Adaptive nested Monte Carlo approach for multi-objective efficient global optimization

This paper presents a novel algorithm, namely the adaptive nested Monte Carlo based multi-objective Efficient Global Optimization (ANMC-MOEGO), which aims to enhance efficiency and accuracy while minimizing programming complexity in contrast to traditional multi-objective Efficient Global Optimizati...

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 91; no. 3; pp. 647 - 676
Main Authors Xu, Shengguan, Tan, Jianfeng, Zhang, Jiale, Chen, Hongquan, Gao, Yisheng
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a novel algorithm, namely the adaptive nested Monte Carlo based multi-objective Efficient Global Optimization (ANMC-MOEGO), which aims to enhance efficiency and accuracy while minimizing programming complexity in contrast to traditional multi-objective Efficient Global Optimization (MOEGO). In this algorithm, the programming complexity is streamlined by employing Monte Carlo simulation for both hypervolume improvement (HVI) and expected hypervolume improvement (EHVI) calculations. Furthermore, the efficiency and accuracy of HVI and EHVI calculations are improved through the utilization of a novel technique called adaptive Monte Carlo hypercube boundaries (AMCHB), which is based on the bisection method. The algorithm is validated via a set of test functions from the open literature. The numerical results demonstrate that the ANMC-MOEGO algorithm produces solutions closer to the theoretical results, with improved distributions on the corresponding Pareto fronts compared to the algorithm without AMCHB technique. Moreover, when obtaining a better Pareto front, the proposed algorithm is found to be more time-efficient, achieving speedups of up to 22.57 times.
AbstractList This paper presents a novel algorithm, namely the adaptive nested Monte Carlo based multi-objective Efficient Global Optimization (ANMC-MOEGO), which aims to enhance efficiency and accuracy while minimizing programming complexity in contrast to traditional multi-objective Efficient Global Optimization (MOEGO). In this algorithm, the programming complexity is streamlined by employing Monte Carlo simulation for both hypervolume improvement (HVI) and expected hypervolume improvement (EHVI) calculations. Furthermore, the efficiency and accuracy of HVI and EHVI calculations are improved through the utilization of a novel technique called adaptive Monte Carlo hypercube boundaries (AMCHB), which is based on the bisection method. The algorithm is validated via a set of test functions from the open literature. The numerical results demonstrate that the ANMC-MOEGO algorithm produces solutions closer to the theoretical results, with improved distributions on the corresponding Pareto fronts compared to the algorithm without AMCHB technique. Moreover, when obtaining a better Pareto front, the proposed algorithm is found to be more time-efficient, achieving speedups of up to 22.57 times.
Author Tan, Jianfeng
Zhang, Jiale
Gao, Yisheng
Xu, Shengguan
Chen, Hongquan
Author_xml – sequence: 1
  givenname: Shengguan
  surname: Xu
  fullname: Xu, Shengguan
  email: shengguanxu@njtech.edu.cn
  organization: School of Mechanical and Power Engineering, Nanjing Tech University
– sequence: 2
  givenname: Jianfeng
  surname: Tan
  fullname: Tan, Jianfeng
  organization: School of Mechanical and Power Engineering, Nanjing Tech University
– sequence: 3
  givenname: Jiale
  surname: Zhang
  fullname: Zhang, Jiale
  organization: School of Aerospace Engineering, Xiamen University
– sequence: 4
  givenname: Hongquan
  surname: Chen
  fullname: Chen, Hongquan
  organization: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics
– sequence: 5
  givenname: Yisheng
  surname: Gao
  fullname: Gao, Yisheng
  organization: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics
BookMark eNp9kMtOwzAQRS1UJNrCD7CyxNowfiS2l1XFSypiA2wtO3FKqjQOdooEX48hSOxYzebcOzNngWZ96D1C5xQuKYC8ShSUVgSYIECFYEQfoTktJCdM03KG5qBZQQoAeoIWKe0AQKuCzdHLqrbD2L573Ps0-ho_hH70eG1jF7Adhhhs9YqbEPH-0I0tCW7nqx_eN01btb4f8bYLznY45J59-2nHNvSn6LixXfJnv3OJnm-un9Z3ZPN4e79ebUjFJIzEusI6zXnJNKeCKiq5U4w77pwtGqGZtBWokntXA_i6lJXizjLhmagl1MCX6GLqzYe-HfIHZhcOsc8rDaeSFkKVtMwUm6gqhpSib8wQ272NH4aC-fZnJn8m-zM__ozOIT6FUob7rY9_1f-kvgBJTHUn
Cites_doi 10.2514/1.J059480
10.1109/SFCS.1988.21971
10.1016/j.cor.2017.09.016
10.1109/tevc.2013.2281525
10.1109/tevc.2005.859463
10.1109/TEVC.2005.851275
10.1007/BF00175354
10.1016/j.swevo.2018.10.007
10.1023/A:1008306431147
10.1145/1830483.1830576
10.1145/1830761.1830838
10.3390/app13010352
10.2514/1.J054128
10.2514/1.J052725
10.1109/CEC45853.2021.9504946
10.1109/CEC.2016.7744343
10.2514/1.c033328
10.1007/978-3-540-30217-9_84
10.1063/1.3047186
10.1007/3-540-36970-8_37
10.1007/s10898-018-0608-3
10.1007/s00158-018-2006-3
10.1007/s00158-016-1546-7
10.2514/1.C033334
10.1109/CEC.2009.4982991
10.1109/CEC.2012.6256171
10.1145/1830483.1830578
10.1016/S0378-3758(00)00105-1
10.1109/CEC.2014.6900299
10.1109/tevc.2008.919001
10.1093/oso/9780198502784.001.0001
10.1016/j.apm.2019.03.036
10.1109/tevc.2020.2969965
10.1109/tevc.2022.3228516
10.1109/CEC.2006.1688440
10.1016/j.ins.2019.02.054
10.1109/tevc.2009.2033671
10.3929/ethz-a-005703480
10.1145/1143997.1144179
10.1007/s00170-014-6770-y
10.1016/j.cor.2016.06.021
10.2514/1.6386
10.1016/j.tcs.2010.09.026
10.1002/mcda.1502
10.1109/CEC.2002.1007032
10.2514/3.45984
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Mar 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Mar 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10898-024-01442-9
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 676
ExternalDocumentID 10_1007_s10898_024_01442_9
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20211259
  funderid: http://dx.doi.org/10.13039/501100004608
– fundername: Outstanding Young Backbone Teacher Project of Jiangsu Qinglan Project
– fundername: National Natural Science Foundation of China
  grantid: 12102185; 12102188; 11972189; 12172165
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c270t-ab5ab93362931418173b823b3bba5f4927ac0863ebd00ed67c83ba24e24d70d03
IEDL.DBID U2A
ISSN 0925-5001
IngestDate Sat Aug 16 19:50:35 EDT 2025
Tue Jul 01 05:25:41 EDT 2025
Thu Feb 27 03:09:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Expected hypervolume improvement
Monte Carlo method
Multi-objective optimization
Efficient global optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-ab5ab93362931418173b823b3bba5f4927ac0863ebd00ed67c83ba24e24d70d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3171548616
PQPubID 29930
PageCount 30
ParticipantIDs proquest_journals_3171548616
crossref_primary_10_1007_s10898_024_01442_9
springer_journals_10_1007_s10898_024_01442_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References UL Berkes (1442_CR6) 1990; 27
K Bringmann (1442_CR42) 2012; 425
S Chen (1442_CR3) 2016; 53
QY Kenny (1442_CR48) 2000; 90
1442_CR43
1442_CR41
MTM Emmerich (1442_CR13) 2006; 10
1442_CR47
Y Pang (1442_CR18) 2022
S Jeong (1442_CR7) 2005; 42
Z Qingfu (1442_CR14) 2010; 14
J Zhao (1442_CR16) 2015; 78
D Brockhoff (1442_CR40) 2013; 20
JM Hammersley (1442_CR46) 1965; 18
L Leifsson (1442_CR10) 2016; 54
C Sabater (1442_CR8) 2020; 58
1442_CR51
1442_CR50
1442_CR19
1442_CR15
L While (1442_CR27) 2006; 10
SR Reddy (1442_CR1) 2016; 53
W Tang (1442_CR44) 2020; 509
D Whitley (1442_CR49) 1994; 4
J Deng (1442_CR45) 2020; 24
1442_CR24
A Jaszkiewicz (1442_CR34) 2018; 90
1442_CR20
1442_CR5
S Xu (1442_CR23) 2022
J Liu (1442_CR4) 2016; 55
1442_CR28
1442_CR26
1442_CR25
K Yang (1442_CR22) 2019; 44
LMS Russo (1442_CR32) 2014; 18
1442_CR35
1442_CR31
1442_CR30
K Lindhorst (1442_CR11) 2014; 52
R Lacour (1442_CR33) 2017; 79
1442_CR38
J Bader (1442_CR39) 2011; 19
Z Tang (1442_CR2) 2019; 72
S Xu (1442_CR9) 2013; 30
DR Jones (1442_CR17) 1998; 13
1442_CR37
Z Li (1442_CR21) 2018; 58
1442_CR36
S Xu (1442_CR12) 2018; 71
L Bradstreet (1442_CR29) 2008; 12
References_xml – volume: 58
  start-page: 5228
  issue: 12
  year: 2020
  ident: 1442_CR8
  publication-title: AIAA J.
  doi: 10.2514/1.J059480
– ident: 1442_CR24
  doi: 10.1109/SFCS.1988.21971
– volume: 90
  start-page: 72
  year: 2018
  ident: 1442_CR34
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2017.09.016
– volume: 18
  start-page: 481
  issue: 4
  year: 2014
  ident: 1442_CR32
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/tevc.2013.2281525
– volume: 10
  start-page: 421
  issue: 4
  year: 2006
  ident: 1442_CR13
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/tevc.2005.859463
– volume: 10
  start-page: 29
  issue: 1
  year: 2006
  ident: 1442_CR27
  publication-title: IEEE T Evolut. Comput.
  doi: 10.1109/TEVC.2005.851275
– volume: 4
  start-page: 65
  issue: 2
  year: 1994
  ident: 1442_CR49
  publication-title: Stat. Comput.
  doi: 10.1007/BF00175354
– volume: 44
  start-page: 945
  year: 2019
  ident: 1442_CR22
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.10.007
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 1442_CR17
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008306431147
– ident: 1442_CR41
  doi: 10.1145/1830483.1830576
– ident: 1442_CR43
  doi: 10.1145/1830761.1830838
– year: 2022
  ident: 1442_CR23
  publication-title: Appl. Sci.
  doi: 10.3390/app13010352
– volume: 54
  start-page: 531
  issue: 2
  year: 2016
  ident: 1442_CR10
  publication-title: AIAA J.
  doi: 10.2514/1.J054128
– volume: 52
  start-page: 1952
  issue: 9
  year: 2014
  ident: 1442_CR11
  publication-title: AIAA J.
  doi: 10.2514/1.J052725
– ident: 1442_CR26
– ident: 1442_CR19
  doi: 10.1109/CEC45853.2021.9504946
– ident: 1442_CR20
  doi: 10.1109/CEC.2016.7744343
– volume: 53
  start-page: 276
  issue: 1
  year: 2016
  ident: 1442_CR3
  publication-title: J. Aircraft
  doi: 10.2514/1.c033328
– ident: 1442_CR36
  doi: 10.1007/978-3-540-30217-9_84
– volume: 18
  start-page: 55
  issue: 2
  year: 1965
  ident: 1442_CR46
  publication-title: Phys. Today
  doi: 10.1063/1.3047186
– ident: 1442_CR25
  doi: 10.1007/3-540-36970-8_37
– volume: 71
  start-page: 361
  issue: 2
  year: 2018
  ident: 1442_CR12
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-018-0608-3
– ident: 1442_CR15
– volume: 58
  start-page: 1961
  issue: 5
  year: 2018
  ident: 1442_CR21
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-2006-3
– volume: 55
  start-page: 925
  issue: 3
  year: 2016
  ident: 1442_CR4
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-016-1546-7
– volume: 53
  start-page: 992
  issue: 4
  year: 2016
  ident: 1442_CR1
  publication-title: J. Aircraft
  doi: 10.2514/1.C033334
– ident: 1442_CR37
  doi: 10.1109/CEC.2009.4982991
– ident: 1442_CR31
  doi: 10.1109/CEC.2012.6256171
– ident: 1442_CR38
  doi: 10.1145/1830483.1830578
– volume: 90
  start-page: 145
  issue: 1
  year: 2000
  ident: 1442_CR48
  publication-title: J. Stat. Plann. Inference
  doi: 10.1016/S0378-3758(00)00105-1
– ident: 1442_CR35
  doi: 10.1109/CEC.2014.6900299
– volume: 12
  start-page: 714
  issue: 6
  year: 2008
  ident: 1442_CR29
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/tevc.2008.919001
– volume: 30
  start-page: 1
  year: 2013
  ident: 1442_CR9
  publication-title: Trans. Nanjing Univ. Aeronaut. Astronaut.
– ident: 1442_CR47
  doi: 10.1093/oso/9780198502784.001.0001
– volume: 72
  start-page: 588
  year: 2019
  ident: 1442_CR2
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2019.03.036
– volume: 24
  start-page: 896
  issue: 5
  year: 2020
  ident: 1442_CR45
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/tevc.2020.2969965
– year: 2022
  ident: 1442_CR18
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/tevc.2022.3228516
– ident: 1442_CR28
  doi: 10.1109/CEC.2006.1688440
– ident: 1442_CR5
– volume: 509
  start-page: 342
  issue: 320
  year: 2020
  ident: 1442_CR44
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.02.054
– volume: 14
  start-page: 456
  issue: 3
  year: 2010
  ident: 1442_CR14
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/tevc.2009.2033671
– volume: 19
  start-page: 45
  issue: 1
  year: 2011
  ident: 1442_CR39
  publication-title: Evol. Comput.
  doi: 10.3929/ethz-a-005703480
– ident: 1442_CR51
  doi: 10.1145/1143997.1144179
– volume: 78
  start-page: 1813
  issue: 9–12
  year: 2015
  ident: 1442_CR16
  publication-title: Int. J. Adv. Manuf. Tech.
  doi: 10.1007/s00170-014-6770-y
– ident: 1442_CR30
– volume: 79
  start-page: 347
  year: 2017
  ident: 1442_CR33
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2016.06.021
– volume: 42
  start-page: 413
  issue: 2
  year: 2005
  ident: 1442_CR7
  publication-title: J. Aircraft
  doi: 10.2514/1.6386
– volume: 425
  start-page: 104
  year: 2012
  ident: 1442_CR42
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2010.09.026
– volume: 20
  start-page: 291
  year: 2013
  ident: 1442_CR40
  publication-title: J. Multi-Criteria.
  doi: 10.1002/mcda.1502
– ident: 1442_CR50
  doi: 10.1109/CEC.2002.1007032
– volume: 27
  start-page: 1073
  issue: 12
  year: 1990
  ident: 1442_CR6
  publication-title: J. Aircraft
  doi: 10.2514/3.45984
SSID ssj0009852
Score 2.408017
Snippet This paper presents a novel algorithm, namely the adaptive nested Monte Carlo based multi-objective Efficient Global Optimization (ANMC-MOEGO), which aims to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 647
SubjectTerms Adaptive algorithms
Algorithms
Complexity
Computer Science
Global optimization
Hypercubes
Mathematical analysis
Mathematics
Mathematics and Statistics
Monte Carlo simulation
Multiple objective analysis
Operations Research/Decision Theory
Optimization
Real Functions
Title Adaptive nested Monte Carlo approach for multi-objective efficient global optimization
URI https://link.springer.com/article/10.1007/s10898-024-01442-9
https://www.proquest.com/docview/3171548616
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RuOhBBTWiSHrwoNEmoz_W7QgEJBo4icHT0rLuYHQQhv-_bekEjR48Lcu6Hva1731vfe97AFckkzIyTBXzSGbYxF8Uy1QwzKlNbQqY4K4XwWgcDifsYcqnviisKLPdyyNJZ6m3it0iWw5GbNYEYwTHu1DlNnY3q3hCOhup3cj12QliwjE3VtiXyvw-x3d3tOGYP45FnbcZHMGBp4mos8a1Bjs6r8Nh2YIB-R1Zh_0tPUFzN_oSYS3qUPOjCnTtxaVvjuG5k8qFNXEod3860cjKU6GeXL7NUSkwjgyTRS7VEM_V69okIu3EJoyPQmsRETQ387z7Ms4TmAz6T70h9r0V8IyIYIWl4lLF1LivmLaZcfOCqohQRZWSPGMxEXJmoh2qVRoEOg3FLKJKEqYJS0WQBvQUKvk812eA4lBIEcQpzbKQKaGVlf0iM81Y1jbvkQbclp84WawlNJKNWLIFJDGAJA6QJG5As0Qh8dupSAzJsaFV2A4bcFcis3n892zn_xt-AXvE9vd1OWZNqKyWH_rSkI6VakG1M-h2x_Z6__LYb7k19wnXyc92
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYABaAFRPj0wgMBSajtxMlYVVYGmU4u6RXbjDAjSqin_H9txSEEwMEZxbsiL797Fd-8ArkkmRKiZKvZDkWGdf1EsUs6wT01pk8e4b2cRxKNgMGFPU3_qmsKKqtq9OpK0nnqt2S007WDEVE0wRnC0CVuaDISmkGtCurXUbmjn7HgR8bGvvbBrlfndxvdwVHPMH8eiNtr0D2DP0UTULXFtwobKW7BfjWBAbke2YHdNT1BfxV8irEULmm5VgW6cuPTtIbx0U7EwLg7l9k8nio08FeqJ5dscVQLjSDNZZEsN8Vy-li4RKSs2oWMUKkVE0FzbeXdtnEcw6T-MewPsZivgGeHeCgvpCxlRHb4i2mE6zHMqQ0IllVL4GYsIFzOd7VAlU89TacBnIZWCMEVYyr3Uo8fQyOe5OgEUBVxwL0pplgVMciWN7BeZKcayjn6OtOGuesXJopTQSGqxZANIogFJLCBJ1IbzCoXEbaci0STHpFZBJ2jDfYVMfftva6f_W34F24NxPEyGj6PnM9ghZtavrTc7h8Zq-aEuNAFZyUv7vX0CxBnPWQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMQAuIQgEPDCCwmthOnIwVUJVHKwaKukV24wwIkqoN_x_bSUhBMDBGcW64z75HfPcdwBlJhAh0pIq9QCRY518Ui5gz7FFT2uQw7tlZBMORPxiz-4k3Werit9Xu1ZVk0dNgWJrSvDuLk-5S41tgWsOIqaBgjOBwFda0OXbNvh6TXk27G9iZO05IPOxpi1y2zfwu47trquPNH1ek1vP0d2CrDBlRr8C4CSsqbcF2NY4BlaezBZtL3IL6afhFyLpoQbNctUDnJdH0xS689GIxM-YOpfavJxoaJaBrMX_LUEU2jnRUi2zZIc7ka2EekbLEE1pfqCAUQZmW8162dO7BuH_7fD3A5ZwFPCXcybGQnpAh1a4spC7TLp9TGRAqqZTCS1hIuJjqzIcqGTuOin0-DagUhCnCYu7EDt2HRpql6gBQ6HPBnTCmSeIzyZU0FGBkqhhLXP0dacNlpeJoVtBpRDVxsgEk0oBEFpAobEOnQiEqj9Yi0gGPSbN812_DVYVM_fpvaYf_W34K6083_ejxbvRwBBvEjP21pWcdaOTzD3WsY5Fcntjt9gn_6NOV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+nested+Monte+Carlo+approach+for+multi-objective+efficient+global+optimization&rft.jtitle=Journal+of+global+optimization&rft.au=Xu%2C+Shengguan&rft.au=Tan%2C+Jianfeng&rft.au=Zhang%2C+Jiale&rft.au=Chen%2C+Hongquan&rft.date=2025-03-01&rft.pub=Springer+US&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=91&rft.issue=3&rft.spage=647&rft.epage=676&rft_id=info:doi/10.1007%2Fs10898-024-01442-9&rft.externalDocID=10_1007_s10898_024_01442_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon