Consensus task interaction trace recommender to guide developers’ software navigation

Developers must complete change tasks on large software systems for maintenance and development purposes. Having a custom software system with numerous instances that meet the growing client demand for features and functionalities increases the software complexity. Developers, especially newcomers,...

Full description

Saved in:
Bibliographic Details
Published inEmpirical software engineering : an international journal Vol. 29; no. 6; p. 147
Main Authors Etaiwi, Layan, Sager, Pascal, Guéhéneuc, Yann-Gaël, Hamel, Sylvie
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developers must complete change tasks on large software systems for maintenance and development purposes. Having a custom software system with numerous instances that meet the growing client demand for features and functionalities increases the software complexity. Developers, especially newcomers, must spend a significant amount of time navigating through the source code and switching back and forth between files in order to understand such a system and find the parts relevant for performing current tasks. This navigation can be difficult, time-consuming and affect developers’ productivity. To help guide developers’ navigation towards successfully resolving tasks with minimal time and effort, we present a task-based recommendation approach that exploits aggregated developers’ interaction traces. Our novel approach, Consensus Task Interaction Trace Recommender (CITR), recommends file(s)-to-edit that help perform a set of tasks based on a tasks-related set of interaction traces obtained from developers who performed similar change tasks on the same or different custom instances of the same system. Our approach uses a consensus algorithm, which takes as input task-related interaction traces and recommends a consensus task interaction trace that developers can use to complete given similar change tasks that require editing (a) common file(s). To evaluate the efficiency of our approach, we perform three different evaluations. The first evaluation measures the accuracy of CITR recommendations. In the second evaluation, we assess to what extent CITR can help developers by conducting an observational controlled experiment in which two groups of developers performed evaluation tasks with and without the recommendations of CITR. In the third and last evaluation, we compare CITR to a state-of-the-art recommendation approach, MI. Results report with statistical significance that CITR can correctly recommend on average 73% of the files to be edited. Furthermore, they show that CITR can increase developers’ successful task completion rate. CITR outperforms MI by an average of 31% higher recommendation accuracy.
AbstractList Developers must complete change tasks on large software systems for maintenance and development purposes. Having a custom software system with numerous instances that meet the growing client demand for features and functionalities increases the software complexity. Developers, especially newcomers, must spend a significant amount of time navigating through the source code and switching back and forth between files in order to understand such a system and find the parts relevant for performing current tasks. This navigation can be difficult, time-consuming and affect developers’ productivity. To help guide developers’ navigation towards successfully resolving tasks with minimal time and effort, we present a task-based recommendation approach that exploits aggregated developers’ interaction traces. Our novel approach, Consensus Task Interaction Trace Recommender (CITR), recommends file(s)-to-edit that help perform a set of tasks based on a tasks-related set of interaction traces obtained from developers who performed similar change tasks on the same or different custom instances of the same system. Our approach uses a consensus algorithm, which takes as input task-related interaction traces and recommends a consensus task interaction trace that developers can use to complete given similar change tasks that require editing (a) common file(s). To evaluate the efficiency of our approach, we perform three different evaluations. The first evaluation measures the accuracy of CITR recommendations. In the second evaluation, we assess to what extent CITR can help developers by conducting an observational controlled experiment in which two groups of developers performed evaluation tasks with and without the recommendations of CITR. In the third and last evaluation, we compare CITR to a state-of-the-art recommendation approach, MI. Results report with statistical significance that CITR can correctly recommend on average 73% of the files to be edited. Furthermore, they show that CITR can increase developers’ successful task completion rate. CITR outperforms MI by an average of 31% higher recommendation accuracy.
ArticleNumber 147
Author Hamel, Sylvie
Guéhéneuc, Yann-Gaël
Sager, Pascal
Etaiwi, Layan
Author_xml – sequence: 1
  givenname: Layan
  orcidid: 0000-0001-9250-7578
  surname: Etaiwi
  fullname: Etaiwi, Layan
  email: mashael.etaiwi@polymtl.ca
  organization: Polytechnique Montréal
– sequence: 2
  givenname: Pascal
  surname: Sager
  fullname: Sager, Pascal
  organization: University of Zurich, Zurich University of Applied Sciences
– sequence: 3
  givenname: Yann-Gaël
  surname: Guéhéneuc
  fullname: Guéhéneuc, Yann-Gaël
  organization: Concordia University
– sequence: 4
  givenname: Sylvie
  surname: Hamel
  fullname: Hamel, Sylvie
  organization: Université de Montréal
BookMark eNp9kM1KAzEUhYNUsFZfwFXAdfROksk0Syn-QcGN4jKkmTtlapvUZKbiztfw9XwSU0dw5-qexfedC-eYjHzwSMhZARcFQHWZClBKMuCSFVDyKasOyLgoK8EqVahRzmLKmeClOiLHKa0AQFeyHJPnWfAJfeoT7Wx6oa3vMFrXtcHTLgekEV3YbNDXGGkX6LJva6Q17nAdthjT18cnTaHp3mxE6u2uXdq9fEIOG7tOePp7J-Tp5vpxdsfmD7f3s6s5c7yCjlktFeKiXii0XEkExy0ACquAixrQaWnBKVkKjRKcFaAVTGVtFw1Kp0FMyPnQu43htcfUmVXoo88vTWa15grKMlN8oFwMKUVszDa2GxvfTQFmP6AZBjR5QPMzoKmyJAYpZdgvMf5V_2N9Aywld8M
Cites_doi 10.1145/2635868.2635905
10.1145/2957792.2957810
10.1145/1181775.1181779
10.1109/ICPC.2011.35
10.1109/ICPC.2009.5090052
10.1109/ICSE.2019.00051
10.1007/978-3-642-33442-9
10.1145/1181775.1181777
10.1109/ICSM.2011.6080788
10.1145/1411509.1411513
10.1109/CSD.2015.12
10.14778/2809974.2809982
10.1109/ICSM.2009.5306335
10.1002/smr.413
10.1109/MSR.2010.5463278
10.1007/978-3-642-22351-8_5
10.1109/QSIC.2014.11
10.1007/s10664-017-9529-x
10.1109/ICSE.2004.1317478
10.1109/MSR.2017.58
10.1007/978-1-4612-1106-8
10.1109/TSE.2004.52
10.1109/ICSE.2003.1201219
10.1109/SANER.2015.7081835
10.1016/j.mathsocsci.2011.08.008
10.1145/3324884.3416544
10.1109/WCRE.2013.6671314
10.1109/ICPC.2016.7503741
10.1007/978-3-642-45135-5_10
10.1109/TSE.2006.116
10.1109/TSE.2004.101
10.1109/ICPC.2009.5090030
10.1109/ICSM.2005.66
10.1109/ICPC.2007.18
10.1007/s10515-010-0064-x
10.1145/13487689.13487691
10.1109/ICSM.2011.6080826
10.1145/1055558.1055568
10.1145/1117696.1117711
10.1037/0033-2909.84.2.212
10.1016/j.jss.2013.03.103
10.1109/WCRE.2013.6671290
10.1109/TSE.2014.2362138
10.1145/1134285.1134355
10.1109/VLHCC.2005.32
10.1109/C-M.1981.220410
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10664-024-10528-7
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7616
ExternalDocumentID 10_1007_s10664_024_10528_7
GroupedDBID -Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYOK
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c270t-a946eebdb6ea264e0c2a00e3a6023d0ec94a0c64539e40ca3096084dabfe4c903
IEDL.DBID U2A
ISSN 1382-3256
IngestDate Fri Jul 25 12:27:48 EDT 2025
Tue Jul 01 03:32:23 EDT 2025
Mon Jul 21 06:08:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Recommendation systems
Task-related interaction traces
Maintenance
Software navigation
Mylyn interaction traces
Consensus algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-a946eebdb6ea264e0c2a00e3a6023d0ec94a0c64539e40ca3096084dabfe4c903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9250-7578
PQID 3099926055
PQPubID 326341
ParticipantIDs proquest_journals_3099926055
crossref_primary_10_1007_s10664_024_10528_7
springer_journals_10_1007_s10664_024_10528_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Empirical software engineering : an international journal
PublicationTitleAbbrev Empir Software Eng
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ErlebacherADesign and analysis of experiments contrasting the within-and between-subjects manipulation of the independent variablePsychol Bull19778422110.1037/0033-2909.84.2.212
Starke J, Luce C, Sillito J (2009) Searching and skimming: An exploratory study. In: 2009 IEEE international conference on software maintenance, pp 157–16. https://doi.org/10.1109/ICSM.2009.5306335
Fritz T, Shepherd DC, Kevic K, Snipes W, Bräunlich C (2014) Developers’ code context models for change tasks. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering, Association for Computing Machinery, New York, NY, USA, FSE 2014, pp 7–18. https://doi.org/10.1145/2635868.2635905
Fagin R, Kumar R, Mahdian M, Sivakumar D, Vee E (2004) Comparing and aggregating rankings with ties. In: Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems, Association for Computing Machinery, New York, NY, USA, PODS ’04, pp 47–58,https://doi.org/10.1145/1055558.1055568
Wan Z, Murphy GC, Xia X (2020) Predicting code context models for software development tasks. In: 2020 35th IEEE/ACM international conference on automated software engineering (ASE), IEEE, pp 809–820
KoAJMyersBACoblenzMJAungHHAn exploratory study of how developers seek, relate, and collect relevant information during software maintenance tasksIEEE Trans Softw Eng2006321297198710.1109/TSE.2006.116
LeeSKangSClustering navigation sequences to create contexts for guiding code navigationJ Syst Softw20138682154216510.1016/j.jss.2013.03.103
RobbesRLanzaMImproving code completion with program historyAutom Softw Eng201017218121210.1007/s10515-010-0064-x
KemenyJGMathematics without numbersDaedalus1959884577591
Kersten M, Murphy GC (2006) Using task context to improve programmer productivity. In: Proceedings of the 14th ACM SIGSOFT international symposium on foundations of software engineering, Association for Computing Machinery, New York, NY, USA, SIGSOFT ’06/FSE-14, p 1–11. https://doi.org/10.1145/1181775.1181777
Cohen-Boulakia S, Denise A, Hamel S (2011) Using medians to generate consensus rankings for biological data. In: Proceedings of the 23rd international conference on scientific and statistical database management, Springer-Verlag, Berlin, Heidelberg, SSDBM’11, p 73–90
Sanchez H, Robbes R, Gonzalez VM (2015) An empirical study of work fragmentation in software evolution tasks. In: 2015 IEEE 22nd international conference on software analysis, evolution, and reengineering (SANER), pp 251–26.https://doi.org/10.1109/SANER.2015.7081835
LaToza TD, Venolia G, DeLine R (2006) Maintaining mental models: A study of developer work habits. In: Proceedings of the 28th international conference on software engineering, association for computing machinery, New York, NY, USA, ICSE ’06, pp 492–50. https://doi.org/10.1145/1134285.1134355
Majid I, Robillard MP (2005) Nacin: an eclipse plug-in for program navigation-based concern inference. In: Proceedings of the 2005 OOPSLA workshop on Eclipse Technology eXchange, ETX 2005, San Diego, California, USA, October 16-17, 2005, ACM, pp 70–7. https://doi.org/10.1145/1117696.1117711
Hammouda I, Lundell B, Mikkonen T, Scacchi W (2012) Open Source Systems: Long-Term Sustainability. Springer
Oracle (2022) 60 critical erp statistics: 2022 market trends, data and analysis. https://www.netsuite.com/portal/resource/articles/erp/erp-statistics.shtml
Biegel B, Baltes S, Scarpellini I, Diehl S (2015) Code basket: Making developers’ mental model visible and explorable. In: 2015 IEEE/ACM 2nd international workshop on context for software development, IEEE, pp 20–24
RobillardMPDagenaisBRecommending change clusters to support software investigation: an empirical studyJ Softw Maint Evol Res Pract201022314316410.1002/smr.413
Sillito J, Murphy GC, De Volder K (2006) Questions programmers ask during software evolution tasks. In: Proceedings of the 14th ACM SIGSOFT international symposium on foundations of software engineering, Association for Computing Machinery, pp 23–3. https://doi.org/10.1145/1181775.1181779
Avazpour I, Pitakrat T, Grunske L, Grundy J (2014) Dimensions and Metrics for Evaluating Recommendation Systems. In: Robillard MP, Maalej W, Walker RJ, Zimmermann T (eds) Recommendation systems in software engineering, Springer Berlin Heidelberg, pp 245–273. https://doi.org/10.1007/978-3-642-45135-5_10
Soh Z, Khomh F, Guéhéneuc YG, Antoniol G (2013a) Towards understanding how developers spend their effort during maintenance activities. In: 2013 20th Working conference on reverse engineering (WCRE), pp 152–16. https://doi.org/10.1109/WCRE.2013.6671290
Ali A, Meilă M (2012) Experiments with kemeny ranking: What works when? Math Soc Sci 64(1):28–40. https://doi.org/10.1016/j.mathsocsci.2011.08.008, computational Foundations of Social Choice
Brancotte B, Yang B, Blin G, Cohen-Boulakia S, Denise A, Hamel S (2015) Rank aggregation with ties: Experiments and analysis. Proc VLDB Endow 8(11):1202–1212. https://doi.org/10.14778/2809974.2809982
Cubranic D, Murphy G (2003) Hipikat: recommending pertinent software development artifacts. In: 25th International conference on software engineering, 2003. Proceedings., pp 408–41. https://doi.org/10.1109/ICSE.2003.1201219
Soh Z, Khomh F, Guéhéneuc YG, Antoniol G, Adams B (2013b) On the effect of program exploration on maintenance tasks. In: 2013 20th Working conference on reverse engineering (WCRE), pp 391–400. https://doi.org/10.1109/WCRE.2013.6671314
Chattopadhyay S, Nelson N, Gonzalez YR, Leon AA, Pandita R, Sarma A (2019) Latent patterns in activities: A field study of how developers manage context. In: 2019 IEEE/ACM 41st international conference on software engineering (ICSE), IEEE, pp 373–383
Ramsauer R, Lohmann D, Mauerer W (2016) Observing custom software modifications: A quantitative approach of tracking the evolution of patch stacks. In: Proceedings of the 12th international symposium on open collaboration, association for computing machinery, New York, NY, USA, OpenSym ’1. https://doi.org/10.1145/2957792.2957810
Pennock DM, Horvitz E, Giles CL (2000) Social choice theory and recommender systems: Analysis of the axiomatic foundations of collaborative filtering. In: Proceedings of the seventeenth national conference on artificial intelligence and twelfth conference on innovative applications of artificial intelligence, AAAI Press, pp 729–734
RobillardMPTopology analysis of software dependenciesACM Trans Softw Eng Methodol (TOSEM)200817413610.1145/13487689.13487691
RobillardMCoelhoWMurphyGHow effective developers investigate source code: an exploratory studyIEEE Trans Softw Eng200430128899010.1109/TSE.2004.101
YingAMurphyGNgRChu-CarrollMPredicting source code changes by mining change historyIEEE Trans Softw Eng20043095745810.1109/TSE.2004.52
Wang J, Peng X, Xing Z, Zhao W (2011) An exploratory study of feature location process: Distinct phases, recurring patterns, and elementary actions. In: 2011 27th IEEE international conference on software maintenance (ICSM), pp 213–22https://doi.org/10.1109/ICSM.2011.6080788
Sahm A, Maalej W (2010) Switch! recommending artifacts needed next based on personal and shared context. In: Engels G, Luckey M, Pretschner A, Reussner RH (eds) Software Engineering 2010 - Workshopband (inkl. Doktorandensymposium), Fachtagung des GI-Fachbereichs Softwaretechnik, 22.-26.02.2010, Paderborn, GI, LNI, vol P-160, pp 473–484
Singer J, Elves R, Storey MA (2005) Navtracks: supporting navigation in software maintenance. In: 21st IEEE international conference on software maintenance (ICSM’05), pp 325–33. https://doi.org/10.1109/ICSM.2005.66
Bao L, Xing Z, Xia X, Lo D, Li S (2017) Who will leave the company?: a large-scale industry study of developer turnover by mining monthly work report. In: 2017 IEEE/ACM 14th international conference on mining software repositories (MSR), IEEE, pp 170–181
Lee S, Kang S (2011) Clustering and recommending collections of code relevant to tasks. In: 2011 27th IEEE international conference on software maintenance (ICSM), pp 536–53. https://doi.org/10.1109/ICSM.2011.6080826
Robbes R, Pollet D, Lanza M (2010) Replaying ide interactions to evaluate and improve change prediction approaches. 2010 7th IEEE working conference on mining software repositories (MSR 2010) pp 161–170. https://doi.org/10.1109/MSR.2010.5463278
SohZKhomhFGuéhéneucYGAntoniolGNoise in mylyn interaction traces and its impact on developers and recommendation systemsEmpir Softw Eng201823264569210.1007/s10664-017-9529-x
Ying AT, Robillard MP (2011) The influence of the task on programmer behaviour. In: 2011 IEEE 19th international conference on program comprehension, pp 31–4. https://doi.org/10.1109/ICPC.2011.35
Ailon N, Charikar M, Newman A (2008) Aggregating inconsistent information: Ranking and clustering. J ACM 55(5). https://doi.org/10.1145/1411509.1411513
Rothlisberger D, Nierstrasz O, Ducasse S, Pollet D, Robbes R (2009) Supporting task-oriented navigation in ides with configurable heatmaps. In: 2009 IEEE 17th international conference on program comprehension, pp 253–257,https://doi.org/10.1109/ICPC.2009.5090052
Zou L, Godfrey MW, Hassan AE (2007) Detecting interaction coupling from task interaction histories. In: 15th IEEE international conference on program comprehension (ICPC ’07), pp 135–14. https://doi.org/10.1109/ICPC.2007.18
TeitelmanWMasinterLThe interlisp programming environmentComputer198114425310.1109/C-M.1981.220410
Amann S, Proksch S, Nadi S (2016) Feedbag: An interaction tracker for visual studio. In: 2016 IEEE 24th international conference on program comprehension (ICPC), pp 1–https://doi.org/10.1109/ICPC.2016.7503741
DeLine R, Czerwinski M, Robertson G (2005) Easing program comprehension by sharing navigation data. In: 2005 IEEE symposium on visual languages and human-centric computing (VL/HCC’05), pp 241–24. https://doi.org/10.1109/VLHCC.2005.32
Minelli R, Mocci A, Lanza M, Kobayashi T (2014) Quantifying program comprehension with interaction data. In: 2014 14th In
10528_CR51
10528_CR50
10528_CR1
10528_CR12
10528_CR11
10528_CR10
10528_CR16
10528_CR15
10528_CR13
MP Robillard (10528_CR34) 2008; 17
10528_CR19
S Lee (10528_CR24) 2014; 41
10528_CR17
10528_CR9
10528_CR8
10528_CR7
M Robillard (10528_CR33) 2004; 30
10528_CR6
10528_CR5
10528_CR41
10528_CR4
10528_CR40
10528_CR3
10528_CR2
10528_CR44
10528_CR42
10528_CR49
10528_CR47
10528_CR46
A Erlebacher (10528_CR14) 1977; 84
AJ Ko (10528_CR20) 2006; 32
S Lee (10528_CR23) 2013; 86
10528_CR30
R Robbes (10528_CR31) 2010; 17
10528_CR32
10528_CR38
10528_CR37
Z Soh (10528_CR43) 2018; 23
10528_CR36
10528_CR39
A Ying (10528_CR48) 2004; 30
10528_CR22
MP Robillard (10528_CR35) 2010; 22
10528_CR21
10528_CR27
10528_CR26
JG Kemeny (10528_CR18) 1959; 88
10528_CR25
10528_CR29
10528_CR28
W Teitelman (10528_CR45) 1981; 14
References_xml – reference: Fagin R, Kumar R, Mahdian M, Sivakumar D, Vee E (2004) Comparing and aggregating rankings with ties. In: Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems, Association for Computing Machinery, New York, NY, USA, PODS ’04, pp 47–58,https://doi.org/10.1145/1055558.1055568
– reference: Ailon N, Charikar M, Newman A (2008) Aggregating inconsistent information: Ranking and clustering. J ACM 55(5). https://doi.org/10.1145/1411509.1411513
– reference: Ali A, Meilă M (2012) Experiments with kemeny ranking: What works when? Math Soc Sci 64(1):28–40. https://doi.org/10.1016/j.mathsocsci.2011.08.008, computational Foundations of Social Choice
– reference: RobillardMCoelhoWMurphyGHow effective developers investigate source code: an exploratory studyIEEE Trans Softw Eng200430128899010.1109/TSE.2004.101
– reference: Avazpour I, Pitakrat T, Grunske L, Grundy J (2014) Dimensions and Metrics for Evaluating Recommendation Systems. In: Robillard MP, Maalej W, Walker RJ, Zimmermann T (eds) Recommendation systems in software engineering, Springer Berlin Heidelberg, pp 245–273. https://doi.org/10.1007/978-3-642-45135-5_10
– reference: Wang J, Peng X, Xing Z, Zhao W (2011) An exploratory study of feature location process: Distinct phases, recurring patterns, and elementary actions. In: 2011 27th IEEE international conference on software maintenance (ICSM), pp 213–22https://doi.org/10.1109/ICSM.2011.6080788
– reference: Starke J, Luce C, Sillito J (2009) Searching and skimming: An exploratory study. In: 2009 IEEE international conference on software maintenance, pp 157–16. https://doi.org/10.1109/ICSM.2009.5306335
– reference: Bao L, Xing Z, Xia X, Lo D, Li S (2017) Who will leave the company?: a large-scale industry study of developer turnover by mining monthly work report. In: 2017 IEEE/ACM 14th international conference on mining software repositories (MSR), IEEE, pp 170–181
– reference: Soh Z, Khomh F, Guéhéneuc YG, Antoniol G (2013a) Towards understanding how developers spend their effort during maintenance activities. In: 2013 20th Working conference on reverse engineering (WCRE), pp 152–16. https://doi.org/10.1109/WCRE.2013.6671290
– reference: ErlebacherADesign and analysis of experiments contrasting the within-and between-subjects manipulation of the independent variablePsychol Bull19778422110.1037/0033-2909.84.2.212
– reference: Majid I, Robillard MP (2005) Nacin: an eclipse plug-in for program navigation-based concern inference. In: Proceedings of the 2005 OOPSLA workshop on Eclipse Technology eXchange, ETX 2005, San Diego, California, USA, October 16-17, 2005, ACM, pp 70–7. https://doi.org/10.1145/1117696.1117711
– reference: RobbesRLanzaMImproving code completion with program historyAutom Softw Eng201017218121210.1007/s10515-010-0064-x
– reference: Pennock DM, Horvitz E, Giles CL (2000) Social choice theory and recommender systems: Analysis of the axiomatic foundations of collaborative filtering. In: Proceedings of the seventeenth national conference on artificial intelligence and twelfth conference on innovative applications of artificial intelligence, AAAI Press, pp 729–734
– reference: CRM (2022) 17 crm statistics: Growth, revenue, adoption rates & more facts. https://crm.org/crmland/crm-statistics
– reference: SohZKhomhFGuéhéneucYGAntoniolGNoise in mylyn interaction traces and its impact on developers and recommendation systemsEmpir Softw Eng201823264569210.1007/s10664-017-9529-x
– reference: Chattopadhyay S, Nelson N, Gonzalez YR, Leon AA, Pandita R, Sarma A (2019) Latent patterns in activities: A field study of how developers manage context. In: 2019 IEEE/ACM 41st international conference on software engineering (ICSE), IEEE, pp 373–383
– reference: Critchlow DE (1985) Metric methods for analyzing partially ranked data, vol 34. Springer Science & Business Media
– reference: Sanchez H, Robbes R, Gonzalez VM (2015) An empirical study of work fragmentation in software evolution tasks. In: 2015 IEEE 22nd international conference on software analysis, evolution, and reengineering (SANER), pp 251–26.https://doi.org/10.1109/SANER.2015.7081835
– reference: Fritz T, Shepherd DC, Kevic K, Snipes W, Bräunlich C (2014) Developers’ code context models for change tasks. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering, Association for Computing Machinery, New York, NY, USA, FSE 2014, pp 7–18. https://doi.org/10.1145/2635868.2635905
– reference: RobillardMPDagenaisBRecommending change clusters to support software investigation: an empirical studyJ Softw Maint Evol Res Pract201022314316410.1002/smr.413
– reference: KoAJMyersBACoblenzMJAungHHAn exploratory study of how developers seek, relate, and collect relevant information during software maintenance tasksIEEE Trans Softw Eng2006321297198710.1109/TSE.2006.116
– reference: Hammouda I, Lundell B, Mikkonen T, Scacchi W (2012) Open Source Systems: Long-Term Sustainability. Springer
– reference: Soh Z, Khomh F, Guéhéneuc YG, Antoniol G, Adams B (2013b) On the effect of program exploration on maintenance tasks. In: 2013 20th Working conference on reverse engineering (WCRE), pp 391–400. https://doi.org/10.1109/WCRE.2013.6671314
– reference: Robbes R, Pollet D, Lanza M (2010) Replaying ide interactions to evaluate and improve change prediction approaches. 2010 7th IEEE working conference on mining software repositories (MSR 2010) pp 161–170. https://doi.org/10.1109/MSR.2010.5463278
– reference: Singer J, Elves R, Storey MA (2005) Navtracks: supporting navigation in software maintenance. In: 21st IEEE international conference on software maintenance (ICSM’05), pp 325–33. https://doi.org/10.1109/ICSM.2005.66
– reference: KemenyJGMathematics without numbersDaedalus1959884577591
– reference: Sahm A, Maalej W (2010) Switch! recommending artifacts needed next based on personal and shared context. In: Engels G, Luckey M, Pretschner A, Reussner RH (eds) Software Engineering 2010 - Workshopband (inkl. Doktorandensymposium), Fachtagung des GI-Fachbereichs Softwaretechnik, 22.-26.02.2010, Paderborn, GI, LNI, vol P-160, pp 473–484
– reference: Sillito J, Murphy GC, De Volder K (2006) Questions programmers ask during software evolution tasks. In: Proceedings of the 14th ACM SIGSOFT international symposium on foundations of software engineering, Association for Computing Machinery, pp 23–3. https://doi.org/10.1145/1181775.1181779
– reference: Ying AT, Robillard MP (2011) The influence of the task on programmer behaviour. In: 2011 IEEE 19th international conference on program comprehension, pp 31–4. https://doi.org/10.1109/ICPC.2011.35
– reference: LaToza TD, Venolia G, DeLine R (2006) Maintaining mental models: A study of developer work habits. In: Proceedings of the 28th international conference on software engineering, association for computing machinery, New York, NY, USA, ICSE ’06, pp 492–50. https://doi.org/10.1145/1134285.1134355
– reference: RobillardMPTopology analysis of software dependenciesACM Trans Softw Eng Methodol (TOSEM)200817413610.1145/13487689.13487691
– reference: YingAMurphyGNgRChu-CarrollMPredicting source code changes by mining change historyIEEE Trans Softw Eng20043095745810.1109/TSE.2004.52
– reference: DeLine R, Czerwinski M, Robertson G (2005) Easing program comprehension by sharing navigation data. In: 2005 IEEE symposium on visual languages and human-centric computing (VL/HCC’05), pp 241–24. https://doi.org/10.1109/VLHCC.2005.32
– reference: Lee S, Kang S (2011) Clustering and recommending collections of code relevant to tasks. In: 2011 27th IEEE international conference on software maintenance (ICSM), pp 536–53. https://doi.org/10.1109/ICSM.2011.6080826
– reference: Ramsauer R, Lohmann D, Mauerer W (2016) Observing custom software modifications: A quantitative approach of tracking the evolution of patch stacks. In: Proceedings of the 12th international symposium on open collaboration, association for computing machinery, New York, NY, USA, OpenSym ’1. https://doi.org/10.1145/2957792.2957810
– reference: Oracle (2022) 60 critical erp statistics: 2022 market trends, data and analysis. https://www.netsuite.com/portal/resource/articles/erp/erp-statistics.shtml
– reference: Kersten M, Murphy GC (2006) Using task context to improve programmer productivity. In: Proceedings of the 14th ACM SIGSOFT international symposium on foundations of software engineering, Association for Computing Machinery, New York, NY, USA, SIGSOFT ’06/FSE-14, p 1–11. https://doi.org/10.1145/1181775.1181777
– reference: Biegel B, Baltes S, Scarpellini I, Diehl S (2015) Code basket: Making developers’ mental model visible and explorable. In: 2015 IEEE/ACM 2nd international workshop on context for software development, IEEE, pp 20–24
– reference: LeeSKangSClustering navigation sequences to create contexts for guiding code navigationJ Syst Softw20138682154216510.1016/j.jss.2013.03.103
– reference: Rothlisberger D, Nierstrasz O, Ducasse S, Pollet D, Robbes R (2009) Supporting task-oriented navigation in ides with configurable heatmaps. In: 2009 IEEE 17th international conference on program comprehension, pp 253–257,https://doi.org/10.1109/ICPC.2009.5090052
– reference: Zou L, Godfrey MW, Hassan AE (2007) Detecting interaction coupling from task interaction histories. In: 15th IEEE international conference on program comprehension (ICPC ’07), pp 135–14. https://doi.org/10.1109/ICPC.2007.18
– reference: LeeSKangSKimSStaatsMThe impact of view histories on edit recommendationsIEEE Trans Softw Eng201441331433010.1109/TSE.2014.2362138
– reference: Parnin C, Rugaber S (2009) Resumption strategies for interrupted programming tasks. In: 2009 IEEE 17th international conference on program comprehension, pp 80–8. https://doi.org/10.1109/ICPC.2009.5090030
– reference: Cubranic D, Murphy G (2003) Hipikat: recommending pertinent software development artifacts. In: 25th International conference on software engineering, 2003. Proceedings., pp 408–41. https://doi.org/10.1109/ICSE.2003.1201219
– reference: Cohen-Boulakia S, Denise A, Hamel S (2011) Using medians to generate consensus rankings for biological data. In: Proceedings of the 23rd international conference on scientific and statistical database management, Springer-Verlag, Berlin, Heidelberg, SSDBM’11, p 73–90
– reference: TeitelmanWMasinterLThe interlisp programming environmentComputer198114425310.1109/C-M.1981.220410
– reference: Brancotte B, Yang B, Blin G, Cohen-Boulakia S, Denise A, Hamel S (2015) Rank aggregation with ties: Experiments and analysis. Proc VLDB Endow 8(11):1202–1212. https://doi.org/10.14778/2809974.2809982
– reference: Amann S, Proksch S, Nadi S (2016) Feedbag: An interaction tracker for visual studio. In: 2016 IEEE 24th international conference on program comprehension (ICPC), pp 1–https://doi.org/10.1109/ICPC.2016.7503741
– reference: Zimmermann T, Weibgerber P, Diehl S, Zeller A (2004) Mining version histories to guide software changes. In: Proceedings. 26th international conference on software engineering, pp 563–57. https://doi.org/10.1109/ICSE.2004.1317478
– reference: Minelli R, Mocci A, Lanza M, Kobayashi T (2014) Quantifying program comprehension with interaction data. In: 2014 14th International conference on quality software, pp 276–28. https://doi.org/10.1109/QSIC.2014.11
– reference: Wan Z, Murphy GC, Xia X (2020) Predicting code context models for software development tasks. In: 2020 35th IEEE/ACM international conference on automated software engineering (ASE), IEEE, pp 809–820
– ident: 10528_CR16
  doi: 10.1145/2635868.2635905
– ident: 10528_CR30
  doi: 10.1145/2957792.2957810
– ident: 10528_CR39
  doi: 10.1145/1181775.1181779
– ident: 10528_CR49
  doi: 10.1109/ICPC.2011.35
– ident: 10528_CR36
  doi: 10.1109/ICPC.2009.5090052
– ident: 10528_CR8
  doi: 10.1109/ICSE.2019.00051
– ident: 10528_CR17
  doi: 10.1007/978-3-642-33442-9
– ident: 10528_CR19
  doi: 10.1145/1181775.1181777
– ident: 10528_CR47
  doi: 10.1109/ICSM.2011.6080788
– ident: 10528_CR1
  doi: 10.1145/1411509.1411513
– ident: 10528_CR6
  doi: 10.1109/CSD.2015.12
– ident: 10528_CR7
  doi: 10.14778/2809974.2809982
– ident: 10528_CR44
  doi: 10.1109/ICSM.2009.5306335
– volume: 22
  start-page: 143
  issue: 3
  year: 2010
  ident: 10528_CR35
  publication-title: J Softw Maint Evol Res Pract
  doi: 10.1002/smr.413
– ident: 10528_CR32
  doi: 10.1109/MSR.2010.5463278
– ident: 10528_CR9
  doi: 10.1007/978-3-642-22351-8_5
– ident: 10528_CR26
  doi: 10.1109/QSIC.2014.11
– volume: 23
  start-page: 645
  issue: 2
  year: 2018
  ident: 10528_CR43
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-017-9529-x
– ident: 10528_CR50
  doi: 10.1109/ICSE.2004.1317478
– ident: 10528_CR5
  doi: 10.1109/MSR.2017.58
– ident: 10528_CR10
  doi: 10.1007/978-1-4612-1106-8
– volume: 30
  start-page: 574
  issue: 9
  year: 2004
  ident: 10528_CR48
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2004.52
– ident: 10528_CR12
  doi: 10.1109/ICSE.2003.1201219
– ident: 10528_CR29
– ident: 10528_CR38
  doi: 10.1109/SANER.2015.7081835
– ident: 10528_CR2
  doi: 10.1016/j.mathsocsci.2011.08.008
– ident: 10528_CR46
  doi: 10.1145/3324884.3416544
– ident: 10528_CR42
  doi: 10.1109/WCRE.2013.6671314
– ident: 10528_CR3
  doi: 10.1109/ICPC.2016.7503741
– ident: 10528_CR4
  doi: 10.1007/978-3-642-45135-5_10
– volume: 32
  start-page: 971
  issue: 12
  year: 2006
  ident: 10528_CR20
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2006.116
– ident: 10528_CR11
– volume: 30
  start-page: 889
  issue: 12
  year: 2004
  ident: 10528_CR33
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2004.101
– ident: 10528_CR28
  doi: 10.1109/ICPC.2009.5090030
– ident: 10528_CR40
  doi: 10.1109/ICSM.2005.66
– ident: 10528_CR51
  doi: 10.1109/ICPC.2007.18
– volume: 88
  start-page: 577
  issue: 4
  year: 1959
  ident: 10528_CR18
  publication-title: Daedalus
– volume: 17
  start-page: 181
  issue: 2
  year: 2010
  ident: 10528_CR31
  publication-title: Autom Softw Eng
  doi: 10.1007/s10515-010-0064-x
– volume: 17
  start-page: 1
  issue: 4
  year: 2008
  ident: 10528_CR34
  publication-title: ACM Trans Softw Eng Methodol (TOSEM)
  doi: 10.1145/13487689.13487691
– ident: 10528_CR37
– ident: 10528_CR22
  doi: 10.1109/ICSM.2011.6080826
– ident: 10528_CR15
  doi: 10.1145/1055558.1055568
– ident: 10528_CR25
  doi: 10.1145/1117696.1117711
– volume: 84
  start-page: 21
  issue: 2
  year: 1977
  ident: 10528_CR14
  publication-title: Psychol Bull
  doi: 10.1037/0033-2909.84.2.212
– volume: 86
  start-page: 2154
  issue: 8
  year: 2013
  ident: 10528_CR23
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2013.03.103
– ident: 10528_CR41
  doi: 10.1109/WCRE.2013.6671290
– volume: 41
  start-page: 314
  issue: 3
  year: 2014
  ident: 10528_CR24
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2014.2362138
– ident: 10528_CR27
– ident: 10528_CR21
  doi: 10.1145/1134285.1134355
– ident: 10528_CR13
  doi: 10.1109/VLHCC.2005.32
– volume: 14
  start-page: 25
  issue: 4
  year: 1981
  ident: 10528_CR45
  publication-title: Computer
  doi: 10.1109/C-M.1981.220410
SSID ssj0009745
Score 2.3737514
Snippet Developers must complete change tasks on large software systems for maintenance and development purposes. Having a custom software system with numerous...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 147
SubjectTerms Algorithms
Compilers
Computer Science
Effectiveness
Evaluation
Interpreters
Navigation
Programming Languages
Software
Software engineering
Software Engineering/Programming and Operating Systems
Software industry
Source code
State-of-the-art reviews
Task complexity
Title Consensus task interaction trace recommender to guide developers’ software navigation
URI https://link.springer.com/article/10.1007/s10664-024-10528-7
https://www.proquest.com/docview/3099926055
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgXVh4Iwql8sAGltzEeY0VakEgmKgoU-THDUKoKWpSWPkNfo8v4dpNFEAwsEVK5OHYvudcO_ceQo4BNbTpm4Ah9QFDvo1ZrJRgkc600JobcEcX1zfhxVhcToJJVRRW1H-711eSLlJ_KXYLQ8GQUzB0BF7MolXSDmzujqt47A2aVruRsya2zfWYj4xelcr8PsZ3Omo05o9rUcc2o02yXslEOljO6xZZgXybbNQWDLTakTvkzhpuWreKgpayeKK2-8N8WatAS3wAajPe6dQZxtFyRh8WjwZoVSqF0u_j7Z0WGIpf5RxoLl9cx41ZvkvGo-Ht2QWrvBKY9iJeMpmIEEAZFYJEjQNce5Jz8GWIpGw46ERIrkMR-AkIrqVvU5dYGKkyEDrh_h5p5bMc9gntGyUziH3IIhRLSkrDY8zSlAeZh2Ix7pCTGrL0edkSI22aH1uAUwQ4dQCnUYd0a1TTansUqW91qc2kgg45rZFuXv892sH_Pj8ka56bbHtk0iWtcr6AIxQRpeqR9uD8_mrYc2vnE5vMwhc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgDLDwRhQKeGADS27iPDpWiKpA26kV3SI_bhBCTVGTwspv8Ht8CdduogKCgS1SIg_H8T3n2r73EHIOqKFN0wQMqQ8Y8m3MYqUEi3SqhdbcgNu66A_C7kjcjoNxWRSWV7fdqyNJF6m_FLuFoWDIKRg6Ai9m0SpZQzEQ24tcI6-9bLUbOWti21yP-cjoZanM72N8p6OlxvxxLOrYprNNNkuZSNuLed0hK5Dtkq3KgoGWK3KP3FvDTetWkdNC5k_Udn-YLWoVaIEPQG3GO5k4wzhaTOnD_NEALUulUPp9vL3THEPxq5wBzeSL67gxzfbJqHM9vOqy0iuBaS_iBZMtEQIoo0KQqHGAa09yDr4MkZQNB90SkutQBH4LBNfSt6lLLIxUKQjd4v4BqWXTDA4JbRolU4h9SCMUS0pKw2PM0pQHqYdiMa6Tiwqy5HnREiNZNj-2ACcIcOIATqI6aVSoJuXyyBPf6lKbSQV1clkhvXz992hH__v8jKx3h_1e0rsZ3B2TDc9NvN0-aZBaMZvDCQqKQp26_-cTzQXDdg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLO6JQwAduYOEmztJjBVRlqzhQ0VvkZYIQalq1KVz5DX6PL2HsJmpBcOAWKZEPY3veGzvvDSHHgBza1E3AEPqAId7GLFZKsEinWmjNDbiji7tO2O6K617Qm1Pxu7_dyyvJqabBujRl-dnQpGdzwrcwFAzxBdNI4MUsWiRLmI7rdl13vebMdjdybYqt0R7zEd0L2czvY3yHphnf_HFF6pCntU5WC8pIm9M53iALkG2StbIdAy125xZ5tM03beeKMc3l-IVaJ4jRVLdAc3wAaqvfft81j6P5gD5Nng3QQjaFNPDz_YOOMS2_yRHQTL46941Btk26rcuH8zYr-iYw7UU8Z7IhQgBlVAgS-Q5w7UnOwZchArThoBtCch2KwG-A4Fr6toyJhZEqBaEb3N8hlWyQwS6hdaNkCrEPaYTESUlpeIwVm_Ig9ZA4xlVyUoYsGU7tMZKZEbINcIIBTlyAk6hKamVUk2KrjBPfclRbVQVVclpGevb679H2_vf5EVm-v2glt1edm32y4rl5tycpNVLJRxM4QG6Rq0O3fL4AP5HHsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consensus+task+interaction+trace+recommender+to+guide+developers%E2%80%99+software+navigation&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Etaiwi%2C+Layan&rft.au=Sager%2C+Pascal&rft.au=Gu%C3%A9h%C3%A9neuc%2C+Yann-Ga%C3%ABl&rft.au=Hamel%2C+Sylvie&rft.date=2024-11-01&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=29&rft.issue=6&rft_id=info:doi/10.1007%2Fs10664-024-10528-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10664_024_10528_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon