Research on FCM-LR cross electricity theft detection based on big data user profile
Data-driven electricity theft detection (ETD) based on machine learning and deep learning has the advantages of automation, real-time performance, and efficiency while requiring a large amount of labeled data to train models. However, the imbalance ratio between positive and unlabeled samples has re...
Saved in:
Published in | International journal of system assurance engineering and management Vol. 15; no. 7; pp. 3251 - 3265 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.07.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Data-driven electricity theft detection (ETD) based on machine learning and deep learning has the advantages of automation, real-time performance, and efficiency while requiring a large amount of labeled data to train models. However, the imbalance ratio between positive and unlabeled samples has reached 1:200, which significantly limits the accuracy of the ETD model. In cases like this, we refer to it as positive-unlabeled learning. Down-sampling wastes a large amount of negative samples, while up-sampling will result in the ETD model not being robust. Both can lead to ETD models performing well in experimental environments but poorly in production environments. In this context, this paper proposes a semi-supervised electricity theft detection algorithm based on fuzzy c-means and logistic regression cross detection (FCM-LR). Firstly, a statistical feature set based on business data and load data is proposed to depict the profile of electricity users, which can achieve the effect of reducing the complexity of data structure. Furthermore, by using the FCM-LR method, the utilization of unlabeled data can be maximized, and new electricity theft patterns can be discovered. The simulation results show that the theft detection effect of this method is significant, with Precision, Recall, F1, and Area under Curve all approaching 99%. |
---|---|
AbstractList | Data-driven electricity theft detection (ETD) based on machine learning and deep learning has the advantages of automation, real-time performance, and efficiency while requiring a large amount of labeled data to train models. However, the imbalance ratio between positive and unlabeled samples has reached 1:200, which significantly limits the accuracy of the ETD model. In cases like this, we refer to it as positive-unlabeled learning. Down-sampling wastes a large amount of negative samples, while up-sampling will result in the ETD model not being robust. Both can lead to ETD models performing well in experimental environments but poorly in production environments. In this context, this paper proposes a semi-supervised electricity theft detection algorithm based on fuzzy c-means and logistic regression cross detection (FCM-LR). Firstly, a statistical feature set based on business data and load data is proposed to depict the profile of electricity users, which can achieve the effect of reducing the complexity of data structure. Furthermore, by using the FCM-LR method, the utilization of unlabeled data can be maximized, and new electricity theft patterns can be discovered. The simulation results show that the theft detection effect of this method is significant, with Precision, Recall, F1, and Area under Curve all approaching 99%. |
Author | Zhen, Tong Hu, Ronghui |
Author_xml | – sequence: 1 givenname: Ronghui orcidid: 0009-0003-7815-7323 surname: Hu fullname: Hu, Ronghui email: WilliamHuYang@outlook.com organization: Henan Vocational College of Information and Statistics – sequence: 2 givenname: Tong surname: Zhen fullname: Zhen, Tong organization: College of Information Science and Engineering, Henan University of Technology |
BookMark | eNp9kE9LAzEQxYMoWGu_gKeA52j-7CbZoxSrQkWoeg7ZZNJuqbs1SQ_99qat4M3DMMPwfvOYd4XO-6EHhG4YvWOUqvvEBGs0obwqJYQg-gyNaKMkqUSlz49zTaSmzSWapLSmlDLOKl7REXpfQAIb3QoPPZ5NX8l8gV0cUsKwAZdj57q8x3kFIWMPuay6ImxtAn8g2m6Jvc0W7xJEvI1D6DZwjS6C3SSY_PYx-pw9fkyfyfzt6WX6MCeOK5qJDZILyVvupfPKQ9DBC-6pV0p7qzxjQdc1A-faVrLKN4w5Tm3QtpVQWyHG6PZ0t_h-7yBlsx52sS-WRlDVaKk1r4qKn1THtyIEs43dl417w6g55GdO-ZmSnznmZ3SBxAlKRdwvIf6d_of6ARE0dJ8 |
Cites_doi | 10.1016/j.apenergy.2019.01.076 10.1016/j.epsr.2020.106397 10.1109/TSG.2018.2807925 10.1109/TII.2023.3249212 10.1109/ACCESS.2022.3150047 10.1016/j.ijepes.2021.107715 10.1109/TSG.2022.3148817 10.1016/j.egyr.2021.07.008 10.1016/j.epsr.2018.01.005 10.1109/TSG.2021.3134018 10.1016/j.ijepes.2020.106544 10.1109/ACCESS.2019.2925322 10.1109/TSG.2015.2425222 10.1016/j.epsr.2022.107895 10.3390/en13174291 10.1109/TPWRS.2022.3162391 10.1016/j.ijepes.2023.109283 10.1016/j.apenergy.2022.120635 10.1109/JSYST.2021.3136683 10.1016/j.rser.2021.111205 10.1016/j.egyr.2022.01.143 10.1109/ACCESS.2022.3166146 10.1016/j.epsr.2022.107975 10.1109/TPWRS.2019.2943115 10.1109/TSG.2023.3263219 10.1016/j.ijepes.2021.107085 10.1016/j.epsr.2022.108886 10.1109/TSG.2023.3250521 10.1109/TPWRD.2011.2161621 10.1002/tee.23518 10.1109/ACCESS.2022.3150016 10.1109/ACCESS.2021.3100980 10.1016/j.esd.2018.12.006 10.1109/PowerTech46648.2021.9495000 10.1109/ICC.2018.8422731 10.1109/IECON.2018.8591459 10.1109/CEC48606.2020.9185822 |
ContentType | Journal Article |
Copyright | The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s13198-024-02333-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 0976-4348 |
EndPage | 3265 |
ExternalDocumentID | 10_1007_s13198_024_02333_8 |
GroupedDBID | -EM 06D 0R~ 203 29~ 2JY 30V 406 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AUKKA AXYYD AYJHY CSCUP DNIVK DPUIP EBLON EIOEI ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 HG6 HMJXF HQYDN HRMNR I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM NPVJJ NQJWS O93 O9J PT4 R89 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 Z5O Z7R Z7X Z7Z Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c270t-af62362b2d6cd7def8fd32d0d778da7d11f8551eccbb614d911c20af8ab6e5a33 |
IEDL.DBID | AGYKE |
ISSN | 0975-6809 |
IngestDate | Fri Jul 25 11:02:20 EDT 2025 Tue Jul 01 03:01:16 EDT 2025 Fri Feb 21 02:39:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Fuzzy c-means and logistic regression cross detection (FCM-LR) User profile Imbalance Electricity theft detection (ETD) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-af62362b2d6cd7def8fd32d0d778da7d11f8551eccbb614d911c20af8ab6e5a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0003-7815-7323 |
PQID | 3079868824 |
PQPubID | 2043907 |
PageCount | 15 |
ParticipantIDs | proquest_journals_3079868824 crossref_primary_10_1007_s13198_024_02333_8 springer_journals_10_1007_s13198_024_02333_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: Dordrecht |
PublicationTitle | International journal of system assurance engineering and management |
PublicationTitleAbbrev | Int J Syst Assur Eng Manag |
PublicationYear | 2024 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | Souza Savian, Siluk, Garlet, Nascimento, Pinheiro, Vale (CR34) 2021; 147 Messinis, Hatziargyriou (CR24) 2018; 158 Jokar, Arianpoo, Leung (CR15) 2016; 7 CR18 CR39 Berghout, Benbouzid, Ferrag (CR3) 2023; 14 Pereira, Saraiva (CR28) 2021; 1 Xia, Gao, Zhu, Gu, Wang (CR43) 2023; 1 CR13 Khan, Javeid, Taylor, Gamage, Ma (CR16) 2022; 13 Wu, Zhang, Liao (CR41) 2022; 1 CR32 Kong, Zhao, Liu, Li, Dong, Li (CR20) 2021; 1 Massaferro, Martino, Fernández (CR23) 2022; 13 Asif, Nazeer, Javaid, Alkhammash, Hadjouni (CR2) 2022; 10 Razavi, Fleury (CR30) 2019; 49 Tehrani, Shahrestani, Yaghmaee (CR36) 2022; 1 Nabil, Ismail, Mahmoud, Alasmary, Serpedin (CR25) 2019; 7 Hussain, Mustafa, Jumani, Baloch, Alotaibi, Khan, Khan (CR14) 2021; 1 Khan, Javaid, Taylor, Ma (CR17) 2023; 38 Tong, Zhu, Zhang, Zhou, Peng, Shan, Wang, Liu, Tong, Zeng (CR37) 2022; 17 Cheng, Zhang, Jing, Chen, Jiao, Yang (CR8) 2015; 43 Razavi, Gharipour, Fleury (CR31) 2019; 238 Zhu, Wen, Li, Zhang, Zhou, Shuai (CR44) 2024; 20 Takiddin, Ismail, Zafar, Serpedin (CR35) 2022; 16 Kong, Jiang, Tian, Jiang, Liu (CR19) 2023; 15 Shehzad, Javaid, Aslam, Javed (CR33) 2022; 1 Fei, Li, Zhu, Dong, Li (CR10) 2022; 1 Liu, Gao, Guo, Li, Gu, Wen (CR22) 2022; 50 Peng, Yang (CR26) 2021; 9 CR29 CR9 CR27 Ullah, Javaid, Asif, Javed, Yahaya (CR38) 2022; 10 Gao, Mei, Zheng, Sha, Guo, Xie (CR11) 2023; 14 Bretas, Rossoni, Trevizan, Bretas (CR4) 2020; 1 Angelos, Saavedra, Cortés, de Souza (CR1) 2011; 26 CR42 Buzau, Tejedor-Aguilera, Cruz-Romero, Gómez-Expósito (CR5) 2019; 10 CR40 Buzau, Tejedor-Aguilera, Cruz-Romero, Gómez-Expósito (CR6) 2020; 35 Gong, Tang, Zhu, Liao, Song (CR12) 2020; 13 Cai, Li, Wang (CR7) 2023; 1 Lepolesa, Achari, Cheng (CR21) 2022; 10 P Jokar (2333_CR15) 2016; 7 2333_CR39 M Asif (2333_CR2) 2022; 10 2333_CR18 A Ullah (2333_CR38) 2022; 10 J Pereira (2333_CR28) 2021; 1 T Berghout (2333_CR3) 2023; 14 2333_CR32 Q Wu (2333_CR41) 2022; 1 2333_CR9 2333_CR13 A Takiddin (2333_CR35) 2022; 16 AS Bretas (2333_CR4) 2020; 1 R Razavi (2333_CR30) 2019; 49 Y Peng (2333_CR26) 2021; 9 F Souza Savian (2333_CR34) 2021; 147 GM Messinis (2333_CR24) 2018; 158 MM Buzau (2333_CR5) 2019; 10 EWS Angelos (2333_CR1) 2011; 26 P Massaferro (2333_CR23) 2022; 13 LJ Lepolesa (2333_CR21) 2022; 10 2333_CR27 IU Khan (2333_CR17) 2023; 38 2333_CR29 L Zhu (2333_CR44) 2024; 20 A Gao (2333_CR11) 2023; 14 R Xia (2333_CR43) 2023; 1 2333_CR40 Q Cai (2333_CR7) 2023; 1 K Fei (2333_CR10) 2022; 1 SO Tehrani (2333_CR36) 2022; 1 2333_CR42 X Gong (2333_CR12) 2020; 13 X Kong (2333_CR20) 2021; 1 S Hussain (2333_CR14) 2021; 1 J Kong (2333_CR19) 2023; 15 M Nabil (2333_CR25) 2019; 7 IU Khan (2333_CR16) 2022; 13 C Cheng (2333_CR8) 2015; 43 M-M Buzau (2333_CR6) 2020; 35 Z Liu (2333_CR22) 2022; 50 R Razavi (2333_CR31) 2019; 238 F Shehzad (2333_CR33) 2022; 1 C Tong (2333_CR37) 2022; 17 |
References_xml | – ident: CR18 – ident: CR39 – volume: 50 start-page: 92 year: 2022 end-page: 102 ident: CR22 article-title: Abnormal detection of electricity theft using a deep auto-encoder Gaussian mixture model publication-title: Power Syst Prot Control – volume: 238 start-page: 481 year: 2019 end-page: 494 ident: CR31 article-title: Ikpe Justice Akpan, "A practical feature-engineering framework for electricity theft detection in smart grids," publication-title: ELSEVIER Appl Energy doi: 10.1016/j.apenergy.2019.01.076 – volume: 1 start-page: 106397 issue: 186 year: 2020 ident: CR4 article-title: Distribution networks nontechnical power loss estimation: a hybrid data-driven physics model-based framework publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2020.106397 – volume: 10 start-page: 2661 issue: 3 year: 2019 end-page: 2670 ident: CR5 article-title: Detection of non-technical losses using smart meter data and supervised learning publication-title: IEEE Transact Smart Grid doi: 10.1109/TSG.2018.2807925 – volume: 20 start-page: 256 issue: 1 year: 2024 end-page: 268 ident: CR44 article-title: Deep active learning-enabled cost-effective electricity theft detection in smart grids publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2023.3249212 – volume: 10 start-page: 27467 year: 2022 end-page: 27483 ident: CR2 article-title: Data augmentation using BiWGAN, feature extraction and classification by hybrid 2DCNN and BiLSTM to detect non-technical losses in smart grids publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3150047 – volume: 1 start-page: 107715 issue: 137 year: 2022 ident: CR10 article-title: Electricity frauds detection in Low-voltage networks with contrastive predictive coding publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2021.107715 – volume: 13 start-page: 2381 issue: 3 year: 2022 end-page: 2389 ident: CR23 article-title: Fraud detection on power grids while transitioning to smart meters by leveraging multi-resolution consumption data publication-title: IEEE Transact Smart Grid doi: 10.1109/TSG.2022.3148817 – ident: CR29 – volume: 1 start-page: 4425 issue: 7 year: 2021 end-page: 4436 ident: CR14 article-title: A novel feature engineered-CatBoost-based supervised machine learning framework for electricity theft detection publication-title: Energy Rep doi: 10.1016/j.egyr.2021.07.008 – ident: CR40 – volume: 158 start-page: 250 year: 2018 end-page: 266 ident: CR24 article-title: Review of non-technical loss detection methods publication-title: ELSEVIER Electr Power Syst Res doi: 10.1016/j.epsr.2018.01.005 – ident: CR27 – volume: 13 start-page: 1633 issue: 2 year: 2022 end-page: 1644 ident: CR16 article-title: A stacked machine and deep learning-based approach for analysing electricity theft in smart grids publication-title: IEEE Transact Smart Grid doi: 10.1109/TSG.2021.3134018 – ident: CR42 – volume: 1 start-page: 106544 issue: 125 year: 2021 ident: CR20 article-title: Electricity theft detection in low-voltage stations based on similarity measure and DT-KSVM publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2020.106544 – volume: 7 start-page: 96334 year: 2019 end-page: 96348 ident: CR25 article-title: PPETD: privacy-preserving electricity theft detection scheme with load monitoring and billing for AMI networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2925322 – volume: 7 start-page: 216 year: 2016 end-page: 226 ident: CR15 article-title: Electricity theft detection in ami using customers’ consumption patterns publication-title: IEEE Transact Smart Grid doi: 10.1109/TSG.2015.2425222 – volume: 1 start-page: 107895 issue: 208 year: 2022 ident: CR36 article-title: Online electricity theft detection framework for large-scale smart grid data publication-title: Electric Power Syst Res doi: 10.1016/j.epsr.2022.107895 – volume: 13 start-page: 4291 issue: 17 year: 2020 ident: CR12 article-title: Data augmentation for electricity theft detection using conditional variational auto-encoder publication-title: Energies doi: 10.3390/en13174291 – volume: 38 start-page: 537 issue: 1 year: 2023 end-page: 548 ident: CR17 article-title: Robust data driven analysis for electricity theft attack-resilient power grid publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2022.3162391 – volume: 1 start-page: 109283 issue: 153 year: 2023 ident: CR7 article-title: Electricity theft detection based on hybrid random forest and weighted support vector data description publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2023.109283 – volume: 15 start-page: 120635 issue: 334 year: 2023 ident: CR19 article-title: Anomaly detection based on joint spatio-temporal learning for building electricity consumption publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.120635 – volume: 16 start-page: 4106 issue: 3 year: 2022 end-page: 4117 ident: CR35 article-title: Deep autoencoder-based anomaly detection of electricity theft cyberattacks in smart grids publication-title: IEEE Syst J doi: 10.1109/JSYST.2021.3136683 – volume: 147 start-page: 111205 year: 2021 ident: CR34 article-title: Non-technical losses: a systematic contemporary article review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.111205 – volume: 1 start-page: 488 issue: 8 year: 2022 end-page: 494 ident: CR41 article-title: Analysis of electricity stealing based on user electricity characteristics of electricity information collection system publication-title: Energy Rep doi: 10.1016/j.egyr.2022.01.143 – ident: CR13 – volume: 10 start-page: 39638 year: 2022 end-page: 39655 ident: CR21 article-title: Electricity theft detection in smart grids based on deep neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3166146 – volume: 1 start-page: 107975 issue: 209 year: 2022 ident: CR33 article-title: Electricity theft detection using big data and genetic algorithm in electric power systems publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2022.107975 – volume: 35 start-page: 1254 issue: 2 year: 2020 end-page: 1263 ident: CR6 article-title: Hybrid deep neural networks for detection of non-technical losses in electricity smart meters publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2019.2943115 – volume: 43 start-page: 69 issue: 17 year: 2015 end-page: 74 ident: CR8 article-title: Study on the anti-electricity stealing based on outlier algorithm and the electricity information acquisition system publication-title: Power Syst Protect Control – volume: 14 start-page: 4565 issue: 6 year: 2023 end-page: 4580 ident: CR11 article-title: Electricity theft detection based on contrastive learning and non-intrusive load monitoring publication-title: IEEE Transact Smart Grid doi: 10.1109/TSG.2023.3263219 – ident: CR9 – volume: 1 start-page: 107085 issue: 131 year: 2021 ident: CR28 article-title: Convolutional neural network applied to detect electricity theft: a comparative study on unbalanced data handling techniques publication-title: Int J Electrical Power Energy Syst doi: 10.1016/j.ijepes.2021.107085 – volume: 1 start-page: 108886 issue: 214 year: 2023 ident: CR43 article-title: An attention-based wide and deep CNN with dilated convolutions for detecting electricity theft considering imbalanced data publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2022.108886 – ident: CR32 – volume: 14 start-page: 4693 issue: 6 year: 2023 end-page: 4703 ident: CR3 article-title: Multiverse recurrent expansion with multiple repeats: a representation learning algorithm for electricity theft detection in smart grids publication-title: IEEE Transact Smart Grid doi: 10.1109/TSG.2023.3250521 – volume: 26 start-page: 2436 issue: 4 year: 2011 end-page: 2442 ident: CR1 article-title: Detection and identification of abnormalities in customer consumptions in power distribution systems publication-title: IEEE Trans Power Delivery doi: 10.1109/TPWRD.2011.2161621 – volume: 17 start-page: 354 issue: 3 year: 2022 end-page: 360 ident: CR37 article-title: Online monitoring data processing method of transformer oil chromatogram based on association rules publication-title: IEEJ Transact Electri Electr Eng doi: 10.1002/tee.23518 – volume: 10 start-page: 18681 year: 2022 end-page: 18694 ident: CR38 article-title: AlexNet, adaboost and artificial bee colony based hybrid model for electricity theft detection in smart grids publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3150016 – volume: 9 start-page: 107250 year: 2021 end-page: 107259 ident: CR26 article-title: Electricity theft detection in ami based on clustering and local outlier factor publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3100980 – volume: 49 start-page: 1 year: 2019 end-page: 10 ident: CR30 article-title: Socio-economic predictors of electricity theft in developing countries: An Indian case study publication-title: ELSEVIER Energy Sustain Dev doi: 10.1016/j.esd.2018.12.006 – ident: 2333_CR29 – volume: 147 start-page: 111205 year: 2021 ident: 2333_CR34 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.111205 – volume: 43 start-page: 69 issue: 17 year: 2015 ident: 2333_CR8 publication-title: Power Syst Protect Control – volume: 7 start-page: 216 year: 2016 ident: 2333_CR15 publication-title: IEEE Transact Smart Grid doi: 10.1109/TSG.2015.2425222 – volume: 49 start-page: 1 year: 2019 ident: 2333_CR30 publication-title: ELSEVIER Energy Sustain Dev doi: 10.1016/j.esd.2018.12.006 – volume: 10 start-page: 18681 year: 2022 ident: 2333_CR38 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3150016 – ident: 2333_CR18 doi: 10.1109/PowerTech46648.2021.9495000 – volume: 16 start-page: 4106 issue: 3 year: 2022 ident: 2333_CR35 publication-title: IEEE Syst J doi: 10.1109/JSYST.2021.3136683 – volume: 1 start-page: 4425 issue: 7 year: 2021 ident: 2333_CR14 publication-title: Energy Rep doi: 10.1016/j.egyr.2021.07.008 – volume: 1 start-page: 106397 issue: 186 year: 2020 ident: 2333_CR4 publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2020.106397 – volume: 238 start-page: 481 year: 2019 ident: 2333_CR31 publication-title: ELSEVIER Appl Energy doi: 10.1016/j.apenergy.2019.01.076 – volume: 15 start-page: 120635 issue: 334 year: 2023 ident: 2333_CR19 publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.120635 – volume: 13 start-page: 4291 issue: 17 year: 2020 ident: 2333_CR12 publication-title: Energies doi: 10.3390/en13174291 – volume: 50 start-page: 92 year: 2022 ident: 2333_CR22 publication-title: Power Syst Prot Control – ident: 2333_CR9 – volume: 1 start-page: 108886 issue: 214 year: 2023 ident: 2333_CR43 publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2022.108886 – volume: 158 start-page: 250 year: 2018 ident: 2333_CR24 publication-title: ELSEVIER Electr Power Syst Res doi: 10.1016/j.epsr.2018.01.005 – volume: 13 start-page: 2381 issue: 3 year: 2022 ident: 2333_CR23 publication-title: IEEE Transact Smart Grid doi: 10.1109/TSG.2022.3148817 – volume: 1 start-page: 107975 issue: 209 year: 2022 ident: 2333_CR33 publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2022.107975 – ident: 2333_CR39 doi: 10.1109/ICC.2018.8422731 – volume: 1 start-page: 488 issue: 8 year: 2022 ident: 2333_CR41 publication-title: Energy Rep doi: 10.1016/j.egyr.2022.01.143 – volume: 20 start-page: 256 issue: 1 year: 2024 ident: 2333_CR44 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2023.3249212 – volume: 26 start-page: 2436 issue: 4 year: 2011 ident: 2333_CR1 publication-title: IEEE Trans Power Delivery doi: 10.1109/TPWRD.2011.2161621 – ident: 2333_CR42 doi: 10.1109/IECON.2018.8591459 – volume: 13 start-page: 1633 issue: 2 year: 2022 ident: 2333_CR16 publication-title: IEEE Transact Smart Grid doi: 10.1109/TSG.2021.3134018 – ident: 2333_CR32 – volume: 1 start-page: 107085 issue: 131 year: 2021 ident: 2333_CR28 publication-title: Int J Electrical Power Energy Syst doi: 10.1016/j.ijepes.2021.107085 – volume: 1 start-page: 107895 issue: 208 year: 2022 ident: 2333_CR36 publication-title: Electric Power Syst Res doi: 10.1016/j.epsr.2022.107895 – volume: 10 start-page: 27467 year: 2022 ident: 2333_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3150047 – volume: 38 start-page: 537 issue: 1 year: 2023 ident: 2333_CR17 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2022.3162391 – volume: 10 start-page: 39638 year: 2022 ident: 2333_CR21 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3166146 – ident: 2333_CR40 – volume: 35 start-page: 1254 issue: 2 year: 2020 ident: 2333_CR6 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2019.2943115 – volume: 1 start-page: 109283 issue: 153 year: 2023 ident: 2333_CR7 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2023.109283 – volume: 1 start-page: 106544 issue: 125 year: 2021 ident: 2333_CR20 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2020.106544 – volume: 1 start-page: 107715 issue: 137 year: 2022 ident: 2333_CR10 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2021.107715 – ident: 2333_CR13 – volume: 17 start-page: 354 issue: 3 year: 2022 ident: 2333_CR37 publication-title: IEEJ Transact Electri Electr Eng doi: 10.1002/tee.23518 – volume: 14 start-page: 4565 issue: 6 year: 2023 ident: 2333_CR11 publication-title: IEEE Transact Smart Grid doi: 10.1109/TSG.2023.3263219 – volume: 7 start-page: 96334 year: 2019 ident: 2333_CR25 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2925322 – volume: 14 start-page: 4693 issue: 6 year: 2023 ident: 2333_CR3 publication-title: IEEE Transact Smart Grid doi: 10.1109/TSG.2023.3250521 – volume: 10 start-page: 2661 issue: 3 year: 2019 ident: 2333_CR5 publication-title: IEEE Transact Smart Grid doi: 10.1109/TSG.2018.2807925 – volume: 9 start-page: 107250 year: 2021 ident: 2333_CR26 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3100980 – ident: 2333_CR27 doi: 10.1109/CEC48606.2020.9185822 |
SSID | ssj0001214240 |
Score | 2.2912662 |
Snippet | Data-driven electricity theft detection (ETD) based on machine learning and deep learning has the advantages of automation, real-time performance, and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3251 |
SubjectTerms | Algorithms Big Data Data structures Deep learning Electricity Engineering Engineering Economics Logistics Machine learning Marketing Organization Original Article Quality Control Real time Reliability Safety and Risk Sampling Statistical analysis Theft |
Title | Research on FCM-LR cross electricity theft detection based on big data user profile |
URI | https://link.springer.com/article/10.1007/s13198-024-02333-8 https://www.proquest.com/docview/3079868824 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07TwMxDI6gXWDgjSgUlIENUl3vkeTGqqJUQBmASmU6JXGCKqQroteFX4_vpZYKBoabLolyts_-7NgOIZcKnA9axAw4SHRQrGHadR1zGrWlU8bTRbxj9MiH4_BuEk2qorB5ne1eH0kWmnpZ7IbSIhnaFHyCIGBykzQRf3hRgzR7t6_3q7GVvH6rCK_EImJcenFVL_P7Qj9t0hJorp2NFiZnsEvG9WbLTJP3ziLTHfO11sfxv1-zR3YqDEp7pdDskw2bHpDtlc6Eh-S5zsijs5QO-iP28ESLzdPy3pypQfROETy6jILNinyulOYmEfIZevpG89xTmsdAaHUv-BEZD25e-kNW3b_AjC-8jCmH2Ij72gduQIB10kHggwdCSFACul0nEXChEGiNVh5QbxrfU04qzW2kguCYNNJZak8IjaziIrYGTIj-oA61Z5ThIaDzw0MVyxa5qjmQfJRtNpJlQ-WcVAmSKilIleDods2kpPrl5gkqq1hydBjCFrmuab58_fdqp_8bfka2_IJtecpumzSyz4U9R2CS6YtKDr8BNlDZPg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gOwAH3ojBgBy4Qaau7dL0OE2MwR4H2KRxqpI4QRNSh1h34dfjdq02Jjjs0FOTKLVd-7NjO4TcSrAuqCBkwEGgg2I0U7ZumVWoLa3UjsriHf0B74z853FjnBeFzYps9-JIMtPUy2I3lBbB0Kbg43keE9uk7KMPji5Xufn41l2NraT1W1l4JQwajAsnzOtl_l7ot01aAs21s9HM5LQPyKjY7CLT5KM2T1RNf6_1cdz0aw7Jfo5BaXMhNEdky8THZG-lM-EJeS0y8ug0pu1Wn_VeaLZ5urg3Z6IRvVMEjzahYJIsnyumqUmEdIaavNM095SmMRCa3wt-Skbth2Grw_L7F5h2Aydh0iI24q5ygWsIwFhhwXPBgSAQIAOo161AwIVCoBRaeUC9qV1HWiEVNw3peWekFE9jc05ow0gehEaD9tEfVL5ytNTcB3R-uC9DUSF3BQeiz0WbjWjZUDklVYSkijJSRTi6WjApyn-5WYTKKhQcHQa_Qu4Lmi9f_7_axWbDb8hOZ9jvRb2nQfeS7LoZC9P03SopJV9zc4UgJVHXuUz-AJJx3C0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50BdGDb_Gxag7eNNptu0l6lNX1LeID9FSSTCIiVNF68dc7fbGr6EE89NQkNDPTzDeTeQBsavQhGplwFKjIQHGWG9_x3Bs6Lb22gSn9HecX4ug2Prnr3g1l8ZfR7s2VZJXTUFRpyvLdF_S7g8Q3khzFSb_QE0URV6MwFgdKqhaM7R3enw77WYpcrtLVksguFypI6tyZnxf6qp8GoPPbPWmpfvrToJsPr6JOnnbec7NjP77VdPzPzmZgqsambK8SplkYcdkcTA5VLJyH6yZSjz1nrN8752dXrNwIq_rpPFpC9YxApc8ZuryM88pYoSqxmGEeH1gRk8oK3wir-4UvwG3_4KZ3xOu-DNyGMsi59oSZRGhCFBYlOq88RiEGKKVCLbHT8YqAGAmHMaT9kc5TGwbaK22E6-ooWoRW9py5JWBdp4VMnEUbk51oYhNYbUWMZBSJWCdqGbYabqQvVfmNdFBouSBVSqRKS1KlNLrdMCytf8W3lA6xRAkyJOJl2G7oP3j9-2orfxu-AeOX-_307PjidBUmwpKDRVRvG1r567tbI-ySm_VaPD8BbyrlEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+FCM-LR+cross+electricity+theft+detection+based+on+big+data+user+profile&rft.jtitle=International+journal+of+system+assurance+engineering+and+management&rft.au=Hu%2C+Ronghui&rft.au=Zhen%2C+Tong&rft.date=2024-07-01&rft.issn=0975-6809&rft.eissn=0976-4348&rft.volume=15&rft.issue=7&rft.spage=3251&rft.epage=3265&rft_id=info:doi/10.1007%2Fs13198-024-02333-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13198_024_02333_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0975-6809&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0975-6809&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0975-6809&client=summon |