Refactoring practices in the context of data-intensive systems

Developers often refactor code to improve the maintainability and comprehension of the software. There are many studies on refactoring activities in traditional software systems. However, refactoring in data-intensive systems is not well explored. Understanding the refactoring practices of developer...

Full description

Saved in:
Bibliographic Details
Published inEmpirical software engineering : an international journal Vol. 28; no. 2; p. 46
Main Authors Muse, Biruk Asmare, Khomh, Foutse, Antoniol, Giuliano
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1382-3256
1573-7616
DOI10.1007/s10664-022-10271-x

Cover

Loading…
Abstract Developers often refactor code to improve the maintainability and comprehension of the software. There are many studies on refactoring activities in traditional software systems. However, refactoring in data-intensive systems is not well explored. Understanding the refactoring practices of developers is important to develop efficient tool support. We conducted a longitudinal study of refactoring activities in data-access classes using 29 SQL and NoSQL database based data-intensive systems. We investigated the prevalence, co-occurrence, and evolution of data-access refactorings, and the association of data-access refactorings with data-access smells. We also conducted a manual analysis of 500 samples of data-access refactoring instances to identify the functionalities of the code that are targeted by such refactorings. Furthermore, we analyzed 500 sample data-access refactoring commits to understand the context behind the applied refactorings and explored the characteristics and contribution of developers involved in the refactorings. We also conducted a developer survey to complement our analysis on the subject systems. Our results show that data-access refactorings are prevalent and different in type. Most of the data-access refactorings target codes that implement data fetching and insertion, but they mostly do not modify data-access queries. Most of the data-access refactorings are done when adding or modifying features and during bug fixes. data-access refactoring is often performed by developers with higher development and refactoring experience. Overall, the results show that data-access refactorings focus on improving the code quality but not optimizing the underlying data-access operations by fixing data-access smells. Hence, more work is needed from the research community on providing awareness and support to practitioners on the benefits of addressing data-access smells with refactorings.
AbstractList Developers often refactor code to improve the maintainability and comprehension of the software. There are many studies on refactoring activities in traditional software systems. However, refactoring in data-intensive systems is not well explored. Understanding the refactoring practices of developers is important to develop efficient tool support. We conducted a longitudinal study of refactoring activities in data-access classes using 29 SQL and NoSQL database based data-intensive systems. We investigated the prevalence, co-occurrence, and evolution of data-access refactorings, and the association of data-access refactorings with data-access smells. We also conducted a manual analysis of 500 samples of data-access refactoring instances to identify the functionalities of the code that are targeted by such refactorings. Furthermore, we analyzed 500 sample data-access refactoring commits to understand the context behind the applied refactorings and explored the characteristics and contribution of developers involved in the refactorings. We also conducted a developer survey to complement our analysis on the subject systems. Our results show that data-access refactorings are prevalent and different in type. Most of the data-access refactorings target codes that implement data fetching and insertion, but they mostly do not modify data-access queries. Most of the data-access refactorings are done when adding or modifying features and during bug fixes. data-access refactoring is often performed by developers with higher development and refactoring experience. Overall, the results show that data-access refactorings focus on improving the code quality but not optimizing the underlying data-access operations by fixing data-access smells. Hence, more work is needed from the research community on providing awareness and support to practitioners on the benefits of addressing data-access smells with refactorings.
ArticleNumber 46
Author Khomh, Foutse
Muse, Biruk Asmare
Antoniol, Giuliano
Author_xml – sequence: 1
  givenname: Biruk Asmare
  orcidid: 0000-0001-8861-9526
  surname: Muse
  fullname: Muse, Biruk Asmare
  email: biruk-asmare.muse@polymtl.ca
  organization: Polytechnique Montréal
– sequence: 2
  givenname: Foutse
  surname: Khomh
  fullname: Khomh, Foutse
  organization: Polytechnique Montréal
– sequence: 3
  givenname: Giuliano
  surname: Antoniol
  fullname: Antoniol, Giuliano
  organization: Polytechnique Montréal
BookMark eNp9kMtKw0AUhgepYFt9AVcB16NzP5ONIMUbFATR9TBNTjTFJnFmKu3bOzWCO1fnP_Bf4JuRSdd3SMg5Z5ecMbiKnBmjKBOCciaA090RmXINkoLhZpK1tIJKoc0JmcW4ZoyVoPSUXD9j46vUh7Z7K4aQZVthLNquSO9YVH2XcJeKvilqnzxt89vF9guLuI8JN_GUHDf-I-LZ752T17vbl8UDXT7dPy5ulrQSwBJd8dpI3tS2Aa4A0CrgxmqUvmw8Kuml1wpq8Kw2WGlhUa7QSu1XQii0Ws7Jxdg7hP5zizG5db8NXZ50AsBYMKUus0uMrir0MQZs3BDajQ97x5k7cHIjJ5c5uR9ObpdDcgzF4QABw1_1P6lvPsZtLg
Cites_doi 10.1145/3242163.3242169
10.1007/s10664-022-10119-4
10.1145/1882291.1882353
10.5281/zenodo.7140854
10.1145/3522664.3528621
10.1145/3236024.3264598
10.1007/11785477_24
10.1109/VLHCC.2018.8506577
10.1007/978-3-319-39696-5_30
10.1145/2642937.2642982
10.1007/978-3-642-29044-2
10.1109/SEAA.2018.00066
10.1109/TSE.2020.2974469
10.1145/253262.253325
10.1145/3183519.3183529
10.1145/2950290.2950305
10.1016/j.ins.2014.01.015
10.1109/ICPC.2019.00025
10.1007/s00766-018-0293-2
10.1007/s10270-019-00730-3
10.1109/SANER53432.2022.00014
10.1145/170036.170072
10.1109/MS.2006.105
10.1145/2468356.2468382
10.1109/SCAM.2017.19
10.1109/ICSME.2019.00029
10.1109/TSE.2020.3007722
10.1145/3522664.3528590
10.1145/3183440.3183496
10.1109/TKDE.2017.2772252
10.1109/TSE.2020.2968072
10.1109/SANER.2019.8668012
10.1109/MOBILESoft.2019.00030
10.1007/3-540-45672-4_31
10.1109/SNPD.2017.8022723
10.1145/3183440.3195030
10.1109/SEAA.2019.00058
10.1145/3379597.3387467
10.1007/978-981-15-4851-2_28
10.1016/j.scico.2019.05.002
10.1145/3131151.3131171
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1007/s10664-022-10271-x
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central (New)
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Technology Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7616
ExternalDocumentID 10_1007_s10664_022_10271_x
GrantInformation_xml – fundername: Fonds de recherche du Québec – Nature et technologies
  funderid: https://doi.org/10.13039/501100003151
– fundername: Natural Sciences and Engineering Research Council of Canada (NSERC)
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
8FD
ABRTQ
DWQXO
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c270t-b1d631fd8f71477e8471685e3a9fae43a3a547d7a0d6ec528e3be835ab224e853
IEDL.DBID U2A
ISSN 1382-3256
IngestDate Fri Jul 25 19:01:18 EDT 2025
Tue Jul 01 03:32:21 EDT 2025
Fri Feb 21 02:43:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Data-access classes
Data-intensive systems
Database access
Empirical study
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-b1d631fd8f71477e8471685e3a9fae43a3a547d7a0d6ec528e3be835ab224e853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8861-9526
PQID 2776876959
PQPubID 326341
ParticipantIDs proquest_journals_2776876959
crossref_primary_10_1007_s10664_022_10271_x
springer_journals_10_1007_s10664_022_10271_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Empirical software engineering : an international journal
PublicationTitleAbbrev Empir Software Eng
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Ferreira I, Fernandes E, Cedrim D, Uchôa A, Bibiano AC, Garcia A, Correia JL, Santos F, Nunes G, Barbosa C et al (2018) The buggy side of code refactoring: Understanding the relationship between refactorings and bugs. In: Proceedings of the 40th international conference on software engineering: companion proceeedings, pp 406–407
KurtanovićZMaalejWOn user rationale in software engineeringRequir Eng201823335737910.1007/s00766-018-0293-2
ChenCPZhangCYData-intensive applications, challenges, techniques and technologies: A survey on big dataInf Sci201427531434710.1016/j.ins.2014.01.015
Muse BA, Khomh F, Antoniol G (2022) Do developers refactor data access code? an empirical study. In: the 29th IEEE international conference on software analysis, evolution and reengineering(SANER)
FowlerMRefactoring: Improving the design of existing codeExtreme Program Agile Methods–XP/Agil Universe2002200225610.1007/3-540-45672-4_311020.68632
Sharma T, Fragkoulis M, Rizou S, Bruntink M, Spinellis D (2018) Smelly relations: Measuring and understanding database schema quality. In: 2018 IEEE/ACM 40th international conference on software engineering: software engineering in practice track (ICSE-SEIP), pp 55–64
Meurice L, Nagy C, Cleve A (2016) Static analysis of dynamic database usage in Java systems. In: International conference on advanced information systems engineering. Springer, pp 491–506
Zhou C, Kuttal SK, Ahmed I (2018) What makes a good developer? an empirical study of developers’ technical and social competencies. In: 2018 IEEE symposium on visual languages and human-centric computing (VL/HCC). IEEE, pp 319–321
WohlinCRunesonPHöstMOhlssonMCRegnellBWesslénAExperimentation in software engineering2012BerlinSpringer Science & Business Media10.1007/978-3-642-29044-21069.68547
Khumnin P, Senivongse T (2017) SQL antipatterns detection and database refactoring process. In: 2017 18th IEEE/ACIS international conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD), pp 199–205
ArzamasovaNSchälerMBöhmKCleaning antipatterns in an SQL query logIEEE Trans Knowl Data Eng201830342143410.1109/TKDE.2017.2772252
Mahmoudi M, Nadi S, Tsantalis N (2019) Are refactorings to blame? an empirical study of refactorings in merge conflicts. In: 2019 IEEE 26th international conference on software analysis, evolution and reengineering (SANER). IEEE, pp 151–162
Agrawal R, Srikant R, et al. (1994) Fast algorithms for mining association rules. In: Proc. 20th int. conf. very large data bases, VLDB, vol 1215. Citeseer, pp 487–499
Spadini D, Aniche M, Bacchelli A (2018) PyDriller: Python Framework for Mining Software Repositories. https://doi.org/10.1145/3236024.3264598
PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: Machine learning in PythonJ Mach Learn Res2011122825283028543481280.68189
Falleri JR, Morandat F, Blanc X, Martinez M, Monperrus M (2014) Fine-grained and accurate source code differencing. In: Proceedings of the 29th ACM/IEEE international conference on Automated software engineering, pp 313–324
Muse BA, Khomh F, Antoniol G (2022) Replication package: Refactoring Practices in the Context of Data-intensive Systems. https://doi.org/10.5281/zenodo.7140854
Tsantalis N, Ketkar A, Dig D (2020) Refactoringminer 2.0. IEEE Transactions on Software Engineering. https://doi.org/10.1109/TSE.2020.3007722
VassalloCGranoGPalombaFGallHCBacchelliAA large-scale empirical exploration on refactoring activities in open source software projectsSci Comput Program201918011510.1016/j.scico.2019.05.002
ZhouJWangSBezemerCPZouYHassanAEStudying the association between bountysource bounties and the issue-addressing likelihood of Github issue reportsIEEE Trans Softw Eng202147122919293310.1109/TSE.2020.2974469
Brin S, Motwani R, Ullman JD, Tsur S (1997) Dynamic itemset counting and implication rules for market basket data. In: Proceedings of the 1997 ACM SIGMOD international conference on Management of data, pp 255–264
MuseBANagyCCleveAKhomhFAntoniolGFIXME: synchronize with database! an empirical study of data access self-admitted technical debtEmpir Softw Eng202227613010.1007/s10664-022-10119-4
Nagy C, Cleve A (2017) A static code smell detector for SQL queries embedded in Java code. In: 2017 IEEE 17th international working conference on source code analysis and manipulation (SCAM). IEEE, pp 147–152
Nagy C, Cleve A (2018) SQLInspect: A static analyzer to inspect database usage in Java applications. In: Proceedings of the 40th international conference on software engineering: companion proceedings. ACM, pp 93–96
Dig D, Comertoglu C, Marinov D, Johnson R (2006) Automated detection of refactorings in evolving components. In: European conference on object-oriented programming. Springer, pp 404–428
Silva D, Tsantalis N, Valente MT (2016) Why we refactor? confessions of Github contributors. In: Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of software engineering, pp 858–870
Karwin B (2010) SQL Antipatterns: Avoiding the pitfalls of database programming Pragmatic Bookshelf
Shome A, Cruz L, van Deursen A (2022) Data smells in public datasets. In: Crnkovic I (ed) Proceedings of the 1st international conference on AI engineering: software engineering for AI, CAIN 2022, Pittsburgh, Pennsylvania, May 16-24, 2022. https://doi.org/10.1145/3522664.3528621. ACM, pp 205–216
PerumaAMkaouerMWDeckerMJNewmanCDContextualizing rename decisions using refactorings, commit messages, and data typesJ Syst Softw2020169110704
Hummel O, Eichelberger H, Giloj A, Werle D, Schmid K (2018) A collection of software engineering challenges for big data system development. In: 2018 44th euromicro conference on software engineering and advanced applications (SEAA). IEEE, pp 362–369
Kim M, Gee M, Loh A, Rachatasumrit N (2010) Ref-finder: a refactoring reconstruction tool based on logic query templates. In: Proceedings of the 18th ACM SIGSOFT international symposium on Foundations of software engineering, pp 371–372
Park B, Rao DL, Gudivada VN (2021) Dangers of bias in data-intensive information systems. In: Deshpande P, Abraham A, Iyer B, Ma K (eds) Next generation information processing system. Springer Singapore, Singapore, pp 259–271
Silva D, Silva J, Santos GJDS, Terra R, Valente MTO (2020) Refdiff 2.0: A multi-language refactoring detection tool. IEEE Trans Softw Eng
de Almeida Filho FG, Martins ADF, Vinuto TdS, Monteiro JM, de Sousa ÍP, de Castro Machado J, Rocha LS (2019) Prevalence of bad smells in PL/SQL projects. In: Proceedings of the 27th international conference on program comprehension. IEEE Press, pp 116–121
MurphyGCKerstenMFindlaterLHow are java software developers using the elipse ide?IEEE Softw2006234768310.1109/MS.2006.105
Chávez A, Ferreira I, Fernandes E, Cedrim D, Garcia A (2017) How does refactoring affect internal quality attributes? a multi-project study. In: Proceedings of the 31st Brazilian symposium on software engineering, pp 74–83
Piatetsky S, Frawley G, William J (1991) Discovery, analysis and presentation of strong rules knowledge discovery in databases
McDonald N, Goggins S (2013) Performance and participation in open source software on Github. In: CHI’13 extended abstracts on human factors in computing systems, pp 139–144
Muse BA, Rahman MM, Nagy C, Cleve A, Khomh F, Antoniol G (2020) On the prevalence, impact, and evolution of SQL code smells in data-intensive systems. In: Proceedings of the 17th international conference on mining software repositories, pp 327–338
Perez-PalacinDMerseguerJRequenoJIGuerrieroMDi NittoETamburriDAA UML profile for the design, quality assessment and deployment of data-intensive applicationsSoftw Syst Model20191863577361410.1007/s10270-019-00730-3
CramerHMathematical methods of statistics1946PrincetonPrinceton U, Press5005000063.01014
Foidl H, Felderer M, Ramler R (2022) Data smells: categories, causes and consequences, and detection of suspicious data in ai-based systems. In: Crnkovic I (ed) Proceedings of the 1st international conference on AI engineering: software engineering for AI, CAIN 2022, Pittsburgh, Pennsylvania, May 16-24, 2022. https://doi.org/10.1145/3522664.3528590. ACM, pp 229–239
Iammarino M, Zampetti F, Aversano L, Di Penta M (2019) Self-admitted technical debt removal and refactoring actions: Co-occurrence or more?. In: 2019 IEEE international conference on software maintenance and evolution (ICSME). IEEE, pp 186–190
AlomarEAPerumaAMkaouerMWNewmanCOuniAKessentiniMHow we refactor and how we document it? On the use of supervised machine learning algorithms to classify refactoring documentationExpert Syst Appl2021167114176
Agrawal R, Imielinski T, Swami A (1993) Mining associations between sets of items in large databases. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 207–216
Hummel O, Eichelberger H, Giloj A, Werle D, Schmid K (2018) A collection of software engineering challenges for big data system development. In: 2018 44th Euromicro conference on software engineering and advanced applications (SEAA). https://doi.org/10.1109/SEAA.2018.00066, pp 362–369
Peruma A, Mkaouer MW, Decker MJ, Newman CD (2018) An empirical investigation of how and why developers rename identifiers. In: Proceedings of the 2nd international workshop on refactoring, pp 26–33
Foidl H, Felderer M, Biffl S (2019) Technical debt in data-intensive software systems. In: 2019 45th Euromicro conference on software engineering and advanced applications (SEAA). https://doi.org/10.1109/SEAA.2019.00058, pp 338–341
Peruma A (2019) A preliminary study of android refactorings. In: 2019 IEEE/ACM 6th international conference on mobile software engineering and systems (MOBILESoft). IEEE, pp 148–149
GC Murphy (10271_CR26) 2006; 23
10271_CR18
10271_CR19
10271_CR14
10271_CR16
10271_CR17
10271_CR10
10271_CR11
10271_CR12
10271_CR13
10271_CR20
10271_CR25
C Vassallo (10271_CR46) 2019; 180
10271_CR27
Z Kurtanović (10271_CR22) 2018; 23
10271_CR28
10271_CR21
10271_CR23
H Cramer (10271_CR9) 1946
10271_CR24
10271_CR30
10271_CR31
A Peruma (10271_CR38) 2020; 169
M Fowler (10271_CR15) 2002; 2002
BA Muse (10271_CR29) 2022; 27
F Pedregosa (10271_CR34) 2011; 12
N Arzamasova (10271_CR5) 2018; 30
10271_CR36
10271_CR37
10271_CR39
10271_CR32
10271_CR33
D Perez-Palacin (10271_CR35) 2019; 18
10271_CR40
10271_CR41
10271_CR42
EA Alomar (10271_CR4) 2021; 167
10271_CR48
10271_CR43
10271_CR44
10271_CR45
CP Chen (10271_CR8) 2014; 275
10271_CR3
10271_CR1
10271_CR2
J Zhou (10271_CR49) 2021; 47
10271_CR7
10271_CR6
C Wohlin (10271_CR47) 2012
References_xml – reference: Muse BA, Rahman MM, Nagy C, Cleve A, Khomh F, Antoniol G (2020) On the prevalence, impact, and evolution of SQL code smells in data-intensive systems. In: Proceedings of the 17th international conference on mining software repositories, pp 327–338
– reference: Peruma A (2019) A preliminary study of android refactorings. In: 2019 IEEE/ACM 6th international conference on mobile software engineering and systems (MOBILESoft). IEEE, pp 148–149
– reference: Muse BA, Khomh F, Antoniol G (2022) Replication package: Refactoring Practices in the Context of Data-intensive Systems. https://doi.org/10.5281/zenodo.7140854
– reference: Spadini D, Aniche M, Bacchelli A (2018) PyDriller: Python Framework for Mining Software Repositories. https://doi.org/10.1145/3236024.3264598
– reference: Nagy C, Cleve A (2017) A static code smell detector for SQL queries embedded in Java code. In: 2017 IEEE 17th international working conference on source code analysis and manipulation (SCAM). IEEE, pp 147–152
– reference: Shome A, Cruz L, van Deursen A (2022) Data smells in public datasets. In: Crnkovic I (ed) Proceedings of the 1st international conference on AI engineering: software engineering for AI, CAIN 2022, Pittsburgh, Pennsylvania, May 16-24, 2022. https://doi.org/10.1145/3522664.3528621. ACM, pp 205–216
– reference: AlomarEAPerumaAMkaouerMWNewmanCOuniAKessentiniMHow we refactor and how we document it? On the use of supervised machine learning algorithms to classify refactoring documentationExpert Syst Appl2021167114176
– reference: Hummel O, Eichelberger H, Giloj A, Werle D, Schmid K (2018) A collection of software engineering challenges for big data system development. In: 2018 44th Euromicro conference on software engineering and advanced applications (SEAA). https://doi.org/10.1109/SEAA.2018.00066, pp 362–369
– reference: Khumnin P, Senivongse T (2017) SQL antipatterns detection and database refactoring process. In: 2017 18th IEEE/ACIS international conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD), pp 199–205
– reference: Park B, Rao DL, Gudivada VN (2021) Dangers of bias in data-intensive information systems. In: Deshpande P, Abraham A, Iyer B, Ma K (eds) Next generation information processing system. Springer Singapore, Singapore, pp 259–271
– reference: Tsantalis N, Ketkar A, Dig D (2020) Refactoringminer 2.0. IEEE Transactions on Software Engineering. https://doi.org/10.1109/TSE.2020.3007722
– reference: Zhou C, Kuttal SK, Ahmed I (2018) What makes a good developer? an empirical study of developers’ technical and social competencies. In: 2018 IEEE symposium on visual languages and human-centric computing (VL/HCC). IEEE, pp 319–321
– reference: CramerHMathematical methods of statistics1946PrincetonPrinceton U, Press5005000063.01014
– reference: Falleri JR, Morandat F, Blanc X, Martinez M, Monperrus M (2014) Fine-grained and accurate source code differencing. In: Proceedings of the 29th ACM/IEEE international conference on Automated software engineering, pp 313–324
– reference: Dig D, Comertoglu C, Marinov D, Johnson R (2006) Automated detection of refactorings in evolving components. In: European conference on object-oriented programming. Springer, pp 404–428
– reference: Silva D, Silva J, Santos GJDS, Terra R, Valente MTO (2020) Refdiff 2.0: A multi-language refactoring detection tool. IEEE Trans Softw Eng
– reference: Hummel O, Eichelberger H, Giloj A, Werle D, Schmid K (2018) A collection of software engineering challenges for big data system development. In: 2018 44th euromicro conference on software engineering and advanced applications (SEAA). IEEE, pp 362–369
– reference: PerumaAMkaouerMWDeckerMJNewmanCDContextualizing rename decisions using refactorings, commit messages, and data typesJ Syst Softw2020169110704
– reference: Foidl H, Felderer M, Ramler R (2022) Data smells: categories, causes and consequences, and detection of suspicious data in ai-based systems. In: Crnkovic I (ed) Proceedings of the 1st international conference on AI engineering: software engineering for AI, CAIN 2022, Pittsburgh, Pennsylvania, May 16-24, 2022. https://doi.org/10.1145/3522664.3528590. ACM, pp 229–239
– reference: MuseBANagyCCleveAKhomhFAntoniolGFIXME: synchronize with database! an empirical study of data access self-admitted technical debtEmpir Softw Eng202227613010.1007/s10664-022-10119-4
– reference: Sharma T, Fragkoulis M, Rizou S, Bruntink M, Spinellis D (2018) Smelly relations: Measuring and understanding database schema quality. In: 2018 IEEE/ACM 40th international conference on software engineering: software engineering in practice track (ICSE-SEIP), pp 55–64
– reference: Karwin B (2010) SQL Antipatterns: Avoiding the pitfalls of database programming Pragmatic Bookshelf
– reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: Machine learning in PythonJ Mach Learn Res2011122825283028543481280.68189
– reference: Foidl H, Felderer M, Biffl S (2019) Technical debt in data-intensive software systems. In: 2019 45th Euromicro conference on software engineering and advanced applications (SEAA). https://doi.org/10.1109/SEAA.2019.00058, pp 338–341
– reference: Iammarino M, Zampetti F, Aversano L, Di Penta M (2019) Self-admitted technical debt removal and refactoring actions: Co-occurrence or more?. In: 2019 IEEE international conference on software maintenance and evolution (ICSME). IEEE, pp 186–190
– reference: ChenCPZhangCYData-intensive applications, challenges, techniques and technologies: A survey on big dataInf Sci201427531434710.1016/j.ins.2014.01.015
– reference: VassalloCGranoGPalombaFGallHCBacchelliAA large-scale empirical exploration on refactoring activities in open source software projectsSci Comput Program201918011510.1016/j.scico.2019.05.002
– reference: McDonald N, Goggins S (2013) Performance and participation in open source software on Github. In: CHI’13 extended abstracts on human factors in computing systems, pp 139–144
– reference: Meurice L, Nagy C, Cleve A (2016) Static analysis of dynamic database usage in Java systems. In: International conference on advanced information systems engineering. Springer, pp 491–506
– reference: Silva D, Tsantalis N, Valente MT (2016) Why we refactor? confessions of Github contributors. In: Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of software engineering, pp 858–870
– reference: WohlinCRunesonPHöstMOhlssonMCRegnellBWesslénAExperimentation in software engineering2012BerlinSpringer Science & Business Media10.1007/978-3-642-29044-21069.68547
– reference: KurtanovićZMaalejWOn user rationale in software engineeringRequir Eng201823335737910.1007/s00766-018-0293-2
– reference: Ferreira I, Fernandes E, Cedrim D, Uchôa A, Bibiano AC, Garcia A, Correia JL, Santos F, Nunes G, Barbosa C et al (2018) The buggy side of code refactoring: Understanding the relationship between refactorings and bugs. In: Proceedings of the 40th international conference on software engineering: companion proceeedings, pp 406–407
– reference: Nagy C, Cleve A (2018) SQLInspect: A static analyzer to inspect database usage in Java applications. In: Proceedings of the 40th international conference on software engineering: companion proceedings. ACM, pp 93–96
– reference: Perez-PalacinDMerseguerJRequenoJIGuerrieroMDi NittoETamburriDAA UML profile for the design, quality assessment and deployment of data-intensive applicationsSoftw Syst Model20191863577361410.1007/s10270-019-00730-3
– reference: Brin S, Motwani R, Ullman JD, Tsur S (1997) Dynamic itemset counting and implication rules for market basket data. In: Proceedings of the 1997 ACM SIGMOD international conference on Management of data, pp 255–264
– reference: Mahmoudi M, Nadi S, Tsantalis N (2019) Are refactorings to blame? an empirical study of refactorings in merge conflicts. In: 2019 IEEE 26th international conference on software analysis, evolution and reengineering (SANER). IEEE, pp 151–162
– reference: Piatetsky S, Frawley G, William J (1991) Discovery, analysis and presentation of strong rules knowledge discovery in databases
– reference: Agrawal R, Imielinski T, Swami A (1993) Mining associations between sets of items in large databases. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 207–216
– reference: de Almeida Filho FG, Martins ADF, Vinuto TdS, Monteiro JM, de Sousa ÍP, de Castro Machado J, Rocha LS (2019) Prevalence of bad smells in PL/SQL projects. In: Proceedings of the 27th international conference on program comprehension. IEEE Press, pp 116–121
– reference: Agrawal R, Srikant R, et al. (1994) Fast algorithms for mining association rules. In: Proc. 20th int. conf. very large data bases, VLDB, vol 1215. Citeseer, pp 487–499
– reference: ZhouJWangSBezemerCPZouYHassanAEStudying the association between bountysource bounties and the issue-addressing likelihood of Github issue reportsIEEE Trans Softw Eng202147122919293310.1109/TSE.2020.2974469
– reference: Kim M, Gee M, Loh A, Rachatasumrit N (2010) Ref-finder: a refactoring reconstruction tool based on logic query templates. In: Proceedings of the 18th ACM SIGSOFT international symposium on Foundations of software engineering, pp 371–372
– reference: FowlerMRefactoring: Improving the design of existing codeExtreme Program Agile Methods–XP/Agil Universe2002200225610.1007/3-540-45672-4_311020.68632
– reference: Muse BA, Khomh F, Antoniol G (2022) Do developers refactor data access code? an empirical study. In: the 29th IEEE international conference on software analysis, evolution and reengineering(SANER)
– reference: Chávez A, Ferreira I, Fernandes E, Cedrim D, Garcia A (2017) How does refactoring affect internal quality attributes? a multi-project study. In: Proceedings of the 31st Brazilian symposium on software engineering, pp 74–83
– reference: MurphyGCKerstenMFindlaterLHow are java software developers using the elipse ide?IEEE Softw2006234768310.1109/MS.2006.105
– reference: ArzamasovaNSchälerMBöhmKCleaning antipatterns in an SQL query logIEEE Trans Knowl Data Eng201830342143410.1109/TKDE.2017.2772252
– reference: Peruma A, Mkaouer MW, Decker MJ, Newman CD (2018) An empirical investigation of how and why developers rename identifiers. In: Proceedings of the 2nd international workshop on refactoring, pp 26–33
– ident: 10271_CR37
  doi: 10.1145/3242163.3242169
– volume: 27
  start-page: 130
  issue: 6
  year: 2022
  ident: 10271_CR29
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-022-10119-4
– ident: 10271_CR21
  doi: 10.1145/1882291.1882353
– ident: 10271_CR28
  doi: 10.5281/zenodo.7140854
– ident: 10271_CR2
– ident: 10271_CR41
  doi: 10.1145/3522664.3528621
– ident: 10271_CR44
  doi: 10.1145/3236024.3264598
– ident: 10271_CR10
  doi: 10.1007/11785477_24
– ident: 10271_CR48
  doi: 10.1109/VLHCC.2018.8506577
– ident: 10271_CR25
  doi: 10.1007/978-3-319-39696-5_30
– ident: 10271_CR11
  doi: 10.1145/2642937.2642982
– volume-title: Experimentation in software engineering
  year: 2012
  ident: 10271_CR47
  doi: 10.1007/978-3-642-29044-2
– ident: 10271_CR16
  doi: 10.1109/SEAA.2018.00066
– volume: 47
  start-page: 2919
  issue: 12
  year: 2021
  ident: 10271_CR49
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2020.2974469
– start-page: 500
  volume-title: Mathematical methods of statistics
  year: 1946
  ident: 10271_CR9
– ident: 10271_CR6
  doi: 10.1145/253262.253325
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10271_CR34
  publication-title: J Mach Learn Res
– ident: 10271_CR40
  doi: 10.1145/3183519.3183529
– ident: 10271_CR43
  doi: 10.1145/2950290.2950305
– volume: 275
  start-page: 314
  year: 2014
  ident: 10271_CR8
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.01.015
– ident: 10271_CR3
  doi: 10.1109/ICPC.2019.00025
– ident: 10271_CR19
– ident: 10271_CR17
  doi: 10.1109/SEAA.2018.00066
– volume: 23
  start-page: 357
  issue: 3
  year: 2018
  ident: 10271_CR22
  publication-title: Requir Eng
  doi: 10.1007/s00766-018-0293-2
– volume: 18
  start-page: 3577
  issue: 6
  year: 2019
  ident: 10271_CR35
  publication-title: Softw Syst Model
  doi: 10.1007/s10270-019-00730-3
– ident: 10271_CR27
  doi: 10.1109/SANER53432.2022.00014
– ident: 10271_CR1
  doi: 10.1145/170036.170072
– volume: 23
  start-page: 76
  issue: 4
  year: 2006
  ident: 10271_CR26
  publication-title: IEEE Softw
  doi: 10.1109/MS.2006.105
– ident: 10271_CR24
  doi: 10.1145/2468356.2468382
– volume: 169
  start-page: 704
  issue: 110
  year: 2020
  ident: 10271_CR38
  publication-title: J Syst Softw
– ident: 10271_CR31
  doi: 10.1109/SCAM.2017.19
– ident: 10271_CR18
  doi: 10.1109/ICSME.2019.00029
– volume: 167
  start-page: 176
  issue: 114
  year: 2021
  ident: 10271_CR4
  publication-title: Expert Syst Appl
– ident: 10271_CR45
  doi: 10.1109/TSE.2020.3007722
– ident: 10271_CR14
  doi: 10.1145/3522664.3528590
– ident: 10271_CR32
  doi: 10.1145/3183440.3183496
– volume: 30
  start-page: 421
  issue: 3
  year: 2018
  ident: 10271_CR5
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2017.2772252
– ident: 10271_CR42
  doi: 10.1109/TSE.2020.2968072
– ident: 10271_CR23
  doi: 10.1109/SANER.2019.8668012
– ident: 10271_CR36
  doi: 10.1109/MOBILESoft.2019.00030
– ident: 10271_CR39
– volume: 2002
  start-page: 256
  year: 2002
  ident: 10271_CR15
  publication-title: Extreme Program Agile Methods–XP/Agil Universe
  doi: 10.1007/3-540-45672-4_31
– ident: 10271_CR20
  doi: 10.1109/SNPD.2017.8022723
– ident: 10271_CR12
  doi: 10.1145/3183440.3195030
– ident: 10271_CR13
  doi: 10.1109/SEAA.2019.00058
– ident: 10271_CR30
  doi: 10.1145/3379597.3387467
– ident: 10271_CR33
  doi: 10.1007/978-981-15-4851-2_28
– volume: 180
  start-page: 1
  year: 2019
  ident: 10271_CR46
  publication-title: Sci Comput Program
  doi: 10.1016/j.scico.2019.05.002
– ident: 10271_CR7
  doi: 10.1145/3131151.3131171
SSID ssj0009745
Score 2.325628
Snippet Developers often refactor code to improve the maintainability and comprehension of the software. There are many studies on refactoring activities in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 46
SubjectTerms Compilers
Computer Science
Context
Interpreters
Maintainability
Programming Languages
Software
Software Engineering/Programming and Operating Systems
Systems developers
SummonAdditionalLinks – databaseName: ProQuest Central (New)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7odvHib3E6JQdvGlzbNEkvisrGEBwyHOxW0iSFXbrNTtif70ubUhT0XPIOL837vuT9-ABuTKhdP6ObsR_HlMlQ0yTMGeXS5QUVyzl3Dc5vEz6esdd5PPcPbqUvq2xiYhWozVK7N_L7UCAxFjyJk8fVmjrVKJdd9RIau9DFECzx8tV9Hk7ep-3YXVHJFLtBezRCdPdtM755jnNGXTU7gqwI6PYnNLV881eKtEKe0SHse8pInuo9PoIdWxzDQSPHQPzpPIGHqa3Vc9AKabqfSrIoCJI84mrSMRCTZU5cVShdNLXrpB7mXJ7CbDT8eBlTL49AdSgGG5oFhkdBbmQuAiaEdTjDZWwjleTKskhFKmbCCDUw3Oo4lDbKLBIulSFsW4TpM-gUy8KeA5EWrx1aS4V8gJkclwY6YyZQrnVX6KwHt41n0lU9BSNt5x07P6box7TyY7rtQb9xXupPRJm2-9eDu8ah7ee_rV38b-0S9pwCfF0W1ofO5vPLXiFP2GTX_mf4BsXXuSM
  priority: 102
  providerName: ProQuest
Title Refactoring practices in the context of data-intensive systems
URI https://link.springer.com/article/10.1007/s10664-022-10271-x
https://www.proquest.com/docview/2776876959
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vXjxLVZr2YM3XWiSfeUiVOkDxSLFQj2FzWYDvbRiKvjznU2yREUPnnJIdg6T3f2-YeabAbjMQuP0jK7HPueUqdDQOMwZFcrlBTXLhXAC58epmMzZ_YIvalFY4avdfUqyvKm_iN2EYNRVnyMoyoAic2xzF7vjLp6Hg6bVrixHE7vmejRCRK-lMr_b-A5HDcf8kRYt0Wa0D7s1TSSD6r8ewJZdHcKeH8FA6hN5BDczW03MQSvEK54KslwRJHbE1aHj5UvWOXGVoHTp69VJ1cC5OIb5aPh8N6H1SARqQtnf0DTIRBTkmcplwKS0DluE4jbSca4ti3SkOZOZ1P1MWMNDZaPUIsnSKUK1RWg-gdZqvbKnQJTFUMMYpZEDsCzHpYFJWRZoJ9eVJu3AlfdM8lp1vkiaHsfOjwn6MSn9mHx0oOudl9SnoEhCicGMFDGPO3DtHdq8_tva2f8-P4cdNwW-Kg3rQmvz9m4vkCts0h5sq9G4B-3B-OVhiM_b4fRp1is3zCc93LkC
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T8MwED1VMMDCN6J8eoAJLEji2M4ACAGlpYUBgdQtOI4jdUkLLQL-FL8RXxIrAgm2zlE8vJzvnuN79wD2U1-jnhFn7IchZdLXNPIzRrnEe0HFMs5R4Hx3z9tP7LYf9hvw5bQw2FbpcmKRqNOhxn_kx76wxFjwKIzORy8UXaPwdtVZaJRh0TWf7_bINj7tXNnve-D7revHyzatXAWo9sXJhCZeygMvS2UmPCaEwfTMZWgCFWXKsEAFKmQiFeok5UaHvjRBYixPUYmtdkaiS4RN-bMsCCLcUbJ1Uw_5FYUpMo71o4HlEpVIp5Lqcc4o9s7bki48-vGzENbs9teFbFHnWkuwUBFUclFG1DI0TL4Ci878gVS5YBXOHkzp1WNXIU5rNSaDnFhKSbAD3qZ9MswI9qDSgeuUJ-Xo6PEaPE0FtnWYyYe52QAijT3kaC2VZR8szeyrnk5Y6ikUCgudNOHQIROPypkbcT1dGXGMLY5xgWP80YRtB15c7b9xXEdLE44coPXjv1fb_H-1PZhrP9714l7nvrsF8-g9XzakbcPM5PXN7FiGMkl2i7Ag8DztOPwGA_D0fQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTsMwEFyhVkJceCMKBXyAE1htEsdOD4B4VTwrVIHELTiOI_XSFlpE-TW-jt0mVgQS3DhH8WG82R3HszsAu6lvqJ-RZuyHIReRb3jLzwSXEd0LapFJSQ3Odx15-Siun8KnGfh0vTAkq3Q5cZqo04Ghf-QNXyExVrIVthpZIYu4P28fD184OUjRTauz08hD5MZ-vOPxbXR4dY57vef77YuHs0teOAxw46vmmCdeKgMvS6NMeUIpS6laRqENdCvTVgQ60KFQqdLNVFoT-pENEoucRSdY-WxEjhGY_qsKT0XNClRPLzr33XLkr5paJNOQPx4gsyhadorGPSkFJyU9Fnjl8cn3slhy3R_Xs9Oq116E-YKuspM8vpZgxvaXYcFZQbAiM6zAUdfmzj24CnOdVyPW6zMkmIz08IgkG2SMFKm853TzLB8kPVqFx38Bbg0q_UHfrgOLLB55jIk0chGRZviqZxKReprahpVJarDvkImH-QSOuJy1TDjGiGM8xTGe1KDuwIuLr3EUl7FTgwMHaPn499U2_l5tB2YxBuPbq87NJsyREX2uTqtDZfz6ZreQroyT7SIuGDz_dyh-AX2S-g8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Refactoring+practices+in+the+context+of+data-intensive+systems&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Muse%2C+Biruk+Asmare&rft.au=Khomh%2C+Foutse&rft.au=Antoniol%2C+Giuliano&rft.date=2023-03-01&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=28&rft.issue=2&rft_id=info:doi/10.1007%2Fs10664-022-10271-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10664_022_10271_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon