Nested solitons in two-field fuzzy dark matter

Dark matter as scalar particles consisting of multiple species is well motivated in string theory where axion fields are ubiquitous. A two-field fuzzy dark matter (FDM) model features two species of ultralight axion particles with different masses, m1 ≠ m2, which is extended from the standard one-fi...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 527; no. 2; pp. 4162 - 4172
Main Authors Luu, Hoang Nhan, Mocz, Philip, Vogelsberger, Mark, May, Simon, Borrow, Josh, Tye, S-H Henry, Broadhurst, Tom
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 09.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dark matter as scalar particles consisting of multiple species is well motivated in string theory where axion fields are ubiquitous. A two-field fuzzy dark matter (FDM) model features two species of ultralight axion particles with different masses, m1 ≠ m2, which is extended from the standard one-field model with $m_a \sim 10^{-22} \, {\rm eV}$. Here we perform numerical simulations to explore the properties of two-field FDM haloes. We find that the central soliton has a nested structure when m2 ≫ m1, which is distinguishable from the generic flat-core soliton in one-field haloes. However, the formation of this nested soliton is subject to many factors, including the density fraction and mass ratio of the two fields. Finally, we study non-linear structure formation in two-field cosmological simulations with self-consistent initial conditions and find that the small-scale structure in two-field cosmology is also distinct from the one-field model in terms of DM halo counts and soliton formation time.
AbstractList Dark matter as scalar particles consisting of multiple species is well motivated in string theory where axion fields are ubiquitous. A two-field fuzzy dark matter (FDM) model features two species of ultralight axion particles with different masses, m1 ≠ m2, which is extended from the standard one-field model with ma ~ 10-22 eV. Here we perform numerical simulations to explore the properties of two-field FDM haloes. We find that the central soliton has a nested structure when m2 $\gg$ m1, which is distinguishable from the generic flat-core soliton in one-field haloes. However, the formation of this nested soliton is subject to many factors, including the density fraction and mass ratio of the two fields. Finally, we study non-linear structure formation in two-field cosmological simulations with self-consistent initial conditions and find that the small-scale structure in two-field cosmology is also distinct from the one-field model in terms of DM halo counts and soliton formation time.
Dark matter as scalar particles consisting of multiple species is well motivated in string theory where axion fields are ubiquitous. A two-field fuzzy dark matter (FDM) model features two species of ultralight axion particles with different masses, m1 ≠ m2, which is extended from the standard one-field model with $m_a \sim 10^{-22} \, {\rm eV}$. Here we perform numerical simulations to explore the properties of two-field FDM haloes. We find that the central soliton has a nested structure when m2 ≫ m1, which is distinguishable from the generic flat-core soliton in one-field haloes. However, the formation of this nested soliton is subject to many factors, including the density fraction and mass ratio of the two fields. Finally, we study non-linear structure formation in two-field cosmological simulations with self-consistent initial conditions and find that the small-scale structure in two-field cosmology is also distinct from the one-field model in terms of DM halo counts and soliton formation time.
Author Borrow, Josh
Mocz, Philip
Luu, Hoang Nhan
Tye, S-H Henry
Vogelsberger, Mark
Broadhurst, Tom
May, Simon
Author_xml – sequence: 1
  givenname: Hoang Nhan
  orcidid: 0000-0001-9483-1099
  surname: Luu
  fullname: Luu, Hoang Nhan
  email: hnluu@connect.ust.hk
– sequence: 2
  givenname: Philip
  orcidid: 0000-0001-6631-2566
  surname: Mocz
  fullname: Mocz, Philip
– sequence: 3
  givenname: Mark
  orcidid: 0000-0001-8593-7692
  surname: Vogelsberger
  fullname: Vogelsberger, Mark
– sequence: 4
  givenname: Simon
  orcidid: 0000-0002-2781-6304
  surname: May
  fullname: May, Simon
– sequence: 5
  givenname: Josh
  orcidid: 0000-0002-1327-1921
  surname: Borrow
  fullname: Borrow, Josh
– sequence: 6
  givenname: S-H Henry
  surname: Tye
  fullname: Tye, S-H Henry
– sequence: 7
  givenname: Tom
  surname: Broadhurst
  fullname: Broadhurst, Tom
BackLink https://www.osti.gov/servlets/purl/2229583$$D View this record in Osti.gov
BookMark eNqFkLFOwzAQQC1UJNrCyhyxMaT12YnjjKiCglTBAnN0iW1hSO3KdoXaryfQsiAhlrvlvdPpTcjIeacJuQQ6A1rz-doFjPOYUPFCshMyBi7KnNVCjMiYUl7msgI4I5MY3yilBWdiTGaPOiatsuh7m7yLmXVZ-vC5sbpXmdnu97tMYXjP1piSDufk1GAf9cVxT8nL3e3z4j5fPS0fFjervGMVTXnLCgBZKzSMmlYCDKNmyAFBghDYIgpptEJJK0GhbEFWRdV2hSyMUkbzKbk63PUx2SZ2NunutfPO6S41jLG6lHyAigPUBR9j0KYZOEzWuxTQ9g3Q5itM8x2m-QkzaLNf2ibYNYbd38L18Znt5j_2E6MAeJ8
CitedBy_id crossref_primary_10_1093_mnras_staf005
crossref_primary_10_1088_1475_7516_2024_04_077
crossref_primary_10_1093_mnras_stae1912
crossref_primary_10_1093_mnras_stae2370
crossref_primary_10_3847_2041_8213_ad9aa8
Cites_doi 10.3847/2041-8213/abf501
10.1103/PhysRevD.102.083518
10.1088/1475-7516/2021/10/028
10.1103/PhysRevLett.119.031302
10.1093/mnras/stab1764
10.1093/mnras/stt1891
10.1038/nphys2996
10.1103/PhysRevD.105.055005
10.1103/PhysRevD.95.043541
10.1103/PhysRevLett.84.3760
10.1086/309179
10.1111/j.1745-3933.2011.01074.x
10.1103/PhysRevD.107.023513
10.1093/mnras/stv2380
10.1103/PhysRevD.101.083014
10.1155/2010/789293
10.1051/0004-6361/201833910
10.1103/PhysRevD.103.083533
10.1103/PhysRevD.97.083519
10.1016/j.physrep.2016.06.005
10.1038/s42254-019-0127-2
10.1103/PhysRevD.81.123530
10.1111/j.1365-2966.2012.20696.x
10.1093/mnras/stx1870
10.1103/PhysRevD.106.063517
10.1088/1475-7516/2022/08/014
10.1016/j.dark.2020.100636
10.1088/1361-6633/aab913
10.1103/PhysRevLett.123.141301
10.1146/annurev-astro-120920-010024
10.1086/143864
10.1103/PhysRevLett.113.261302
10.1111/j.1365-2966.2011.20200.x
10.3847/1538-4365/ab908c
10.1093/mnras/stad998
10.1093/mnras/stx1887
10.1103/PhysRevD.50.3655
10.1088/1475-7516/2020/10/020
10.1103/PhysRevD.96.123514
10.1093/mnras/stad2031
10.1111/j.1365-2966.2009.15715.x
10.1103/PhysRevLett.123.051103
10.1088/1126-6708/2006/06/051
10.1103/PhysRevD.94.043513
10.1103/PhysRevD.96.063522
10.1103/PhysRevD.107.063520
10.1093/mnras/stad694
10.1103/PhysRevD.107.083014
10.1093/mnras/stu1477
10.1103/PhysRevLett.85.1158
10.1086/177173
10.1007/s00159-021-00135-6
10.1093/mnras/stv1504
10.1093/mnrasl/slad074
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of Royal Astronomical Society. 2023
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of Royal Astronomical Society. 2023
CorporateAuthor Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
CorporateAuthor_xml – name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
DBID TOX
AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1093/mnras/stad3482
DatabaseName Oxford Journals Open Access Collection
CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access (Activated by CARLI)
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 4172
ExternalDocumentID 2229583
10_1093_mnras_stad3482
10.1093/mnras/stad3482
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AANHP
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABAZT
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABFSI
ABGNP
ABIXL
ABNGD
ABNKS
ABPEJ
ABPTD
ABQLI
ABSMQ
ABVLG
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACRPL
ACSCC
ACUFI
ACUKT
ACUTJ
ACUXJ
ACXQS
ACYRX
ACYTK
ACYXJ
ADEYI
ADGZP
ADHKW
ADHZD
ADNMO
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFZJQ
AGINJ
AGMDO
AGQPQ
AGSYK
AHGBF
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APJGH
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EBS
EE~
EJD
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RNS
ROL
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
CITATION
AABJS
AABMN
AAESY
AAIYJ
AAPBV
ABJNI
ABPTK
ABSAR
ADEIU
ADIPN
ADORX
ADQLU
ADRIX
AFXEN
AIKOY
ARQIP
AUCZF
AZQFJ
BCRHZ
BYORX
CASEJ
DPORF
DPPUQ
ESX
OIOZB
OJZSN
OTOTI
OWPYF
RHF
ROX
WRC
ID FETCH-LOGICAL-c270t-b241189daf20fb811fb892a31a18166abaa68feda8076015b18747bc484fddfe3
IEDL.DBID TOX
ISSN 0035-8711
IngestDate Mon Dec 18 05:07:04 EST 2023
Tue Jul 01 03:32:42 EDT 2025
Thu Apr 24 23:07:36 EDT 2025
Mon Jun 30 08:34:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords methods: numerical
dark matter
cosmology: theory
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-b241189daf20fb811fb892a31a18166abaa68feda8076015b18747bc484fddfe3
Notes AC52-07NA27344; 2108931
National Science Foundation (NSF)
LLNL-JRNL-853841
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0001-6631-2566
0000-0002-1327-1921
0000-0002-2781-6304
0000-0001-9483-1099
0000-0001-8593-7692
0000000194831099
0000000185937692
0000000213271921
0000000166312566
0000000227816304
OpenAccessLink https://dx.doi.org/10.1093/mnras/stad3482
PageCount 11
ParticipantIDs osti_scitechconnect_2229583
crossref_citationtrail_10_1093_mnras_stad3482
crossref_primary_10_1093_mnras_stad3482
oup_primary_10_1093_mnras_stad3482
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-09
PublicationDateYYYYMMDD 2023-11-09
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hui (2024013110075177800_bib23) 2021; 59
May (2024013110075177800_bib36) 2023; 524
Navarro (2024013110075177800_bib41) 1996; 462
Lovell (2024013110075177800_bib30) 2012; 420
Guo (2024013110075177800_bib19) 2021; 10
Arvanitaki (2024013110075177800_bib6) 2020; 101
Spergel (2024013110075177800_bib51) 2000; 84
Zwicky (2024013110075177800_bib58) 1937; 86
Boylan-Kolchin (2024013110075177800_bib7) 2011; 415
Mocz (2024013110075177800_bib40) 2023; 521
Roszkowski (2024013110075177800_bib46) 2018; 81
Amin (2024013110075177800_bib3) 2022; 08
Jain (2024013110075177800_bib26) 2023
Alam (2024013110075177800_bib2) 2021; 103
Cyncynates (2024013110075177800_bib8) 2022; 105
Oman (2024013110075177800_bib42) 2015; 452
Governato (2024013110075177800_bib17) 2012; 422
Hu (2024013110075177800_bib21) 2000; 85
Armengaud (2024013110075177800_bib4) 2017; 471
Springel (2024013110075177800_bib52) 2010; 401
Marsh (2024013110075177800_bib34) 2019; 123
Di Cintio (2024013110075177800_bib11) 2014; 437
Luu (2024013110075177800_bib31) 2023; 107
Luu (2024013110075177800_bib32) 2020; 30
Marsh (2024013110075177800_bib33) 2016; 643
Huang (2024013110075177800_bib22) 2023; 522
Ji (2024013110075177800_bib27) 1994; 50
Ferreira (2024013110075177800_bib13) 2021; 29
Gosenca (2024013110075177800_bib16) 2023; 107
Eby (2024013110075177800_bib12) 2020; 10
Powell (2024013110075177800_bib44) 2023; 524
Aghanim (2024013110075177800_bib1) 2020; 641
Svrcek (2024013110075177800_bib54) 2006; 06
Arvanitaki (2024013110075177800_bib5) 2010; 81
May (2024013110075177800_bib35) 2021; 506
Pozo (2024013110075177800_bib45) 2023
Kobayashi (2024013110075177800_bib28) 2017; 96
Vogelsberger (2024013110075177800_bib55) 2020; 2
Lewis (2024013110075177800_bib29) 2000; 538
Pakmor (2024013110075177800_bib43) 2016; 455
Schwabe (2024013110075177800_bib49) 2016; 94
de Blok (2024013110075177800_bib10) 2010; 2010
Weinberger (2024013110075177800_bib56) 2020; 248
Schive (2024013110075177800_bib48) 2014; 113
Mocz (2024013110075177800_bib37) 2017; 471
Mocz (2024013110075177800_bib38) 2018; 97
Schive (2024013110075177800_bib47) 2014; 10
Zhang (2024013110075177800_bib57) 2017; 96
Mocz (2024013110075177800_bib39) 2019; 123
Schwabe (2024013110075177800_bib50) 2020; 102
Grin (2024013110075177800_bib18) 2022
Glennon (2024013110075177800_bib15) 2023; 107
Iršič (2024013110075177800_bib25) 2017; 119
Springel (2024013110075177800_bib53) 2015
Dalal (2024013110075177800_bib9) 2022; 106
Garrison-Kimmel (2024013110075177800_bib14) 2014; 444
Hui (2024013110075177800_bib24) 2017; 95
Hayashi (2024013110075177800_bib20) 2021; 912
References_xml – volume: 912
  start-page: L3
  year: 2021
  ident: 2024013110075177800_bib20
  publication-title: ApJ
  doi: 10.3847/2041-8213/abf501
– volume: 102
  start-page: 083518
  year: 2020
  ident: 2024013110075177800_bib50
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.083518
– volume: 10
  start-page: 028
  year: 2021
  ident: 2024013110075177800_bib19
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2021/10/028
– volume-title: N-GenIC: Cosmological structure initial conditions, Astrophysics Source Code Library
  year: 2015
  ident: 2024013110075177800_bib53
– volume: 119
  start-page: 031302
  year: 2017
  ident: 2024013110075177800_bib25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.031302
– volume: 506
  start-page: 2603
  year: 2021
  ident: 2024013110075177800_bib35
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1764
– volume: 437
  start-page: 415
  year: 2014
  ident: 2024013110075177800_bib11
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1891
– volume: 10
  start-page: 496
  year: 2014
  ident: 2024013110075177800_bib47
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2996
– volume: 105
  start-page: 055005
  year: 2022
  ident: 2024013110075177800_bib8
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.055005
– volume: 95
  start-page: 043541
  year: 2017
  ident: 2024013110075177800_bib24
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.043541
– volume: 84
  start-page: 3760
  year: 2000
  ident: 2024013110075177800_bib51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.3760
– volume: 538
  start-page: 473
  year: 2000
  ident: 2024013110075177800_bib29
  publication-title: ApJ
  doi: 10.1086/309179
– volume: 415
  start-page: L40
  year: 2011
  ident: 2024013110075177800_bib7
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2011.01074.x
– volume: 107
  start-page: 023513
  year: 2023
  ident: 2024013110075177800_bib31
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.023513
– volume: 455
  start-page: 1134
  year: 2016
  ident: 2024013110075177800_bib43
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2380
– volume: 101
  start-page: 083014
  year: 2020
  ident: 2024013110075177800_bib6
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.083014
– volume: 2010
  start-page: 789293
  year: 2010
  ident: 2024013110075177800_bib10
  publication-title: Adv. Astron.
  doi: 10.1155/2010/789293
– volume: 641
  start-page: A6
  year: 2020
  ident: 2024013110075177800_bib1
  publication-title: A&A
  doi: 10.1051/0004-6361/201833910
– year: 2023
  ident: 2024013110075177800_bib45
– year: 2023
  ident: 2024013110075177800_bib26
– volume: 103
  start-page: 083533
  year: 2021
  ident: 2024013110075177800_bib2
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.083533
– volume: 97
  start-page: 083519
  year: 2018
  ident: 2024013110075177800_bib38
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.083519
– volume: 643
  start-page: 1
  year: 2016
  ident: 2024013110075177800_bib33
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2016.06.005
– volume: 2
  start-page: 42
  year: 2020
  ident: 2024013110075177800_bib55
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0127-2
– volume: 81
  start-page: 123530
  year: 2010
  ident: 2024013110075177800_bib5
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.123530
– volume: 422
  start-page: 1231
  year: 2012
  ident: 2024013110075177800_bib17
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.20696.x
– volume: 471
  start-page: 4606
  year: 2017
  ident: 2024013110075177800_bib4
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1870
– volume: 106
  start-page: 063517
  year: 2022
  ident: 2024013110075177800_bib9
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.106.063517
– volume: 08
  start-page: 014
  year: 2022
  ident: 2024013110075177800_bib3
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2022/08/014
– volume: 30
  start-page: 100636
  year: 2020
  ident: 2024013110075177800_bib32
  publication-title: Phys. Dark Univ.
  doi: 10.1016/j.dark.2020.100636
– volume: 81
  start-page: 066201
  year: 2018
  ident: 2024013110075177800_bib46
  publication-title: Rept. Prog. Phys.
  doi: 10.1088/1361-6633/aab913
– volume: 123
  start-page: 141301
  year: 2019
  ident: 2024013110075177800_bib39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.141301
– volume: 59
  start-page: 247
  year: 2021
  ident: 2024013110075177800_bib23
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-120920-010024
– volume: 86
  start-page: 217
  year: 1937
  ident: 2024013110075177800_bib58
  publication-title: ApJ
  doi: 10.1086/143864
– volume: 113
  start-page: 261302
  year: 2014
  ident: 2024013110075177800_bib48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.261302
– volume: 420
  start-page: 2318
  year: 2012
  ident: 2024013110075177800_bib30
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.20200.x
– volume: 248
  start-page: 32
  year: 2020
  ident: 2024013110075177800_bib56
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab908c
– volume: 522
  start-page: 515
  year: 2023
  ident: 2024013110075177800_bib22
  publication-title: MNRAS
  doi: 10.1093/mnras/stad998
– volume: 471
  start-page: 4559
  year: 2017
  ident: 2024013110075177800_bib37
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1887
– volume: 50
  start-page: 3655
  year: 1994
  ident: 2024013110075177800_bib27
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.50.3655
– volume: 10
  start-page: 020
  year: 2020
  ident: 2024013110075177800_bib12
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2020/10/020
– volume: 96
  start-page: 123514
  year: 2017
  ident: 2024013110075177800_bib28
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.123514
– volume: 524
  start-page: 4256
  year: 2023
  ident: 2024013110075177800_bib36
  publication-title: MNRAS
  doi: 10.1093/mnras/stad2031
– volume: 401
  start-page: 791
  year: 2010
  ident: 2024013110075177800_bib52
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15715.x
– volume: 123
  start-page: 051103
  year: 2019
  ident: 2024013110075177800_bib34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.051103
– volume: 06
  start-page: 051
  year: 2006
  ident: 2024013110075177800_bib54
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2006/06/051
– volume: 94
  start-page: 043513
  year: 2016
  ident: 2024013110075177800_bib49
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.043513
– volume: 96
  start-page: 063522
  year: 2017
  ident: 2024013110075177800_bib57
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.063522
– volume: 107
  start-page: 063520
  year: 2023
  ident: 2024013110075177800_bib15
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.063520
– volume: 521
  start-page: 2608
  year: 2023
  ident: 2024013110075177800_bib40
  publication-title: MNRAS
  doi: 10.1093/mnras/stad694
– volume: 107
  start-page: 083014
  year: 2023
  ident: 2024013110075177800_bib16
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.083014
– volume: 444
  start-page: 222
  year: 2014
  ident: 2024013110075177800_bib14
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1477
– volume-title: axionCAMB: Modification of the CAMB Boltzmann code, Astrophysics Source Code Library
  year: 2022
  ident: 2024013110075177800_bib18
– volume: 85
  start-page: 1158
  year: 2000
  ident: 2024013110075177800_bib21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.1158
– volume: 462
  start-page: 563
  year: 1996
  ident: 2024013110075177800_bib41
  publication-title: ApJ
  doi: 10.1086/177173
– volume: 29
  start-page: 7
  year: 2021
  ident: 2024013110075177800_bib13
  publication-title: A&AR
  doi: 10.1007/s00159-021-00135-6
– volume: 452
  start-page: 3650
  year: 2015
  ident: 2024013110075177800_bib42
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1504
– volume: 524
  start-page: L84
  year: 2023
  ident: 2024013110075177800_bib44
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slad074
SSID ssj0004326
Score 2.4512553
Snippet Dark matter as scalar particles consisting of multiple species is well motivated in string theory where axion fields are ubiquitous. A two-field fuzzy dark...
SourceID osti
crossref
oup
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 4162
SubjectTerms ASTRONOMY AND ASTROPHYSICS
cosmology
dark matter
numerical
theory
Title Nested solitons in two-field fuzzy dark matter
URI https://www.osti.gov/servlets/purl/2229583
Volume 527
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-ykxfRqWx-jCCip7ilzbr0OIZjCE6QDXYrSdvAcGul7ZDtr_e9tJsfKHopLX3t4SXt-_79CLl2jNR-KAzzOsoGKIop4RvGZdzVntEIaIDdFmNvNBUPs-6sAovOfyjh-257mWQqb4OvFCEQC_xtwQIjSv7kafYxAelaYjULwAghAN_BM35__Iv5qaXwGZWTbZ-MyvCQHFTeIO2Xy3dE9uKkThr9HPPT6XJNb6g9L9MPeZ00H8HHTTObCoebg8UcHE57dUzuxjZ1SXPsaIO9ROcJLd5SZnvUqFltNmsaqeyFLi2k5gmZDu8ngxGr2BBY6PQ6BdNga7n0I2WcjtGSczj4jnK54lj7U1opT5o4UhKLbbyrkW2vp0MhhYkiE7unpJakSdwgVEpjIHJxlKe1iE3P9xztCqG5CA2O7DcJ2yopCCuocGSsWARlydoNrFKDrVKb5HYn_1qCZPwqeY46D8C8I0ZtiM08YRFYUnHpNskVLMUfrzj7j9A52UdeeDs06F-QWpGt4kvwHgrdAr_52WnZ7fMOtafE5g
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nested+solitons+in+two-field+fuzzy+dark+matter&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Luu%2C+Hoang+Nhan&rft.au=Mocz%2C+Philip&rft.au=Vogelsberger%2C+Mark&rft.au=May%2C+Simon&rft.date=2023-11-09&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=527&rft.issue=2&rft_id=info:doi/10.1093%2Fmnras%2Fstad3482&rft.externalDocID=2229583
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon