CT and MRI image fusion via multimodal feature interaction network
Computed tomography (CT) and magnetic resonance imaging (MRI) image fusion is a popular technique for integrating information from two different modalities of medical images. This technique can improve image quality and diagnostic efficacy. To effectively extract and balance complementary informatio...
Saved in:
Published in | Network modeling and analysis in health informatics and bioinformatics (Wien) Vol. 13; no. 1; p. 13 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
27.03.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Computed tomography (CT) and magnetic resonance imaging (MRI) image fusion is a popular technique for integrating information from two different modalities of medical images. This technique can improve image quality and diagnostic efficacy. To effectively extract and balance complementary information in the source images, we propose an end-to-end multimodal feature interaction network (MFINet) to fuse CT and MRI images. The MIFNet consists of a shallow feature extractor, a feature interaction (FI), and an image reconstruction. In the FI, we design a deep feature extraction module, which consists of a series of gated feature enhancement units (GFEUs) and convolutional layers. To extract key features from images, we introduce a gated normalization block in the GFEU, which can achieve feature selection. Comprehensive experiments demonstrate that the proposed end-to-end fusion network outperforms existing state-of-the-art methods in both qualitative and quantitative assessments. |
---|---|
AbstractList | Computed tomography (CT) and magnetic resonance imaging (MRI) image fusion is a popular technique for integrating information from two different modalities of medical images. This technique can improve image quality and diagnostic efficacy. To effectively extract and balance complementary information in the source images, we propose an end-to-end multimodal feature interaction network (MFINet) to fuse CT and MRI images. The MIFNet consists of a shallow feature extractor, a feature interaction (FI), and an image reconstruction. In the FI, we design a deep feature extraction module, which consists of a series of gated feature enhancement units (GFEUs) and convolutional layers. To extract key features from images, we introduce a gated normalization block in the GFEU, which can achieve feature selection. Comprehensive experiments demonstrate that the proposed end-to-end fusion network outperforms existing state-of-the-art methods in both qualitative and quantitative assessments. Computed tomography (CT) and magnetic resonance imaging (MRI) image fusion is a popular technique for integrating information from two different modalities of medical images. This technique can improve image quality and diagnostic efficacy. To effectively extract and balance complementary information in the source images, we propose an end-to-end multimodal feature interaction network (MFINet) to fuse CT and MRI images. The MIFNet consists of a shallow feature extractor, a feature interaction (FI), and an image reconstruction. In the FI, we design a deep feature extraction module, which consists of a series of gated feature enhancement units (GFEUs) and convolutional layers. To extract key features from images, we introduce a gated normalization block in the GFEU, which can achieve feature selection. Comprehensive experiments demonstrate that the proposed end-to-end fusion network outperforms existing state-of-the-art methods in both qualitative and quantitative assessments. |
ArticleNumber | 13 |
Author | Song, Wenhao Shi, Junzhi Zhou, Hui Zeng, Xiangqin Li, Qilei Gao, Mingliang |
Author_xml | – sequence: 1 givenname: Wenhao surname: Song fullname: Song, Wenhao organization: School of Electrical and Electronic Engineering, Shandong University of Technology – sequence: 2 givenname: Xiangqin surname: Zeng fullname: Zeng, Xiangqin organization: Zibo Central Hospital – sequence: 3 givenname: Qilei surname: Li fullname: Li, Qilei organization: School of Electronic Engineering and Computer Science, Queen Mary University of London – sequence: 4 givenname: Mingliang orcidid: 0000-0003-3368-6013 surname: Gao fullname: Gao, Mingliang email: mlgao@sdut.edu.cn organization: School of Electrical and Electronic Engineering, Shandong University of Technology – sequence: 5 givenname: Hui surname: Zhou fullname: Zhou, Hui organization: School of Electrical and Electronic Engineering, Shandong University of Technology – sequence: 6 givenname: Junzhi surname: Shi fullname: Shi, Junzhi email: shijz@sdut.edu.cn organization: School of Electrical and Electronic Engineering, Shandong University of Technology |
BookMark | eNp9kE1LAzEQhoNUsNb-AU8Bz6uTjyaboxY_ChVB6jlkN9mytU1qsqv4701dQU8OAzOH932HeU7RyAfvEDoncEkA5FUiTFJSAOUFAOeqoEdoTImihRASRn_2EzRNaQO5ytxkNkY38xU23uLH5wVud2btcNOnNnj83hq867dduwvWbHHjTNdHh1vfuWjq7iDxrvsI8fUMHTdmm9z0Z07Qy93tav5QLJ_uF_PrZVFTCV1hKlFJqaCUQtTcSlOWtiKSs1rSxgoulaHECqsst0aIyspqxkA1UpVEUlGxCboYcvcxvPUudXoT-ujzSc0AGJtxEDyr6KCqY0gpukbvY34sfmoC-oBLD7h0xqW_cWmaTWwwpSz2axd_o_9xfQGSVm1P |
Cites_doi | 10.1109/TPAMI.2020.3012548 10.1016/j.inffus.2012.09.005 10.1080/09500340903541056 10.1016/j.bspc.2019.101810 10.1007/s11263-021-01501-8 10.1109/TIM.2020.3022438 10.1109/TIP.2018.2887342 10.1109/TCI.2021.3100986 10.1016/j.neucom.2016.02.047 10.1016/j.inffus.2018.09.004 10.1109/ACCESS.2019.2898111 10.1109/ACCESS.2018.2866867 10.1109/TIP.2003.819861 10.1016/j.bspc.2022.104545 10.1109/TIP.2020.2977573 10.1007/s11042-022-12260-0 10.1504/IJBET.2023.131696 10.1016/j.bspc.2022.104402 10.1016/j.procs.2015.10.057 10.1016/j.compbiomed.2022.105253 10.1016/j.inffus.2021.02.023 10.1109/SPIN.2018.8474231 10.1007/s11042-023-14393-2 10.1609/aaai.v34i07.6975 10.1609/aaai.v34i07.6936 10.1002/cpe.7712 10.1007/978-3-031-23683-9_14 10.1007/978-3-030-01234-2_1 10.1109/CVPR52688.2022.00564 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION JQ2 K9. |
DOI | 10.1007/s13721-024-00449-2 |
DatabaseName | CrossRef ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Computer Science |
EISSN | 2192-6670 |
ExternalDocumentID | 10_1007_s13721_024_00449_2 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62101310 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -EM 0R~ 0VY 203 30V 4.4 406 408 409 7X7 96X AACDK AAFGU AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBMV ACBRV ACBYP ACGFS ACHSB ACIGE ACIPQ ACKNC ACMLO ACOKC ACTTH ACVWB ACWMK ACZOJ ADHHG ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEFTE AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFBBN AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHYZX AIAKS AIGIU AIIXL AILAN AIMYW AITGF AJDOV AJRNO AJZVZ AKLTO AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AXYYD AYJHY AZFZN CSCUP DNIVK DPUIP EBLON EBS EIOEI FERAY FIGPU FNLPD FRRFC FYJPI GGCAI GGRSB GJIRD GQ6 HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JCJTX JZLTJ KOV LLZTM NPVJJ NQJWS O9- O93 O9J PT4 RLLFE RSV SCO SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 Z83 ZMTXR AAYXX ACDTI CITATION ROL SJYHP JQ2 K9. |
ID | FETCH-LOGICAL-c270t-ab6b77908766c4d7a88db1743c72fd6479a21d6d9d4da66bd7b5309f7981726b3 |
IEDL.DBID | AGYKE |
ISSN | 2192-6670 2192-6662 |
IngestDate | Wed Nov 06 02:55:45 EST 2024 Thu Sep 12 16:37:13 EDT 2024 Thu Mar 28 06:19:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Gated mechanism Healthcare CT/MRI image Image fusion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-ab6b77908766c4d7a88db1743c72fd6479a21d6d9d4da66bd7b5309f7981726b3 |
ORCID | 0000-0003-3368-6013 |
PQID | 3003354064 |
PQPubID | 2043987 |
ParticipantIDs | proquest_journals_3003354064 crossref_primary_10_1007_s13721_024_00449_2 springer_journals_10_1007_s13721_024_00449_2 |
PublicationCentury | 2000 |
PublicationDate | 2024-03-27 |
PublicationDateYYYYMMDD | 2024-03-27 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna – name: Heidelberg |
PublicationTitle | Network modeling and analysis in health informatics and bioinformatics (Wien) |
PublicationTitleAbbrev | Netw Model Anal Health Inform Bioinforma |
PublicationYear | 2024 |
Publisher | Springer Vienna Springer Nature B.V |
Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
References | Xu, Ma, Jiang, Guo, Ling (CR24) 2020; 44 Zhu, Zheng, Qi, Wang, Xiang (CR32) 2019; 7 Ma, Xu, Jiang, Mei, Zhang (CR17) 2020; 29 Ali, El-Dokany, Saad, Abd El-Samie (CR1) 2010; 57 Li, Wu, Kittler (CR14) 2021; 73 Singh, Khare (CR20) 2014; 19 CR30 Li, Wu (CR13) 2019; 28 Du, Li, Xiao, Nawaz (CR6) 2016; 194 CR2 Wang, Bovik, Sheikh, Simoncelli (CR22) 2004; 13 Xu, Zhang, Ma (CR26) 2021; 7 Bhavana, Krishnappa (CR4) 2015; 70 CR5 CR8 Zhang, Nie, Cao, Chen, Zhu (CR31) 2023; 81 Haribabu, Guruviah, Yogarajah (CR10) 2023; 19 CR9 CR27 Faragallah, El-Hoseny, El-Shafai, El-Rahman, El-sayed, El-Rabaie, El-Samie, Mahmoud, Geweid (CR7) 2022; 81 Li, Zhang, Wang, Huang, Li (CR15) 2023; 80 CR25 CR23 Azam, Khan, Salahuddin, Rehman, Khan, Khan, Kadry, Gandomi (CR3) 2022; 144 CR21 Jian, Yang, Liu, Jeon, Gao, Chisholm (CR12) 2020; 70 Ma, Yu, Liang, Li, Jiang (CR16) 2019; 48 Maqsood, Javed (CR19) 2020; 57 Huang, Li, Gao, Liu (CR11) 2018; 6 Ma, Tang, Xu, Zhang, Xiao (CR18) 2021; 70 Zhai, Song, Chen, Zhang, Li, Gao (CR28) 2023; 42 Zhang, Ma (CR29) 2021; 129 H Li (449_CR13) 2019; 28 Z Wang (449_CR22) 2004; 13 M Haribabu (449_CR10) 2023; 19 H Li (449_CR14) 2021; 73 H Xu (449_CR26) 2021; 7 449_CR30 449_CR2 R Singh (449_CR20) 2014; 19 H Xu (449_CR24) 2020; 44 OS Faragallah (449_CR7) 2022; 81 H Zhang (449_CR29) 2021; 129 S Maqsood (449_CR19) 2020; 57 J Du (449_CR6) 2016; 194 J Ma (449_CR17) 2020; 29 MA Azam (449_CR3) 2022; 144 W Li (449_CR15) 2023; 80 449_CR27 449_CR25 449_CR23 449_CR9 449_CR21 FE Ali (449_CR1) 2010; 57 449_CR8 449_CR5 W Zhai (449_CR28) 2023; 42 V Bhavana (449_CR4) 2015; 70 Y Huang (449_CR11) 2018; 6 L Jian (449_CR12) 2020; 70 G Zhang (449_CR31) 2023; 81 Z Zhu (449_CR32) 2019; 7 J Ma (449_CR18) 2021; 70 J Ma (449_CR16) 2019; 48 |
References_xml | – volume: 44 start-page: 502 year: 2020 end-page: 518 ident: CR24 article-title: U2fusion: a unified unsupervised image fusion network publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2020.3012548 contributor: fullname: Ling – ident: CR2 – volume: 19 start-page: 49 year: 2014 end-page: 60 ident: CR20 article-title: Fusion of multimodal medical images using daubechies complex wavelet transform-a multiresolution approach publication-title: Inf Fusion doi: 10.1016/j.inffus.2012.09.005 contributor: fullname: Khare – ident: CR30 – volume: 57 start-page: 273 issue: 4 year: 2010 end-page: 286 ident: CR1 article-title: A curvelet transform approach for the fusion of mr and ct images publication-title: J Mod Opt doi: 10.1080/09500340903541056 contributor: fullname: Abd El-Samie – volume: 57 year: 2020 ident: CR19 article-title: Multi-modal medical image fusion based on two-scale image decomposition and sparse representation publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2019.101810 contributor: fullname: Javed – volume: 129 start-page: 1 year: 2021 end-page: 25 ident: CR29 article-title: Sdnet: a versatile squeeze-and-decomposition network for real-time image fusion publication-title: Int J Comput Vis doi: 10.1007/s11263-021-01501-8 contributor: fullname: Ma – volume: 70 start-page: 1 year: 2020 end-page: 15 ident: CR12 article-title: Sedrfuse: a symmetric encoder-decoder with residual block network for infrared and visible image fusion publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2020.3022438 contributor: fullname: Chisholm – ident: CR8 – volume: 28 start-page: 2614 issue: 5 year: 2019 end-page: 2623 ident: CR13 article-title: Densefuse: a fusion approach to infrared and visible images publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2887342 contributor: fullname: Wu – volume: 7 start-page: 824 year: 2021 end-page: 836 ident: CR26 article-title: Classification saliency-based rule for visible and infrared image fusion publication-title: IEEE Trans Comput Imaging doi: 10.1109/TCI.2021.3100986 contributor: fullname: Ma – ident: CR25 – volume: 194 start-page: 326 year: 2016 end-page: 339 ident: CR6 article-title: Union Laplacian pyramid with multiple features for medical image fusion publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.02.047 contributor: fullname: Nawaz – volume: 48 start-page: 11 year: 2019 end-page: 26 ident: CR16 article-title: Fusiongan: a generative adversarial network for infrared and visible image fusion publication-title: Inf Fusion doi: 10.1016/j.inffus.2018.09.004 contributor: fullname: Jiang – ident: CR27 – ident: CR23 – volume: 7 start-page: 20811 year: 2019 end-page: 20824 ident: CR32 article-title: A phase congruency and local Laplacian energy based multi-modality medical image fusion method in nsct domain publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2898111 contributor: fullname: Xiang – volume: 6 start-page: 47082 year: 2018 end-page: 47091 ident: CR11 article-title: Algebraic multi-grid based multi-focus image fusion using watershed algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2866867 contributor: fullname: Liu – ident: CR21 – volume: 13 start-page: 600 issue: 4 year: 2004 end-page: 612 ident: CR22 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 contributor: fullname: Simoncelli – volume: 81 year: 2023 ident: CR31 article-title: Fdgnet: a pair feature difference guided network for multimodal medical image fusion publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104545 contributor: fullname: Zhu – volume: 29 start-page: 4980 year: 2020 end-page: 4995 ident: CR17 article-title: Ddcgan: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.2977573 contributor: fullname: Zhang – volume: 81 start-page: 14379 issue: 10 year: 2022 end-page: 14401 ident: CR7 article-title: Optimized multimodal medical image fusion framework using multi-scale geometric and multi-resolution geometric analysis publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12260-0 contributor: fullname: Geweid – volume: 42 start-page: 52 issue: 1 year: 2023 end-page: 63 ident: CR28 article-title: Ct and mri image fusion via dual-branch gan publication-title: Int J Biomed Eng Technol doi: 10.1504/IJBET.2023.131696 contributor: fullname: Gao – volume: 80 year: 2023 ident: CR15 article-title: Dfenet: a dual-branch feature enhanced network integrating transformers and convolutional feature learning for multimodal medical image fusion publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104402 contributor: fullname: Li – volume: 70 start-page: 625 year: 2015 end-page: 631 ident: CR4 article-title: Multi-modality medical image fusion using discrete wavelet transform publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.10.057 contributor: fullname: Krishnappa – volume: 144 year: 2022 ident: CR3 article-title: A review on multimodal medical image fusion: compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105253 contributor: fullname: Gandomi – ident: CR9 – volume: 73 start-page: 72 year: 2021 end-page: 86 ident: CR14 article-title: Rfn-nest: an end-to-end residual fusion network for infrared and visible images publication-title: Inf Fusion doi: 10.1016/j.inffus.2021.02.023 contributor: fullname: Kittler – volume: 19 start-page: 673 issue: 7 year: 2023 end-page: 694 ident: CR10 article-title: Recent advancements in multimodal medical image fusion techniques for better diagnosis: an overview publication-title: Curr Med Imaging contributor: fullname: Yogarajah – ident: CR5 – volume: 70 start-page: 1 year: 2021 end-page: 13 ident: CR18 article-title: Stdfusionnet: an infrared and visible image fusion network based on salient target detection publication-title: IEEE Trans Instrum Meas contributor: fullname: Xiao – volume: 70 start-page: 1 year: 2020 ident: 449_CR12 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2020.3022438 contributor: fullname: L Jian – volume: 81 start-page: 14379 issue: 10 year: 2022 ident: 449_CR7 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12260-0 contributor: fullname: OS Faragallah – volume: 7 start-page: 20811 year: 2019 ident: 449_CR32 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2898111 contributor: fullname: Z Zhu – ident: 449_CR8 doi: 10.1109/SPIN.2018.8474231 – volume: 42 start-page: 52 issue: 1 year: 2023 ident: 449_CR28 publication-title: Int J Biomed Eng Technol doi: 10.1504/IJBET.2023.131696 contributor: fullname: W Zhai – ident: 449_CR9 doi: 10.1007/s11042-023-14393-2 – volume: 70 start-page: 1 year: 2021 ident: 449_CR18 publication-title: IEEE Trans Instrum Meas contributor: fullname: J Ma – volume: 28 start-page: 2614 issue: 5 year: 2019 ident: 449_CR13 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2887342 contributor: fullname: H Li – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 449_CR22 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 contributor: fullname: Z Wang – ident: 449_CR30 doi: 10.1609/aaai.v34i07.6975 – volume: 73 start-page: 72 year: 2021 ident: 449_CR14 publication-title: Inf Fusion doi: 10.1016/j.inffus.2021.02.023 contributor: fullname: H Li – volume: 48 start-page: 11 year: 2019 ident: 449_CR16 publication-title: Inf Fusion doi: 10.1016/j.inffus.2018.09.004 contributor: fullname: J Ma – volume: 80 year: 2023 ident: 449_CR15 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104402 contributor: fullname: W Li – volume: 44 start-page: 502 year: 2020 ident: 449_CR24 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2020.3012548 contributor: fullname: H Xu – volume: 57 start-page: 273 issue: 4 year: 2010 ident: 449_CR1 publication-title: J Mod Opt doi: 10.1080/09500340903541056 contributor: fullname: FE Ali – volume: 29 start-page: 4980 year: 2020 ident: 449_CR17 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.2977573 contributor: fullname: J Ma – ident: 449_CR25 doi: 10.1609/aaai.v34i07.6936 – ident: 449_CR21 doi: 10.1002/cpe.7712 – volume: 81 year: 2023 ident: 449_CR31 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104545 contributor: fullname: G Zhang – volume: 6 start-page: 47082 year: 2018 ident: 449_CR11 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2866867 contributor: fullname: Y Huang – volume: 57 year: 2020 ident: 449_CR19 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2019.101810 contributor: fullname: S Maqsood – volume: 129 start-page: 1 year: 2021 ident: 449_CR29 publication-title: Int J Comput Vis doi: 10.1007/s11263-021-01501-8 contributor: fullname: H Zhang – volume: 144 year: 2022 ident: 449_CR3 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105253 contributor: fullname: MA Azam – volume: 70 start-page: 625 year: 2015 ident: 449_CR4 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.10.057 contributor: fullname: V Bhavana – ident: 449_CR2 doi: 10.1007/978-3-031-23683-9_14 – ident: 449_CR23 doi: 10.1007/978-3-030-01234-2_1 – volume: 19 start-page: 49 year: 2014 ident: 449_CR20 publication-title: Inf Fusion doi: 10.1016/j.inffus.2012.09.005 contributor: fullname: R Singh – ident: 449_CR5 – ident: 449_CR27 doi: 10.1109/CVPR52688.2022.00564 – volume: 19 start-page: 673 issue: 7 year: 2023 ident: 449_CR10 publication-title: Curr Med Imaging contributor: fullname: M Haribabu – volume: 7 start-page: 824 year: 2021 ident: 449_CR26 publication-title: IEEE Trans Comput Imaging doi: 10.1109/TCI.2021.3100986 contributor: fullname: H Xu – volume: 194 start-page: 326 year: 2016 ident: 449_CR6 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.02.047 contributor: fullname: J Du |
SSID | ssj0000800815 |
Score | 2.3077254 |
Snippet | Computed tomography (CT) and magnetic resonance imaging (MRI) image fusion is a popular technique for integrating information from two different modalities of... Computed tomography (CT) and magnetic resonance imaging (MRI) image fusion is a popular technique for integrating information from two different modalities of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 13 |
SubjectTerms | Adaptation Applications of Graph Theory and Complex Networks Bioinformatics Computational Biology/Bioinformatics Computed tomography Computer Science Computer vision Decomposition Deep learning Design Feature extraction Health Informatics Image enhancement Image processing Image quality Image reconstruction Information processing Magnetic resonance imaging Measurement techniques Medical diagnosis Medical imaging Methods Original Article Wavelet transforms |
Title | CT and MRI image fusion via multimodal feature interaction network |
URI | https://link.springer.com/article/10.1007/s13721-024-00449-2 https://www.proquest.com/docview/3003354064 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6kRfBitSpWq-TgTVO62WySPdZirUo9SAv1tOTRhSLdSt0K-utN9sHi69Dz7gZ2Jpl8ycz3DcCFVIGIudKYq4BjKgnDoXFahMzTnPhM6CwVM3pkwwm9nwbTisedFbuXGcksUFdcN98eVrDdUrBLQobYxt26I57SGtR7t88P1dWKA0HCCwqKzN8ff9-GKmz5Ix2a7TKDBoxLrk5eXPLSWaeqoz9_Szdu8gN7sFugTtTLp8k-bM2SJmznfSg_mtAoezugYqkfwHV_jGRi0OjpDs0XNuigeO0u1tD7XKKsCnGxNHbIeJYpgyInO7HKSRIoyUvLD2EyuBn3h7jot4A14d0US8WUkx-0AZJpargUwih3YrFeiw2jPJTEM8yEhhrJmDLWv343jHkoLAxiyj-CWrJMZseAeMiJFkozLWIaUC0tLrRYzg88owOLAVtwWZo_es1lNaJKQNkZKrKGijJDRaQF7dJDUbHE3iLftaGzeJPRFlyVFq8e_z_ayWavn8IOyZzmY8LbUEtX69mZBSKpOi8m3hdOXtGO |
link.rule.ids | 315,783,787,27937,27938,41094,42163,52124 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4YiNGLKGpEUXvwpiXQ7ba7RyQiyONgIMHTpg82IYbF8DDRX2-7j2wkeuC8u013pp352pn5BuBOSNcLuVSYS5djKgjDvrZchKyhOHGYp-JQzGDIOmP6MnEnaVHYKst2z0KSsaXOi90cc1rBxqdgG4X0sTG8RUoMnihAsfn81svvViwK8hpuWiPz98e__VAOLrfiobGbaZdgnE0wyS55r23Wsqa-t7gbd_2DYzhKcSdqJgvlBPamURn2k06UX2UoZd0dULrZT-GxNUIi0mjw2kWzuTE7KNzYqzX0ORMozkOcL7QZMpzG3KDIEk8skzIJFCXJ5Wcwbj-NWh2cdlzAivD6GgvJpCUgNCaSKaq58Dwt7ZnF6C3UjHJfkIZm2tdUC8akNhp26n7Ifc8AISadcyhEi2h6AYj7nChPKqa8kLpUCYMMDZpz3IZWrkGBFbjP5B98JMQaQU6hbAUVGEEFsaACUoFqpqIg3WSrwLGN6AziZLQCD5nE88f_j3a52-u3cNAZDfpBvzvsXcEhiRXoYMKrUFgvN9NrA0vW8iZdhT-_ytVi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4YjMaLKGrE5x686QJtt7vt0ReCCDEGEjw1-6AJMRSCxUR_vbt9pEr0YDy33bQz25lvdma-ATjjwvVCJiRmwmWYcJtiXxkuQmpJZjvUk0kqptujrQG5H7rDL138SbV7npJMexoMS1MU12cqrBeNb46OXLD2L9hkJH2sjfAqsXSoUoLVy7vnTnHOYhCRZ7lZv8zPD3_3SQXQXMqNJi6nWQaev2xaafJSW8SiJj-WeBz_8zVbsJnhUXSZbqBtWBlFFVhLJ1S-V6CcT31AmRHYgavrPuKRQt2nNhpPtDlC4cIcuaG3MUdJfeJkqvSS4SjhDEWGkGKetk-gKC0634VB87Z_3cLZJAYsbdaIMRdUGGJCbTqpJIpxz1PCxDJan6GihPncthRVviKKUyqU1rzT8EPmexogUeHsQSmaRqN9QMxntvSEpNILiUsk14hRozzHtZR0NTqswnmui2CWEm4EBbWyEVSgBRUkggrsKhzl6gqyn-81cMyAOo1EKanCRS794vLvqx387fZTWH-8aQYP7V7nEDbsRH8OttkRlOL5YnSs0UosTrIN-QkeQt5G |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CT+and+MRI+image+fusion+via+multimodal+feature+interaction+network&rft.jtitle=Network+modeling+and+analysis+in+health+informatics+and+bioinformatics+%28Wien%29&rft.au=Song%2C+Wenhao&rft.au=Zeng%2C+Xiangqin&rft.au=Li%2C+Qilei&rft.au=Gao%2C+Mingliang&rft.date=2024-03-27&rft.issn=2192-6670&rft.eissn=2192-6670&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1007%2Fs13721-024-00449-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13721_024_00449_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-6670&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-6670&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-6670&client=summon |