Adaptive nested Monte Carlo approach for multi-objective efficient global optimization
This paper presents a novel algorithm, namely the adaptive nested Monte Carlo based multi-objective Efficient Global Optimization (ANMC-MOEGO), which aims to enhance efficiency and accuracy while minimizing programming complexity in contrast to traditional multi-objective Efficient Global Optimizati...
Saved in:
Published in | Journal of global optimization Vol. 91; no. 3; pp. 647 - 676 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a novel algorithm, namely the adaptive nested Monte Carlo based multi-objective Efficient Global Optimization (ANMC-MOEGO), which aims to enhance efficiency and accuracy while minimizing programming complexity in contrast to traditional multi-objective Efficient Global Optimization (MOEGO). In this algorithm, the programming complexity is streamlined by employing Monte Carlo simulation for both hypervolume improvement (HVI) and expected hypervolume improvement (EHVI) calculations. Furthermore, the efficiency and accuracy of HVI and EHVI calculations are improved through the utilization of a novel technique called adaptive Monte Carlo hypercube boundaries (AMCHB), which is based on the bisection method. The algorithm is validated via a set of test functions from the open literature. The numerical results demonstrate that the ANMC-MOEGO algorithm produces solutions closer to the theoretical results, with improved distributions on the corresponding Pareto fronts compared to the algorithm without AMCHB technique. Moreover, when obtaining a better Pareto front, the proposed algorithm is found to be more time-efficient, achieving speedups of up to 22.57 times. |
---|---|
AbstractList | This paper presents a novel algorithm, namely the adaptive nested Monte Carlo based multi-objective Efficient Global Optimization (ANMC-MOEGO), which aims to enhance efficiency and accuracy while minimizing programming complexity in contrast to traditional multi-objective Efficient Global Optimization (MOEGO). In this algorithm, the programming complexity is streamlined by employing Monte Carlo simulation for both hypervolume improvement (HVI) and expected hypervolume improvement (EHVI) calculations. Furthermore, the efficiency and accuracy of HVI and EHVI calculations are improved through the utilization of a novel technique called adaptive Monte Carlo hypercube boundaries (AMCHB), which is based on the bisection method. The algorithm is validated via a set of test functions from the open literature. The numerical results demonstrate that the ANMC-MOEGO algorithm produces solutions closer to the theoretical results, with improved distributions on the corresponding Pareto fronts compared to the algorithm without AMCHB technique. Moreover, when obtaining a better Pareto front, the proposed algorithm is found to be more time-efficient, achieving speedups of up to 22.57 times. |
Author | Tan, Jianfeng Zhang, Jiale Gao, Yisheng Xu, Shengguan Chen, Hongquan |
Author_xml | – sequence: 1 givenname: Shengguan surname: Xu fullname: Xu, Shengguan email: shengguanxu@njtech.edu.cn organization: School of Mechanical and Power Engineering, Nanjing Tech University – sequence: 2 givenname: Jianfeng surname: Tan fullname: Tan, Jianfeng organization: School of Mechanical and Power Engineering, Nanjing Tech University – sequence: 3 givenname: Jiale surname: Zhang fullname: Zhang, Jiale organization: School of Aerospace Engineering, Xiamen University – sequence: 4 givenname: Hongquan surname: Chen fullname: Chen, Hongquan organization: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics – sequence: 5 givenname: Yisheng surname: Gao fullname: Gao, Yisheng organization: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics |
BookMark | eNp9kMtOwzAQRS1UJNrCD7CyxNowfiS2l1XFSypiA2wtO3FKqjQOdooEX48hSOxYzebcOzNngWZ96D1C5xQuKYC8ShSUVgSYIECFYEQfoTktJCdM03KG5qBZQQoAeoIWKe0AQKuCzdHLqrbD2L573Ps0-ho_hH70eG1jF7Adhhhs9YqbEPH-0I0tCW7nqx_eN01btb4f8bYLznY45J59-2nHNvSn6LixXfJnv3OJnm-un9Z3ZPN4e79ebUjFJIzEusI6zXnJNKeCKiq5U4w77pwtGqGZtBWokntXA_i6lJXizjLhmagl1MCX6GLqzYe-HfIHZhcOsc8rDaeSFkKVtMwUm6gqhpSib8wQ272NH4aC-fZnJn8m-zM__ozOIT6FUob7rY9_1f-kvgBJTHUn |
Cites_doi | 10.2514/1.J059480 10.1109/SFCS.1988.21971 10.1016/j.cor.2017.09.016 10.1109/tevc.2013.2281525 10.1109/tevc.2005.859463 10.1109/TEVC.2005.851275 10.1007/BF00175354 10.1016/j.swevo.2018.10.007 10.1023/A:1008306431147 10.1145/1830483.1830576 10.1145/1830761.1830838 10.3390/app13010352 10.2514/1.J054128 10.2514/1.J052725 10.1109/CEC45853.2021.9504946 10.1109/CEC.2016.7744343 10.2514/1.c033328 10.1007/978-3-540-30217-9_84 10.1063/1.3047186 10.1007/3-540-36970-8_37 10.1007/s10898-018-0608-3 10.1007/s00158-018-2006-3 10.1007/s00158-016-1546-7 10.2514/1.C033334 10.1109/CEC.2009.4982991 10.1109/CEC.2012.6256171 10.1145/1830483.1830578 10.1016/S0378-3758(00)00105-1 10.1109/CEC.2014.6900299 10.1109/tevc.2008.919001 10.1093/oso/9780198502784.001.0001 10.1016/j.apm.2019.03.036 10.1109/tevc.2020.2969965 10.1109/tevc.2022.3228516 10.1109/CEC.2006.1688440 10.1016/j.ins.2019.02.054 10.1109/tevc.2009.2033671 10.3929/ethz-a-005703480 10.1145/1143997.1144179 10.1007/s00170-014-6770-y 10.1016/j.cor.2016.06.021 10.2514/1.6386 10.1016/j.tcs.2010.09.026 10.1002/mcda.1502 10.1109/CEC.2002.1007032 10.2514/3.45984 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Mar 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Mar 2025 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s10898-024-01442-9 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Sciences (General) Computer Science |
EISSN | 1573-2916 |
EndPage | 676 |
ExternalDocumentID | 10_1007_s10898_024_01442_9 |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20211259 funderid: http://dx.doi.org/10.13039/501100004608 – fundername: Outstanding Young Backbone Teacher Project of Jiangsu Qinglan Project – fundername: National Natural Science Foundation of China grantid: 12102185; 12102188; 11972189; 12172165 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -52 -57 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 8FD ABRTQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c270t-ab5ab93362931418173b823b3bba5f4927ac0863ebd00ed67c83ba24e24d70d03 |
IEDL.DBID | U2A |
ISSN | 0925-5001 |
IngestDate | Sat Aug 16 19:50:35 EDT 2025 Tue Jul 01 05:25:41 EDT 2025 Thu Feb 27 03:09:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Expected hypervolume improvement Monte Carlo method Multi-objective optimization Efficient global optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-ab5ab93362931418173b823b3bba5f4927ac0863ebd00ed67c83ba24e24d70d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3171548616 |
PQPubID | 29930 |
PageCount | 30 |
ParticipantIDs | proquest_journals_3171548616 crossref_primary_10_1007_s10898_024_01442_9 springer_journals_10_1007_s10898_024_01442_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
PublicationTitle | Journal of global optimization |
PublicationTitleAbbrev | J Glob Optim |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | UL Berkes (1442_CR6) 1990; 27 K Bringmann (1442_CR42) 2012; 425 S Chen (1442_CR3) 2016; 53 QY Kenny (1442_CR48) 2000; 90 1442_CR43 1442_CR41 MTM Emmerich (1442_CR13) 2006; 10 1442_CR47 Y Pang (1442_CR18) 2022 S Jeong (1442_CR7) 2005; 42 Z Qingfu (1442_CR14) 2010; 14 J Zhao (1442_CR16) 2015; 78 D Brockhoff (1442_CR40) 2013; 20 JM Hammersley (1442_CR46) 1965; 18 L Leifsson (1442_CR10) 2016; 54 C Sabater (1442_CR8) 2020; 58 1442_CR51 1442_CR50 1442_CR19 1442_CR15 L While (1442_CR27) 2006; 10 SR Reddy (1442_CR1) 2016; 53 W Tang (1442_CR44) 2020; 509 D Whitley (1442_CR49) 1994; 4 J Deng (1442_CR45) 2020; 24 1442_CR24 A Jaszkiewicz (1442_CR34) 2018; 90 1442_CR20 1442_CR5 S Xu (1442_CR23) 2022 J Liu (1442_CR4) 2016; 55 1442_CR28 1442_CR26 1442_CR25 K Yang (1442_CR22) 2019; 44 LMS Russo (1442_CR32) 2014; 18 1442_CR35 1442_CR31 1442_CR30 K Lindhorst (1442_CR11) 2014; 52 R Lacour (1442_CR33) 2017; 79 1442_CR38 J Bader (1442_CR39) 2011; 19 Z Tang (1442_CR2) 2019; 72 S Xu (1442_CR9) 2013; 30 DR Jones (1442_CR17) 1998; 13 1442_CR37 Z Li (1442_CR21) 2018; 58 1442_CR36 S Xu (1442_CR12) 2018; 71 L Bradstreet (1442_CR29) 2008; 12 |
References_xml | – volume: 58 start-page: 5228 issue: 12 year: 2020 ident: 1442_CR8 publication-title: AIAA J. doi: 10.2514/1.J059480 – ident: 1442_CR24 doi: 10.1109/SFCS.1988.21971 – volume: 90 start-page: 72 year: 2018 ident: 1442_CR34 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2017.09.016 – volume: 18 start-page: 481 issue: 4 year: 2014 ident: 1442_CR32 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/tevc.2013.2281525 – volume: 10 start-page: 421 issue: 4 year: 2006 ident: 1442_CR13 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/tevc.2005.859463 – volume: 10 start-page: 29 issue: 1 year: 2006 ident: 1442_CR27 publication-title: IEEE T Evolut. Comput. doi: 10.1109/TEVC.2005.851275 – volume: 4 start-page: 65 issue: 2 year: 1994 ident: 1442_CR49 publication-title: Stat. Comput. doi: 10.1007/BF00175354 – volume: 44 start-page: 945 year: 2019 ident: 1442_CR22 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.10.007 – volume: 13 start-page: 455 issue: 4 year: 1998 ident: 1442_CR17 publication-title: J. Global Optim. doi: 10.1023/A:1008306431147 – ident: 1442_CR41 doi: 10.1145/1830483.1830576 – ident: 1442_CR43 doi: 10.1145/1830761.1830838 – year: 2022 ident: 1442_CR23 publication-title: Appl. Sci. doi: 10.3390/app13010352 – volume: 54 start-page: 531 issue: 2 year: 2016 ident: 1442_CR10 publication-title: AIAA J. doi: 10.2514/1.J054128 – volume: 52 start-page: 1952 issue: 9 year: 2014 ident: 1442_CR11 publication-title: AIAA J. doi: 10.2514/1.J052725 – ident: 1442_CR26 – ident: 1442_CR19 doi: 10.1109/CEC45853.2021.9504946 – ident: 1442_CR20 doi: 10.1109/CEC.2016.7744343 – volume: 53 start-page: 276 issue: 1 year: 2016 ident: 1442_CR3 publication-title: J. Aircraft doi: 10.2514/1.c033328 – ident: 1442_CR36 doi: 10.1007/978-3-540-30217-9_84 – volume: 18 start-page: 55 issue: 2 year: 1965 ident: 1442_CR46 publication-title: Phys. Today doi: 10.1063/1.3047186 – ident: 1442_CR25 doi: 10.1007/3-540-36970-8_37 – volume: 71 start-page: 361 issue: 2 year: 2018 ident: 1442_CR12 publication-title: J. Global Optim. doi: 10.1007/s10898-018-0608-3 – ident: 1442_CR15 – volume: 58 start-page: 1961 issue: 5 year: 2018 ident: 1442_CR21 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-2006-3 – volume: 55 start-page: 925 issue: 3 year: 2016 ident: 1442_CR4 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-016-1546-7 – volume: 53 start-page: 992 issue: 4 year: 2016 ident: 1442_CR1 publication-title: J. Aircraft doi: 10.2514/1.C033334 – ident: 1442_CR37 doi: 10.1109/CEC.2009.4982991 – ident: 1442_CR31 doi: 10.1109/CEC.2012.6256171 – ident: 1442_CR38 doi: 10.1145/1830483.1830578 – volume: 90 start-page: 145 issue: 1 year: 2000 ident: 1442_CR48 publication-title: J. Stat. Plann. Inference doi: 10.1016/S0378-3758(00)00105-1 – ident: 1442_CR35 doi: 10.1109/CEC.2014.6900299 – volume: 12 start-page: 714 issue: 6 year: 2008 ident: 1442_CR29 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/tevc.2008.919001 – volume: 30 start-page: 1 year: 2013 ident: 1442_CR9 publication-title: Trans. Nanjing Univ. Aeronaut. Astronaut. – ident: 1442_CR47 doi: 10.1093/oso/9780198502784.001.0001 – volume: 72 start-page: 588 year: 2019 ident: 1442_CR2 publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2019.03.036 – volume: 24 start-page: 896 issue: 5 year: 2020 ident: 1442_CR45 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/tevc.2020.2969965 – year: 2022 ident: 1442_CR18 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/tevc.2022.3228516 – ident: 1442_CR28 doi: 10.1109/CEC.2006.1688440 – ident: 1442_CR5 – volume: 509 start-page: 342 issue: 320 year: 2020 ident: 1442_CR44 publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.02.054 – volume: 14 start-page: 456 issue: 3 year: 2010 ident: 1442_CR14 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/tevc.2009.2033671 – volume: 19 start-page: 45 issue: 1 year: 2011 ident: 1442_CR39 publication-title: Evol. Comput. doi: 10.3929/ethz-a-005703480 – ident: 1442_CR51 doi: 10.1145/1143997.1144179 – volume: 78 start-page: 1813 issue: 9–12 year: 2015 ident: 1442_CR16 publication-title: Int. J. Adv. Manuf. Tech. doi: 10.1007/s00170-014-6770-y – ident: 1442_CR30 – volume: 79 start-page: 347 year: 2017 ident: 1442_CR33 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2016.06.021 – volume: 42 start-page: 413 issue: 2 year: 2005 ident: 1442_CR7 publication-title: J. Aircraft doi: 10.2514/1.6386 – volume: 425 start-page: 104 year: 2012 ident: 1442_CR42 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2010.09.026 – volume: 20 start-page: 291 year: 2013 ident: 1442_CR40 publication-title: J. Multi-Criteria. doi: 10.1002/mcda.1502 – ident: 1442_CR50 doi: 10.1109/CEC.2002.1007032 – volume: 27 start-page: 1073 issue: 12 year: 1990 ident: 1442_CR6 publication-title: J. Aircraft doi: 10.2514/3.45984 |
SSID | ssj0009852 |
Score | 2.408017 |
Snippet | This paper presents a novel algorithm, namely the adaptive nested Monte Carlo based multi-objective Efficient Global Optimization (ANMC-MOEGO), which aims to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 647 |
SubjectTerms | Adaptive algorithms Algorithms Complexity Computer Science Global optimization Hypercubes Mathematical analysis Mathematics Mathematics and Statistics Monte Carlo simulation Multiple objective analysis Operations Research/Decision Theory Optimization Real Functions |
Title | Adaptive nested Monte Carlo approach for multi-objective efficient global optimization |
URI | https://link.springer.com/article/10.1007/s10898-024-01442-9 https://www.proquest.com/docview/3171548616 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RuOhBBTWiSHrwoNEmoz_W7QgEJBo4icHT0rLuYHQQhv-_bekEjR48Lcu6Hva1731vfe97AFckkzIyTBXzSGbYxF8Uy1QwzKlNbQqY4K4XwWgcDifsYcqnviisKLPdyyNJZ6m3it0iWw5GbNYEYwTHu1DlNnY3q3hCOhup3cj12QliwjE3VtiXyvw-x3d3tOGYP45FnbcZHMGBp4mos8a1Bjs6r8Nh2YIB-R1Zh_0tPUFzN_oSYS3qUPOjCnTtxaVvjuG5k8qFNXEod3860cjKU6GeXL7NUSkwjgyTRS7VEM_V69okIu3EJoyPQmsRETQ387z7Ms4TmAz6T70h9r0V8IyIYIWl4lLF1LivmLaZcfOCqohQRZWSPGMxEXJmoh2qVRoEOg3FLKJKEqYJS0WQBvQUKvk812eA4lBIEcQpzbKQKaGVlf0iM81Y1jbvkQbclp84WawlNJKNWLIFJDGAJA6QJG5As0Qh8dupSAzJsaFV2A4bcFcis3n892zn_xt-AXvE9vd1OWZNqKyWH_rSkI6VakG1M-h2x_Z6__LYb7k19wnXyc92 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYABaAFRPj0wgMBSajtxMlYVVYGmU4u6RXbjDAjSqin_H9txSEEwMEZxbsiL797Fd-8ArkkmRKiZKvZDkWGdf1EsUs6wT01pk8e4b2cRxKNgMGFPU3_qmsKKqtq9OpK0nnqt2S007WDEVE0wRnC0CVuaDISmkGtCurXUbmjn7HgR8bGvvbBrlfndxvdwVHPMH8eiNtr0D2DP0UTULXFtwobKW7BfjWBAbke2YHdNT1BfxV8irEULmm5VgW6cuPTtIbx0U7EwLg7l9k8nio08FeqJ5dscVQLjSDNZZEsN8Vy-li4RKSs2oWMUKkVE0FzbeXdtnEcw6T-MewPsZivgGeHeCgvpCxlRHb4i2mE6zHMqQ0IllVL4GYsIFzOd7VAlU89TacBnIZWCMEVYyr3Uo8fQyOe5OgEUBVxwL0pplgVMciWN7BeZKcayjn6OtOGuesXJopTQSGqxZANIogFJLCBJ1IbzCoXEbaci0STHpFZBJ2jDfYVMfftva6f_W34F24NxPEyGj6PnM9ghZtavrTc7h8Zq-aEuNAFZyUv7vX0CxBnPWQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMQAuIQgEPDCCwmthOnIwVUJVHKwaKukV24wwIkqoN_x_bSUhBMDBGcW64z75HfPcdwBlJhAh0pIq9QCRY518Ui5gz7FFT2uQw7tlZBMORPxiz-4k3Werit9Xu1ZVk0dNgWJrSvDuLk-5S41tgWsOIqaBgjOBwFda0OXbNvh6TXk27G9iZO05IPOxpi1y2zfwu47trquPNH1ek1vP0d2CrDBlRr8C4CSsqbcF2NY4BlaezBZtL3IL6afhFyLpoQbNctUDnJdH0xS689GIxM-YOpfavJxoaJaBrMX_LUEU2jnRUi2zZIc7ka2EekbLEE1pfqCAUQZmW8162dO7BuH_7fD3A5ZwFPCXcybGQnpAh1a4spC7TLp9TGRAqqZTCS1hIuJjqzIcqGTuOin0-DagUhCnCYu7EDt2HRpql6gBQ6HPBnTCmSeIzyZU0FGBkqhhLXP0dacNlpeJoVtBpRDVxsgEk0oBEFpAobEOnQiEqj9Yi0gGPSbN812_DVYVM_fpvaYf_W34K6083_ejxbvRwBBvEjP21pWcdaOTzD3WsY5Fcntjt9gn_6NOV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+nested+Monte+Carlo+approach+for+multi-objective+efficient+global+optimization&rft.jtitle=Journal+of+global+optimization&rft.au=Xu%2C+Shengguan&rft.au=Tan%2C+Jianfeng&rft.au=Zhang%2C+Jiale&rft.au=Chen%2C+Hongquan&rft.date=2025-03-01&rft.pub=Springer+US&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=91&rft.issue=3&rft.spage=647&rft.epage=676&rft_id=info:doi/10.1007%2Fs10898-024-01442-9&rft.externalDocID=10_1007_s10898_024_01442_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |