Research on FCM-LR cross electricity theft detection based on big data user profile

Data-driven electricity theft detection (ETD) based on machine learning and deep learning has the advantages of automation, real-time performance, and efficiency while requiring a large amount of labeled data to train models. However, the imbalance ratio between positive and unlabeled samples has re...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of system assurance engineering and management Vol. 15; no. 7; pp. 3251 - 3265
Main Authors Hu, Ronghui, Zhen, Tong
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.07.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Data-driven electricity theft detection (ETD) based on machine learning and deep learning has the advantages of automation, real-time performance, and efficiency while requiring a large amount of labeled data to train models. However, the imbalance ratio between positive and unlabeled samples has reached 1:200, which significantly limits the accuracy of the ETD model. In cases like this, we refer to it as positive-unlabeled learning. Down-sampling wastes a large amount of negative samples, while up-sampling will result in the ETD model not being robust. Both can lead to ETD models performing well in experimental environments but poorly in production environments. In this context, this paper proposes a semi-supervised electricity theft detection algorithm based on fuzzy c-means and logistic regression cross detection (FCM-LR). Firstly, a statistical feature set based on business data and load data is proposed to depict the profile of electricity users, which can achieve the effect of reducing the complexity of data structure. Furthermore, by using the FCM-LR method, the utilization of unlabeled data can be maximized, and new electricity theft patterns can be discovered. The simulation results show that the theft detection effect of this method is significant, with Precision, Recall, F1, and Area under Curve all approaching 99%.
AbstractList Data-driven electricity theft detection (ETD) based on machine learning and deep learning has the advantages of automation, real-time performance, and efficiency while requiring a large amount of labeled data to train models. However, the imbalance ratio between positive and unlabeled samples has reached 1:200, which significantly limits the accuracy of the ETD model. In cases like this, we refer to it as positive-unlabeled learning. Down-sampling wastes a large amount of negative samples, while up-sampling will result in the ETD model not being robust. Both can lead to ETD models performing well in experimental environments but poorly in production environments. In this context, this paper proposes a semi-supervised electricity theft detection algorithm based on fuzzy c-means and logistic regression cross detection (FCM-LR). Firstly, a statistical feature set based on business data and load data is proposed to depict the profile of electricity users, which can achieve the effect of reducing the complexity of data structure. Furthermore, by using the FCM-LR method, the utilization of unlabeled data can be maximized, and new electricity theft patterns can be discovered. The simulation results show that the theft detection effect of this method is significant, with Precision, Recall, F1, and Area under Curve all approaching 99%.
Author Zhen, Tong
Hu, Ronghui
Author_xml – sequence: 1
  givenname: Ronghui
  orcidid: 0009-0003-7815-7323
  surname: Hu
  fullname: Hu, Ronghui
  email: WilliamHuYang@outlook.com
  organization: Henan Vocational College of Information and Statistics
– sequence: 2
  givenname: Tong
  surname: Zhen
  fullname: Zhen, Tong
  organization: College of Information Science and Engineering, Henan University of Technology
BookMark eNp9kE9LAzEQxYMoWGu_gKeA52j-7CbZoxSrQkWoeg7ZZNJuqbs1SQ_99qat4M3DMMPwfvOYd4XO-6EHhG4YvWOUqvvEBGs0obwqJYQg-gyNaKMkqUSlz49zTaSmzSWapLSmlDLOKl7REXpfQAIb3QoPPZ5NX8l8gV0cUsKwAZdj57q8x3kFIWMPuay6ImxtAn8g2m6Jvc0W7xJEvI1D6DZwjS6C3SSY_PYx-pw9fkyfyfzt6WX6MCeOK5qJDZILyVvupfPKQ9DBC-6pV0p7qzxjQdc1A-faVrLKN4w5Tm3QtpVQWyHG6PZ0t_h-7yBlsx52sS-WRlDVaKk1r4qKn1THtyIEs43dl417w6g55GdO-ZmSnznmZ3SBxAlKRdwvIf6d_of6ARE0dJ8
Cites_doi 10.1016/j.apenergy.2019.01.076
10.1016/j.epsr.2020.106397
10.1109/TSG.2018.2807925
10.1109/TII.2023.3249212
10.1109/ACCESS.2022.3150047
10.1016/j.ijepes.2021.107715
10.1109/TSG.2022.3148817
10.1016/j.egyr.2021.07.008
10.1016/j.epsr.2018.01.005
10.1109/TSG.2021.3134018
10.1016/j.ijepes.2020.106544
10.1109/ACCESS.2019.2925322
10.1109/TSG.2015.2425222
10.1016/j.epsr.2022.107895
10.3390/en13174291
10.1109/TPWRS.2022.3162391
10.1016/j.ijepes.2023.109283
10.1016/j.apenergy.2022.120635
10.1109/JSYST.2021.3136683
10.1016/j.rser.2021.111205
10.1016/j.egyr.2022.01.143
10.1109/ACCESS.2022.3166146
10.1016/j.epsr.2022.107975
10.1109/TPWRS.2019.2943115
10.1109/TSG.2023.3263219
10.1016/j.ijepes.2021.107085
10.1016/j.epsr.2022.108886
10.1109/TSG.2023.3250521
10.1109/TPWRD.2011.2161621
10.1002/tee.23518
10.1109/ACCESS.2022.3150016
10.1109/ACCESS.2021.3100980
10.1016/j.esd.2018.12.006
10.1109/PowerTech46648.2021.9495000
10.1109/ICC.2018.8422731
10.1109/IECON.2018.8591459
10.1109/CEC48606.2020.9185822
ContentType Journal Article
Copyright The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s13198-024-02333-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 0976-4348
EndPage 3265
ExternalDocumentID 10_1007_s13198_024_02333_8
GroupedDBID -EM
06D
0R~
203
29~
2JY
30V
406
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
AYJHY
CSCUP
DNIVK
DPUIP
EBLON
EIOEI
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
HG6
HMJXF
HQYDN
HRMNR
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
NPVJJ
NQJWS
O93
O9J
PT4
R89
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z5O
Z7R
Z7X
Z7Z
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-af62362b2d6cd7def8fd32d0d778da7d11f8551eccbb614d911c20af8ab6e5a33
IEDL.DBID AGYKE
ISSN 0975-6809
IngestDate Fri Jul 25 11:02:20 EDT 2025
Tue Jul 01 03:01:16 EDT 2025
Fri Feb 21 02:39:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Fuzzy c-means and logistic regression cross detection (FCM-LR)
User profile
Imbalance
Electricity theft detection (ETD)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-af62362b2d6cd7def8fd32d0d778da7d11f8551eccbb614d911c20af8ab6e5a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-7815-7323
PQID 3079868824
PQPubID 2043907
PageCount 15
ParticipantIDs proquest_journals_3079868824
crossref_primary_10_1007_s13198_024_02333_8
springer_journals_10_1007_s13198_024_02333_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Dordrecht
PublicationTitle International journal of system assurance engineering and management
PublicationTitleAbbrev Int J Syst Assur Eng Manag
PublicationYear 2024
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References Souza Savian, Siluk, Garlet, Nascimento, Pinheiro, Vale (CR34) 2021; 147
Messinis, Hatziargyriou (CR24) 2018; 158
Jokar, Arianpoo, Leung (CR15) 2016; 7
CR18
CR39
Berghout, Benbouzid, Ferrag (CR3) 2023; 14
Pereira, Saraiva (CR28) 2021; 1
Xia, Gao, Zhu, Gu, Wang (CR43) 2023; 1
CR13
Khan, Javeid, Taylor, Gamage, Ma (CR16) 2022; 13
Wu, Zhang, Liao (CR41) 2022; 1
CR32
Kong, Zhao, Liu, Li, Dong, Li (CR20) 2021; 1
Massaferro, Martino, Fernández (CR23) 2022; 13
Asif, Nazeer, Javaid, Alkhammash, Hadjouni (CR2) 2022; 10
Razavi, Fleury (CR30) 2019; 49
Tehrani, Shahrestani, Yaghmaee (CR36) 2022; 1
Nabil, Ismail, Mahmoud, Alasmary, Serpedin (CR25) 2019; 7
Hussain, Mustafa, Jumani, Baloch, Alotaibi, Khan, Khan (CR14) 2021; 1
Khan, Javaid, Taylor, Ma (CR17) 2023; 38
Tong, Zhu, Zhang, Zhou, Peng, Shan, Wang, Liu, Tong, Zeng (CR37) 2022; 17
Cheng, Zhang, Jing, Chen, Jiao, Yang (CR8) 2015; 43
Razavi, Gharipour, Fleury (CR31) 2019; 238
Zhu, Wen, Li, Zhang, Zhou, Shuai (CR44) 2024; 20
Takiddin, Ismail, Zafar, Serpedin (CR35) 2022; 16
Kong, Jiang, Tian, Jiang, Liu (CR19) 2023; 15
Shehzad, Javaid, Aslam, Javed (CR33) 2022; 1
Fei, Li, Zhu, Dong, Li (CR10) 2022; 1
Liu, Gao, Guo, Li, Gu, Wen (CR22) 2022; 50
Peng, Yang (CR26) 2021; 9
CR29
CR9
CR27
Ullah, Javaid, Asif, Javed, Yahaya (CR38) 2022; 10
Gao, Mei, Zheng, Sha, Guo, Xie (CR11) 2023; 14
Bretas, Rossoni, Trevizan, Bretas (CR4) 2020; 1
Angelos, Saavedra, Cortés, de Souza (CR1) 2011; 26
CR42
Buzau, Tejedor-Aguilera, Cruz-Romero, Gómez-Expósito (CR5) 2019; 10
CR40
Buzau, Tejedor-Aguilera, Cruz-Romero, Gómez-Expósito (CR6) 2020; 35
Gong, Tang, Zhu, Liao, Song (CR12) 2020; 13
Cai, Li, Wang (CR7) 2023; 1
Lepolesa, Achari, Cheng (CR21) 2022; 10
P Jokar (2333_CR15) 2016; 7
2333_CR39
M Asif (2333_CR2) 2022; 10
2333_CR18
A Ullah (2333_CR38) 2022; 10
J Pereira (2333_CR28) 2021; 1
T Berghout (2333_CR3) 2023; 14
2333_CR32
Q Wu (2333_CR41) 2022; 1
2333_CR9
2333_CR13
A Takiddin (2333_CR35) 2022; 16
AS Bretas (2333_CR4) 2020; 1
R Razavi (2333_CR30) 2019; 49
Y Peng (2333_CR26) 2021; 9
F Souza Savian (2333_CR34) 2021; 147
GM Messinis (2333_CR24) 2018; 158
MM Buzau (2333_CR5) 2019; 10
EWS Angelos (2333_CR1) 2011; 26
P Massaferro (2333_CR23) 2022; 13
LJ Lepolesa (2333_CR21) 2022; 10
2333_CR27
IU Khan (2333_CR17) 2023; 38
2333_CR29
L Zhu (2333_CR44) 2024; 20
A Gao (2333_CR11) 2023; 14
R Xia (2333_CR43) 2023; 1
2333_CR40
Q Cai (2333_CR7) 2023; 1
K Fei (2333_CR10) 2022; 1
SO Tehrani (2333_CR36) 2022; 1
2333_CR42
X Gong (2333_CR12) 2020; 13
X Kong (2333_CR20) 2021; 1
S Hussain (2333_CR14) 2021; 1
J Kong (2333_CR19) 2023; 15
M Nabil (2333_CR25) 2019; 7
IU Khan (2333_CR16) 2022; 13
C Cheng (2333_CR8) 2015; 43
M-M Buzau (2333_CR6) 2020; 35
Z Liu (2333_CR22) 2022; 50
R Razavi (2333_CR31) 2019; 238
F Shehzad (2333_CR33) 2022; 1
C Tong (2333_CR37) 2022; 17
References_xml – ident: CR18
– ident: CR39
– volume: 50
  start-page: 92
  year: 2022
  end-page: 102
  ident: CR22
  article-title: Abnormal detection of electricity theft using a deep auto-encoder Gaussian mixture model
  publication-title: Power Syst Prot Control
– volume: 238
  start-page: 481
  year: 2019
  end-page: 494
  ident: CR31
  article-title: Ikpe Justice Akpan, "A practical feature-engineering framework for electricity theft detection in smart grids,"
  publication-title: ELSEVIER Appl Energy
  doi: 10.1016/j.apenergy.2019.01.076
– volume: 1
  start-page: 106397
  issue: 186
  year: 2020
  ident: CR4
  article-title: Distribution networks nontechnical power loss estimation: a hybrid data-driven physics model-based framework
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2020.106397
– volume: 10
  start-page: 2661
  issue: 3
  year: 2019
  end-page: 2670
  ident: CR5
  article-title: Detection of non-technical losses using smart meter data and supervised learning
  publication-title: IEEE Transact Smart Grid
  doi: 10.1109/TSG.2018.2807925
– volume: 20
  start-page: 256
  issue: 1
  year: 2024
  end-page: 268
  ident: CR44
  article-title: Deep active learning-enabled cost-effective electricity theft detection in smart grids
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2023.3249212
– volume: 10
  start-page: 27467
  year: 2022
  end-page: 27483
  ident: CR2
  article-title: Data augmentation using BiWGAN, feature extraction and classification by hybrid 2DCNN and BiLSTM to detect non-technical losses in smart grids
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3150047
– volume: 1
  start-page: 107715
  issue: 137
  year: 2022
  ident: CR10
  article-title: Electricity frauds detection in Low-voltage networks with contrastive predictive coding
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2021.107715
– volume: 13
  start-page: 2381
  issue: 3
  year: 2022
  end-page: 2389
  ident: CR23
  article-title: Fraud detection on power grids while transitioning to smart meters by leveraging multi-resolution consumption data
  publication-title: IEEE Transact Smart Grid
  doi: 10.1109/TSG.2022.3148817
– ident: CR29
– volume: 1
  start-page: 4425
  issue: 7
  year: 2021
  end-page: 4436
  ident: CR14
  article-title: A novel feature engineered-CatBoost-based supervised machine learning framework for electricity theft detection
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2021.07.008
– ident: CR40
– volume: 158
  start-page: 250
  year: 2018
  end-page: 266
  ident: CR24
  article-title: Review of non-technical loss detection methods
  publication-title: ELSEVIER Electr Power Syst Res
  doi: 10.1016/j.epsr.2018.01.005
– ident: CR27
– volume: 13
  start-page: 1633
  issue: 2
  year: 2022
  end-page: 1644
  ident: CR16
  article-title: A stacked machine and deep learning-based approach for analysing electricity theft in smart grids
  publication-title: IEEE Transact Smart Grid
  doi: 10.1109/TSG.2021.3134018
– ident: CR42
– volume: 1
  start-page: 106544
  issue: 125
  year: 2021
  ident: CR20
  article-title: Electricity theft detection in low-voltage stations based on similarity measure and DT-KSVM
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2020.106544
– volume: 7
  start-page: 96334
  year: 2019
  end-page: 96348
  ident: CR25
  article-title: PPETD: privacy-preserving electricity theft detection scheme with load monitoring and billing for AMI networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2925322
– volume: 7
  start-page: 216
  year: 2016
  end-page: 226
  ident: CR15
  article-title: Electricity theft detection in ami using customers’ consumption patterns
  publication-title: IEEE Transact Smart Grid
  doi: 10.1109/TSG.2015.2425222
– volume: 1
  start-page: 107895
  issue: 208
  year: 2022
  ident: CR36
  article-title: Online electricity theft detection framework for large-scale smart grid data
  publication-title: Electric Power Syst Res
  doi: 10.1016/j.epsr.2022.107895
– volume: 13
  start-page: 4291
  issue: 17
  year: 2020
  ident: CR12
  article-title: Data augmentation for electricity theft detection using conditional variational auto-encoder
  publication-title: Energies
  doi: 10.3390/en13174291
– volume: 38
  start-page: 537
  issue: 1
  year: 2023
  end-page: 548
  ident: CR17
  article-title: Robust data driven analysis for electricity theft attack-resilient power grid
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2022.3162391
– volume: 1
  start-page: 109283
  issue: 153
  year: 2023
  ident: CR7
  article-title: Electricity theft detection based on hybrid random forest and weighted support vector data description
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2023.109283
– volume: 15
  start-page: 120635
  issue: 334
  year: 2023
  ident: CR19
  article-title: Anomaly detection based on joint spatio-temporal learning for building electricity consumption
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120635
– volume: 16
  start-page: 4106
  issue: 3
  year: 2022
  end-page: 4117
  ident: CR35
  article-title: Deep autoencoder-based anomaly detection of electricity theft cyberattacks in smart grids
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2021.3136683
– volume: 147
  start-page: 111205
  year: 2021
  ident: CR34
  article-title: Non-technical losses: a systematic contemporary article review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.111205
– volume: 1
  start-page: 488
  issue: 8
  year: 2022
  end-page: 494
  ident: CR41
  article-title: Analysis of electricity stealing based on user electricity characteristics of electricity information collection system
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2022.01.143
– ident: CR13
– volume: 10
  start-page: 39638
  year: 2022
  end-page: 39655
  ident: CR21
  article-title: Electricity theft detection in smart grids based on deep neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3166146
– volume: 1
  start-page: 107975
  issue: 209
  year: 2022
  ident: CR33
  article-title: Electricity theft detection using big data and genetic algorithm in electric power systems
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2022.107975
– volume: 35
  start-page: 1254
  issue: 2
  year: 2020
  end-page: 1263
  ident: CR6
  article-title: Hybrid deep neural networks for detection of non-technical losses in electricity smart meters
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2019.2943115
– volume: 43
  start-page: 69
  issue: 17
  year: 2015
  end-page: 74
  ident: CR8
  article-title: Study on the anti-electricity stealing based on outlier algorithm and the electricity information acquisition system
  publication-title: Power Syst Protect Control
– volume: 14
  start-page: 4565
  issue: 6
  year: 2023
  end-page: 4580
  ident: CR11
  article-title: Electricity theft detection based on contrastive learning and non-intrusive load monitoring
  publication-title: IEEE Transact Smart Grid
  doi: 10.1109/TSG.2023.3263219
– ident: CR9
– volume: 1
  start-page: 107085
  issue: 131
  year: 2021
  ident: CR28
  article-title: Convolutional neural network applied to detect electricity theft: a comparative study on unbalanced data handling techniques
  publication-title: Int J Electrical Power Energy Syst
  doi: 10.1016/j.ijepes.2021.107085
– volume: 1
  start-page: 108886
  issue: 214
  year: 2023
  ident: CR43
  article-title: An attention-based wide and deep CNN with dilated convolutions for detecting electricity theft considering imbalanced data
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2022.108886
– ident: CR32
– volume: 14
  start-page: 4693
  issue: 6
  year: 2023
  end-page: 4703
  ident: CR3
  article-title: Multiverse recurrent expansion with multiple repeats: a representation learning algorithm for electricity theft detection in smart grids
  publication-title: IEEE Transact Smart Grid
  doi: 10.1109/TSG.2023.3250521
– volume: 26
  start-page: 2436
  issue: 4
  year: 2011
  end-page: 2442
  ident: CR1
  article-title: Detection and identification of abnormalities in customer consumptions in power distribution systems
  publication-title: IEEE Trans Power Delivery
  doi: 10.1109/TPWRD.2011.2161621
– volume: 17
  start-page: 354
  issue: 3
  year: 2022
  end-page: 360
  ident: CR37
  article-title: Online monitoring data processing method of transformer oil chromatogram based on association rules
  publication-title: IEEJ Transact Electri Electr Eng
  doi: 10.1002/tee.23518
– volume: 10
  start-page: 18681
  year: 2022
  end-page: 18694
  ident: CR38
  article-title: AlexNet, adaboost and artificial bee colony based hybrid model for electricity theft detection in smart grids
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3150016
– volume: 9
  start-page: 107250
  year: 2021
  end-page: 107259
  ident: CR26
  article-title: Electricity theft detection in ami based on clustering and local outlier factor
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3100980
– volume: 49
  start-page: 1
  year: 2019
  end-page: 10
  ident: CR30
  article-title: Socio-economic predictors of electricity theft in developing countries: An Indian case study
  publication-title: ELSEVIER Energy Sustain Dev
  doi: 10.1016/j.esd.2018.12.006
– ident: 2333_CR29
– volume: 147
  start-page: 111205
  year: 2021
  ident: 2333_CR34
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2021.111205
– volume: 43
  start-page: 69
  issue: 17
  year: 2015
  ident: 2333_CR8
  publication-title: Power Syst Protect Control
– volume: 7
  start-page: 216
  year: 2016
  ident: 2333_CR15
  publication-title: IEEE Transact Smart Grid
  doi: 10.1109/TSG.2015.2425222
– volume: 49
  start-page: 1
  year: 2019
  ident: 2333_CR30
  publication-title: ELSEVIER Energy Sustain Dev
  doi: 10.1016/j.esd.2018.12.006
– volume: 10
  start-page: 18681
  year: 2022
  ident: 2333_CR38
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3150016
– ident: 2333_CR18
  doi: 10.1109/PowerTech46648.2021.9495000
– volume: 16
  start-page: 4106
  issue: 3
  year: 2022
  ident: 2333_CR35
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2021.3136683
– volume: 1
  start-page: 4425
  issue: 7
  year: 2021
  ident: 2333_CR14
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2021.07.008
– volume: 1
  start-page: 106397
  issue: 186
  year: 2020
  ident: 2333_CR4
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2020.106397
– volume: 238
  start-page: 481
  year: 2019
  ident: 2333_CR31
  publication-title: ELSEVIER Appl Energy
  doi: 10.1016/j.apenergy.2019.01.076
– volume: 15
  start-page: 120635
  issue: 334
  year: 2023
  ident: 2333_CR19
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120635
– volume: 13
  start-page: 4291
  issue: 17
  year: 2020
  ident: 2333_CR12
  publication-title: Energies
  doi: 10.3390/en13174291
– volume: 50
  start-page: 92
  year: 2022
  ident: 2333_CR22
  publication-title: Power Syst Prot Control
– ident: 2333_CR9
– volume: 1
  start-page: 108886
  issue: 214
  year: 2023
  ident: 2333_CR43
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2022.108886
– volume: 158
  start-page: 250
  year: 2018
  ident: 2333_CR24
  publication-title: ELSEVIER Electr Power Syst Res
  doi: 10.1016/j.epsr.2018.01.005
– volume: 13
  start-page: 2381
  issue: 3
  year: 2022
  ident: 2333_CR23
  publication-title: IEEE Transact Smart Grid
  doi: 10.1109/TSG.2022.3148817
– volume: 1
  start-page: 107975
  issue: 209
  year: 2022
  ident: 2333_CR33
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2022.107975
– ident: 2333_CR39
  doi: 10.1109/ICC.2018.8422731
– volume: 1
  start-page: 488
  issue: 8
  year: 2022
  ident: 2333_CR41
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2022.01.143
– volume: 20
  start-page: 256
  issue: 1
  year: 2024
  ident: 2333_CR44
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2023.3249212
– volume: 26
  start-page: 2436
  issue: 4
  year: 2011
  ident: 2333_CR1
  publication-title: IEEE Trans Power Delivery
  doi: 10.1109/TPWRD.2011.2161621
– ident: 2333_CR42
  doi: 10.1109/IECON.2018.8591459
– volume: 13
  start-page: 1633
  issue: 2
  year: 2022
  ident: 2333_CR16
  publication-title: IEEE Transact Smart Grid
  doi: 10.1109/TSG.2021.3134018
– ident: 2333_CR32
– volume: 1
  start-page: 107085
  issue: 131
  year: 2021
  ident: 2333_CR28
  publication-title: Int J Electrical Power Energy Syst
  doi: 10.1016/j.ijepes.2021.107085
– volume: 1
  start-page: 107895
  issue: 208
  year: 2022
  ident: 2333_CR36
  publication-title: Electric Power Syst Res
  doi: 10.1016/j.epsr.2022.107895
– volume: 10
  start-page: 27467
  year: 2022
  ident: 2333_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3150047
– volume: 38
  start-page: 537
  issue: 1
  year: 2023
  ident: 2333_CR17
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2022.3162391
– volume: 10
  start-page: 39638
  year: 2022
  ident: 2333_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3166146
– ident: 2333_CR40
– volume: 35
  start-page: 1254
  issue: 2
  year: 2020
  ident: 2333_CR6
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2019.2943115
– volume: 1
  start-page: 109283
  issue: 153
  year: 2023
  ident: 2333_CR7
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2023.109283
– volume: 1
  start-page: 106544
  issue: 125
  year: 2021
  ident: 2333_CR20
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2020.106544
– volume: 1
  start-page: 107715
  issue: 137
  year: 2022
  ident: 2333_CR10
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2021.107715
– ident: 2333_CR13
– volume: 17
  start-page: 354
  issue: 3
  year: 2022
  ident: 2333_CR37
  publication-title: IEEJ Transact Electri Electr Eng
  doi: 10.1002/tee.23518
– volume: 14
  start-page: 4565
  issue: 6
  year: 2023
  ident: 2333_CR11
  publication-title: IEEE Transact Smart Grid
  doi: 10.1109/TSG.2023.3263219
– volume: 7
  start-page: 96334
  year: 2019
  ident: 2333_CR25
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2925322
– volume: 14
  start-page: 4693
  issue: 6
  year: 2023
  ident: 2333_CR3
  publication-title: IEEE Transact Smart Grid
  doi: 10.1109/TSG.2023.3250521
– volume: 10
  start-page: 2661
  issue: 3
  year: 2019
  ident: 2333_CR5
  publication-title: IEEE Transact Smart Grid
  doi: 10.1109/TSG.2018.2807925
– volume: 9
  start-page: 107250
  year: 2021
  ident: 2333_CR26
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3100980
– ident: 2333_CR27
  doi: 10.1109/CEC48606.2020.9185822
SSID ssj0001214240
Score 2.2912662
Snippet Data-driven electricity theft detection (ETD) based on machine learning and deep learning has the advantages of automation, real-time performance, and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 3251
SubjectTerms Algorithms
Big Data
Data structures
Deep learning
Electricity
Engineering
Engineering Economics
Logistics
Machine learning
Marketing
Organization
Original Article
Quality Control
Real time
Reliability
Safety and Risk
Sampling
Statistical analysis
Theft
Title Research on FCM-LR cross electricity theft detection based on big data user profile
URI https://link.springer.com/article/10.1007/s13198-024-02333-8
https://www.proquest.com/docview/3079868824
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07TwMxDI6gXWDgjSgUlIENUl3vkeTGqqJUQBmASmU6JXGCKqQroteFX4_vpZYKBoabLolyts_-7NgOIZcKnA9axAw4SHRQrGHadR1zGrWlU8bTRbxj9MiH4_BuEk2qorB5ne1eH0kWmnpZ7IbSIhnaFHyCIGBykzQRf3hRgzR7t6_3q7GVvH6rCK_EImJcenFVL_P7Qj9t0hJorp2NFiZnsEvG9WbLTJP3ziLTHfO11sfxv1-zR3YqDEp7pdDskw2bHpDtlc6Eh-S5zsijs5QO-iP28ESLzdPy3pypQfROETy6jILNinyulOYmEfIZevpG89xTmsdAaHUv-BEZD25e-kNW3b_AjC-8jCmH2Ij72gduQIB10kHggwdCSFACul0nEXChEGiNVh5QbxrfU04qzW2kguCYNNJZak8IjaziIrYGTIj-oA61Z5ThIaDzw0MVyxa5qjmQfJRtNpJlQ-WcVAmSKilIleDods2kpPrl5gkqq1hydBjCFrmuab58_fdqp_8bfka2_IJtecpumzSyz4U9R2CS6YtKDr8BNlDZPg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gOwAH3ojBgBy4Qaau7dL0OE2MwR4H2KRxqpI4QRNSh1h34dfjdq02Jjjs0FOTKLVd-7NjO4TcSrAuqCBkwEGgg2I0U7ZumVWoLa3UjsriHf0B74z853FjnBeFzYps9-JIMtPUy2I3lBbB0Kbg43keE9uk7KMPji5Xufn41l2NraT1W1l4JQwajAsnzOtl_l7ot01aAs21s9HM5LQPyKjY7CLT5KM2T1RNf6_1cdz0aw7Jfo5BaXMhNEdky8THZG-lM-EJeS0y8ug0pu1Wn_VeaLZ5urg3Z6IRvVMEjzahYJIsnyumqUmEdIaavNM095SmMRCa3wt-Skbth2Grw_L7F5h2Aydh0iI24q5ygWsIwFhhwXPBgSAQIAOo161AwIVCoBRaeUC9qV1HWiEVNw3peWekFE9jc05ow0gehEaD9tEfVL5ytNTcB3R-uC9DUSF3BQeiz0WbjWjZUDklVYSkijJSRTi6WjApyn-5WYTKKhQcHQa_Qu4Lmi9f_7_axWbDb8hOZ9jvRb2nQfeS7LoZC9P03SopJV9zc4UgJVHXuUz-AJJx3C0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50BdGDb_Gxag7eNNptu0l6lNX1LeID9FSSTCIiVNF68dc7fbGr6EE89NQkNDPTzDeTeQBsavQhGplwFKjIQHGWG9_x3Bs6Lb22gSn9HecX4ug2Prnr3g1l8ZfR7s2VZJXTUFRpyvLdF_S7g8Q3khzFSb_QE0URV6MwFgdKqhaM7R3enw77WYpcrtLVksguFypI6tyZnxf6qp8GoPPbPWmpfvrToJsPr6JOnnbec7NjP77VdPzPzmZgqsambK8SplkYcdkcTA5VLJyH6yZSjz1nrN8752dXrNwIq_rpPFpC9YxApc8ZuryM88pYoSqxmGEeH1gRk8oK3wir-4UvwG3_4KZ3xOu-DNyGMsi59oSZRGhCFBYlOq88RiEGKKVCLbHT8YqAGAmHMaT9kc5TGwbaK22E6-ooWoRW9py5JWBdp4VMnEUbk51oYhNYbUWMZBSJWCdqGbYabqQvVfmNdFBouSBVSqRKS1KlNLrdMCytf8W3lA6xRAkyJOJl2G7oP3j9-2orfxu-AeOX-_307PjidBUmwpKDRVRvG1r567tbI-ySm_VaPD8BbyrlEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+FCM-LR+cross+electricity+theft+detection+based+on+big+data+user+profile&rft.jtitle=International+journal+of+system+assurance+engineering+and+management&rft.au=Hu%2C+Ronghui&rft.au=Zhen%2C+Tong&rft.date=2024-07-01&rft.issn=0975-6809&rft.eissn=0976-4348&rft.volume=15&rft.issue=7&rft.spage=3251&rft.epage=3265&rft_id=info:doi/10.1007%2Fs13198-024-02333-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13198_024_02333_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0975-6809&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0975-6809&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0975-6809&client=summon