2024013110075177800_bib47 publication-title: Nat. Phys. doi: 10.1038/nphys2996 – volume: 105 start-page: 055005 year: 2022 ident: 2024013110075177800_bib8 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.055005 – volume: 95 start-page: 043541 year: 2017 ident: 2024013110075177800_bib24 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.043541 – volume: 84 start-page: 3760 year: 2000 ident: 2024013110075177800_bib51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.3760 – volume: 538 start-page: 473 year: 2000 ident: 2024013110075177800_bib29 publication-title: ApJ doi: 10.1086/309179 – volume: 415 start-page: L40 year: 2011 ident: 2024013110075177800_bib7 publication-title: MNRAS doi: 10.1111/j.1745-3933.2011.01074.x – volume: 107 start-page: 023513 year: 2023 ident: 2024013110075177800_bib31 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.107.023513 – volume: 455 start-page: 1134 year: 2016 ident: 2024013110075177800_bib43 publication-title: MNRAS doi: 10.1093/mnras/stv2380 – volume: 101 start-page: 083014 year: 2020 ident: 2024013110075177800_bib6 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.083014 – volume: 2010 start-page: 789293 year: 2010 ident: 2024013110075177800_bib10 publication-title: Adv. Astron. doi: 10.1155/2010/789293 – volume: 641 start-page: A6 year: 2020 ident: 2024013110075177800_bib1 publication-title: A&A doi: 10.1051/0004-6361/201833910 – year: 2023 ident: 2024013110075177800_bib45 – year: 2023 ident: 2024013110075177800_bib26 – volume: 103 start-page: 083533 year: 2021 ident: 2024013110075177800_bib2 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.083533 – volume: 97 start-page: 083519 year: 2018 ident: 2024013110075177800_bib38 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.083519 – volume: 643 start-page: 1 year: 2016 ident: 2024013110075177800_bib33 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2016.06.005 – volume: 2 start-page: 42 year: 2020 ident: 2024013110075177800_bib55 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0127-2 – volume: 81 start-page: 123530 year: 2010 ident: 2024013110075177800_bib5 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.81.123530 – volume: 422 start-page: 1231 year: 2012 ident: 2024013110075177800_bib17 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.20696.x – volume: 471 start-page: 4606 year: 2017 ident: 2024013110075177800_bib4 publication-title: MNRAS doi: 10.1093/mnras/stx1870 – volume: 106 start-page: 063517 year: 2022 ident: 2024013110075177800_bib9 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.106.063517 – volume: 08 start-page: 014 year: 2022 ident: 2024013110075177800_bib3 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2022/08/014 – volume: 30 start-page: 100636 year: 2020 ident: 2024013110075177800_bib32 publication-title: Phys. Dark Univ. doi: 10.1016/j.dark.2020.100636 – volume: 81 start-page: 066201 year: 2018 ident: 2024013110075177800_bib46 publication-title: Rept. Prog. Phys. doi: 10.1088/1361-6633/aab913 – volume: 123 start-page: 141301 year: 2019 ident: 2024013110075177800_bib39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.141301 – volume: 59 start-page: 247 year: 2021 ident: 2024013110075177800_bib23 publication-title: ARA&A doi: 10.1146/annurev-astro-120920-010024 – volume: 86 start-page: 217 year: 1937 ident: 2024013110075177800_bib58 publication-title: ApJ doi: 10.1086/143864 – volume: 113 start-page: 261302 year: 2014 ident: 2024013110075177800_bib48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.261302 – volume: 420 start-page: 2318 year: 2012 ident: 2024013110075177800_bib30 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.20200.x – volume: 248 start-page: 32 year: 2020 ident: 2024013110075177800_bib56 publication-title: ApJS doi: 10.3847/1538-4365/ab908c – volume: 522 start-page: 515 year: 2023 ident: 2024013110075177800_bib22 publication-title: MNRAS doi: 10.1093/mnras/stad998 – volume: 471 start-page: 4559 year: 2017 ident: 2024013110075177800_bib37 publication-title: MNRAS doi: 10.1093/mnras/stx1887 – volume: 50 start-page: 3655 year: 1994 ident: 2024013110075177800_bib27 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.50.3655 – volume: 10 start-page: 020 year: 2020 ident: 2024013110075177800_bib12 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2020/10/020 – volume: 96 start-page: 123514 year: 2017 ident: 2024013110075177800_bib28 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.123514 – volume: 524 start-page: 4256 year: 2023 ident: 2024013110075177800_bib36 publication-title: MNRAS doi: 10.1093/mnras/stad2031 – volume: 401 start-page: 791 year: 2010 ident: 2024013110075177800_bib52 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15715.x – volume: 123 start-page: 051103 year: 2019 ident: 2024013110075177800_bib34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.051103 – volume: 06 start-page: 051 year: 2006 ident: 2024013110075177800_bib54 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2006/06/051 – volume: 94 start-page: 043513 year: 2016 ident: 2024013110075177800_bib49 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.043513 – volume: 96 start-page: 063522 year: 2017 ident: 2024013110075177800_bib57 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.063522 – volume: 107 start-page: 063520 year: 2023 ident: 2024013110075177800_bib15 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.107.063520 – volume: 521 start-page: 2608 year: 2023 ident: 2024013110075177800_bib40 publication-title: MNRAS doi: 10.1093/mnras/stad694 – volume: 107 start-page: 083014 year: 2023 ident: 2024013110075177800_bib16 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.107.083014 – volume: 444 start-page: 222 year: 2014 ident: 2024013110075177800_bib14 publication-title: MNRAS doi: 10.1093/mnras/stu1477 – volume-title: axionCAMB: Modification of the CAMB Boltzmann code, Astrophysics Source Code Library year: 2022 ident: 2024013110075177800_bib18 – volume: 85 start-page: 1158 year: 2000 ident: 2024013110075177800_bib21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.1158 – volume: 462 start-page: 563 year: 1996 ident: 2024013110075177800_bib41 publication-title: ApJ doi: 10.1086/177173 – volume: 29 start-page: 7 year: 2021 ident: 2024013110075177800_bib13 publication-title: A&AR doi: 10.1007/s00159-021-00135-6 – volume: 452 start-page: 3650 year: 2015 ident: 2024013110075177800_bib42 publication-title: MNRAS doi: 10.1093/mnras/stv1504 – volume: 524 start-page: L84 year: 2023 ident: 2024013110075177800_bib44 publication-title: MNRAS doi: 10.1093/mnrasl/slad074 |
SSID | ssj0004326 |
Score | 2.4512553 |
Snippet | Dark matter as scalar particles consisting of multiple species is well motivated in string theory where axion fields are ubiquitous. A two-field fuzzy dark... |
SourceID | osti crossref oup |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 4162 |
SubjectTerms | ASTRONOMY AND ASTROPHYSICS cosmology dark matter numerical theory |
Title | Nested solitons in two-field fuzzy dark matter |
URI | https://www.osti.gov/servlets/purl/2229583 |
Volume | 527 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-ykxfRqWx-jCCip7ilzbr0OIZjCE6QDXYrSdvAcGul7ZDtr_e9tJsfKHopLX3t4SXt-_79CLl2jNR-KAzzOsoGKIop4RvGZdzVntEIaIDdFmNvNBUPs-6sAovOfyjh-257mWQqb4OvFCEQC_xtwQIjSv7kafYxAelaYjULwAghAN_BM35__Iv5qaXwGZWTbZ-MyvCQHFTeIO2Xy3dE9uKkThr9HPPT6XJNb6g9L9MPeZ00H8HHTTObCoebg8UcHE57dUzuxjZ1SXPsaIO9ROcJLd5SZnvUqFltNmsaqeyFLi2k5gmZDu8ngxGr2BBY6PQ6BdNga7n0I2WcjtGSczj4jnK54lj7U1opT5o4UhKLbbyrkW2vp0MhhYkiE7unpJakSdwgVEpjIHJxlKe1iE3P9xztCqG5CA2O7DcJ2yopCCuocGSsWARlydoNrFKDrVKb5HYn_1qCZPwqeY46D8C8I0ZtiM08YRFYUnHpNskVLMUfrzj7j9A52UdeeDs06F-QWpGt4kvwHgrdAr_52WnZ7fMOtafE5g |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nested+solitons+in+two-field+fuzzy+dark+matter&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Luu%2C+Hoang+Nhan&rft.au=Mocz%2C+Philip&rft.au=Vogelsberger%2C+Mark&rft.au=May%2C+Simon&rft.date=2023-11-09&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=527&rft.issue=2&rft_id=info:doi/10.1093%2Fmnras%2Fstad3482&rft.externalDocID=2229583 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |