Consensus task interaction trace recommender to guide developers’ software navigation
Developers must complete change tasks on large software systems for maintenance and development purposes. Having a custom software system with numerous instances that meet the growing client demand for features and functionalities increases the software complexity. Developers, especially newcomers,...
Saved in:
Published in | Empirical software engineering : an international journal Vol. 29; no. 6; p. 147 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developers must complete change tasks on large software systems for maintenance and development purposes. Having a custom software system with numerous instances that meet the growing client demand for features and functionalities increases the software complexity. Developers, especially newcomers, must spend a significant amount of time navigating through the source code and switching back and forth between files in order to understand such a system and find the parts relevant for performing current tasks. This navigation can be difficult, time-consuming and affect developers’ productivity. To help guide developers’ navigation towards successfully resolving tasks with minimal time and effort, we present a task-based recommendation approach that exploits aggregated developers’ interaction traces. Our novel approach, Consensus Task Interaction Trace Recommender (CITR), recommends file(s)-to-edit that help perform a set of tasks based on a tasks-related set of interaction traces obtained from developers who performed similar change tasks on the same or different custom instances of the same system. Our approach uses a consensus algorithm, which takes as input task-related interaction traces and recommends a consensus task interaction trace that developers can use to complete given similar change tasks that require editing (a) common file(s). To evaluate the efficiency of our approach, we perform three different evaluations. The first evaluation measures the accuracy of CITR recommendations. In the second evaluation, we assess to what extent CITR can help developers by conducting an observational controlled experiment in which two groups of developers performed evaluation tasks with and without the recommendations of CITR. In the third and last evaluation, we compare CITR to a state-of-the-art recommendation approach, MI. Results report with statistical significance that CITR can correctly recommend on average 73% of the files to be edited. Furthermore, they show that CITR can increase developers’ successful task completion rate. CITR outperforms MI by an average of 31% higher recommendation accuracy. |
---|---|
AbstractList | Developers must complete change tasks on large software systems for maintenance and development purposes. Having a custom software system with numerous instances that meet the growing client demand for features and functionalities increases the software complexity. Developers, especially newcomers, must spend a significant amount of time navigating through the source code and switching back and forth between files in order to understand such a system and find the parts relevant for performing current tasks. This navigation can be difficult, time-consuming and affect developers’ productivity. To help guide developers’ navigation towards successfully resolving tasks with minimal time and effort, we present a task-based recommendation approach that exploits aggregated developers’ interaction traces. Our novel approach, Consensus Task Interaction Trace Recommender (CITR), recommends file(s)-to-edit that help perform a set of tasks based on a tasks-related set of interaction traces obtained from developers who performed similar change tasks on the same or different custom instances of the same system. Our approach uses a consensus algorithm, which takes as input task-related interaction traces and recommends a consensus task interaction trace that developers can use to complete given similar change tasks that require editing (a) common file(s). To evaluate the efficiency of our approach, we perform three different evaluations. The first evaluation measures the accuracy of CITR recommendations. In the second evaluation, we assess to what extent CITR can help developers by conducting an observational controlled experiment in which two groups of developers performed evaluation tasks with and without the recommendations of CITR. In the third and last evaluation, we compare CITR to a state-of-the-art recommendation approach, MI. Results report with statistical significance that CITR can correctly recommend on average 73% of the files to be edited. Furthermore, they show that CITR can increase developers’ successful task completion rate. CITR outperforms MI by an average of 31% higher recommendation accuracy. |
ArticleNumber | 147 |
Author | Hamel, Sylvie Guéhéneuc, Yann-Gaël Sager, Pascal Etaiwi, Layan |
Author_xml | – sequence: 1 givenname: Layan orcidid: 0000-0001-9250-7578 surname: Etaiwi fullname: Etaiwi, Layan email: mashael.etaiwi@polymtl.ca organization: Polytechnique Montréal – sequence: 2 givenname: Pascal surname: Sager fullname: Sager, Pascal organization: University of Zurich, Zurich University of Applied Sciences – sequence: 3 givenname: Yann-Gaël surname: Guéhéneuc fullname: Guéhéneuc, Yann-Gaël organization: Concordia University – sequence: 4 givenname: Sylvie surname: Hamel fullname: Hamel, Sylvie organization: Université de Montréal |
BookMark | eNp9kM1KAzEUhYNUsFZfwFXAdfROksk0Syn-QcGN4jKkmTtlapvUZKbiztfw9XwSU0dw5-qexfedC-eYjHzwSMhZARcFQHWZClBKMuCSFVDyKasOyLgoK8EqVahRzmLKmeClOiLHKa0AQFeyHJPnWfAJfeoT7Wx6oa3vMFrXtcHTLgekEV3YbNDXGGkX6LJva6Q17nAdthjT18cnTaHp3mxE6u2uXdq9fEIOG7tOePp7J-Tp5vpxdsfmD7f3s6s5c7yCjlktFeKiXii0XEkExy0ACquAixrQaWnBKVkKjRKcFaAVTGVtFw1Kp0FMyPnQu43htcfUmVXoo88vTWa15grKMlN8oFwMKUVszDa2GxvfTQFmP6AZBjR5QPMzoKmyJAYpZdgvMf5V_2N9Aywld8M |
Cites_doi | 10.1145/2635868.2635905 10.1145/2957792.2957810 10.1145/1181775.1181779 10.1109/ICPC.2011.35 10.1109/ICPC.2009.5090052 10.1109/ICSE.2019.00051 10.1007/978-3-642-33442-9 10.1145/1181775.1181777 10.1109/ICSM.2011.6080788 10.1145/1411509.1411513 10.1109/CSD.2015.12 10.14778/2809974.2809982 10.1109/ICSM.2009.5306335 10.1002/smr.413 10.1109/MSR.2010.5463278 10.1007/978-3-642-22351-8_5 10.1109/QSIC.2014.11 10.1007/s10664-017-9529-x 10.1109/ICSE.2004.1317478 10.1109/MSR.2017.58 10.1007/978-1-4612-1106-8 10.1109/TSE.2004.52 10.1109/ICSE.2003.1201219 10.1109/SANER.2015.7081835 10.1016/j.mathsocsci.2011.08.008 10.1145/3324884.3416544 10.1109/WCRE.2013.6671314 10.1109/ICPC.2016.7503741 10.1007/978-3-642-45135-5_10 10.1109/TSE.2006.116 10.1109/TSE.2004.101 10.1109/ICPC.2009.5090030 10.1109/ICSM.2005.66 10.1109/ICPC.2007.18 10.1007/s10515-010-0064-x 10.1145/13487689.13487691 10.1109/ICSM.2011.6080826 10.1145/1055558.1055568 10.1145/1117696.1117711 10.1037/0033-2909.84.2.212 10.1016/j.jss.2013.03.103 10.1109/WCRE.2013.6671290 10.1109/TSE.2014.2362138 10.1145/1134285.1134355 10.1109/VLHCC.2005.32 10.1109/C-M.1981.220410 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s10664-024-10528-7 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-7616 |
ExternalDocumentID | 10_1007_s10664_024_10528_7 |
GroupedDBID | -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PHGZM PHGZT PQGLB PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYOK AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c270t-a946eebdb6ea264e0c2a00e3a6023d0ec94a0c64539e40ca3096084dabfe4c903 |
IEDL.DBID | U2A |
ISSN | 1382-3256 |
IngestDate | Fri Jul 25 12:27:48 EDT 2025 Tue Jul 01 03:32:23 EDT 2025 Mon Jul 21 06:08:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Recommendation systems Task-related interaction traces Maintenance Software navigation Mylyn interaction traces Consensus algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-a946eebdb6ea264e0c2a00e3a6023d0ec94a0c64539e40ca3096084dabfe4c903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9250-7578 |
PQID | 3099926055 |
PQPubID | 326341 |
ParticipantIDs | proquest_journals_3099926055 crossref_primary_10_1007_s10664_024_10528_7 springer_journals_10_1007_s10664_024_10528_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Empirical software engineering : an international journal |
PublicationTitleAbbrev | Empir Software Eng |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | ErlebacherADesign and analysis of experiments contrasting the within-and between-subjects manipulation of the independent variablePsychol Bull19778422110.1037/0033-2909.84.2.212 Starke J, Luce C, Sillito J (2009) Searching and skimming: An exploratory study. In: 2009 IEEE international conference on software maintenance, pp 157–16. https://doi.org/10.1109/ICSM.2009.5306335 Fritz T, Shepherd DC, Kevic K, Snipes W, Bräunlich C (2014) Developers’ code context models for change tasks. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering, Association for Computing Machinery, New York, NY, USA, FSE 2014, pp 7–18. https://doi.org/10.1145/2635868.2635905 Fagin R, Kumar R, Mahdian M, Sivakumar D, Vee E (2004) Comparing and aggregating rankings with ties. In: Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems, Association for Computing Machinery, New York, NY, USA, PODS ’04, pp 47–58,https://doi.org/10.1145/1055558.1055568 Wan Z, Murphy GC, Xia X (2020) Predicting code context models for software development tasks. In: 2020 35th IEEE/ACM international conference on automated software engineering (ASE), IEEE, pp 809–820 KoAJMyersBACoblenzMJAungHHAn exploratory study of how developers seek, relate, and collect relevant information during software maintenance tasksIEEE Trans Softw Eng2006321297198710.1109/TSE.2006.116 LeeSKangSClustering navigation sequences to create contexts for guiding code navigationJ Syst Softw20138682154216510.1016/j.jss.2013.03.103 RobbesRLanzaMImproving code completion with program historyAutom Softw Eng201017218121210.1007/s10515-010-0064-x KemenyJGMathematics without numbersDaedalus1959884577591 Kersten M, Murphy GC (2006) Using task context to improve programmer productivity. In: Proceedings of the 14th ACM SIGSOFT international symposium on foundations of software engineering, Association for Computing Machinery, New York, NY, USA, SIGSOFT ’06/FSE-14, p 1–11. https://doi.org/10.1145/1181775.1181777 Cohen-Boulakia S, Denise A, Hamel S (2011) Using medians to generate consensus rankings for biological data. In: Proceedings of the 23rd international conference on scientific and statistical database management, Springer-Verlag, Berlin, Heidelberg, SSDBM’11, p 73–90 Sanchez H, Robbes R, Gonzalez VM (2015) An empirical study of work fragmentation in software evolution tasks. In: 2015 IEEE 22nd international conference on software analysis, evolution, and reengineering (SANER), pp 251–26.https://doi.org/10.1109/SANER.2015.7081835 LaToza TD, Venolia G, DeLine R (2006) Maintaining mental models: A study of developer work habits. In: Proceedings of the 28th international conference on software engineering, association for computing machinery, New York, NY, USA, ICSE ’06, pp 492–50. https://doi.org/10.1145/1134285.1134355 Majid I, Robillard MP (2005) Nacin: an eclipse plug-in for program navigation-based concern inference. In: Proceedings of the 2005 OOPSLA workshop on Eclipse Technology eXchange, ETX 2005, San Diego, California, USA, October 16-17, 2005, ACM, pp 70–7. https://doi.org/10.1145/1117696.1117711 Hammouda I, Lundell B, Mikkonen T, Scacchi W (2012) Open Source Systems: Long-Term Sustainability. Springer Oracle (2022) 60 critical erp statistics: 2022 market trends, data and analysis. https://www.netsuite.com/portal/resource/articles/erp/erp-statistics.shtml Biegel B, Baltes S, Scarpellini I, Diehl S (2015) Code basket: Making developers’ mental model visible and explorable. In: 2015 IEEE/ACM 2nd international workshop on context for software development, IEEE, pp 20–24 RobillardMPDagenaisBRecommending change clusters to support software investigation: an empirical studyJ Softw Maint Evol Res Pract201022314316410.1002/smr.413 Sillito J, Murphy GC, De Volder K (2006) Questions programmers ask during software evolution tasks. In: Proceedings of the 14th ACM SIGSOFT international symposium on foundations of software engineering, Association for Computing Machinery, pp 23–3. https://doi.org/10.1145/1181775.1181779 Avazpour I, Pitakrat T, Grunske L, Grundy J (2014) Dimensions and Metrics for Evaluating Recommendation Systems. In: Robillard MP, Maalej W, Walker RJ, Zimmermann T (eds) Recommendation systems in software engineering, Springer Berlin Heidelberg, pp 245–273. https://doi.org/10.1007/978-3-642-45135-5_10 Soh Z, Khomh F, Guéhéneuc YG, Antoniol G (2013a) Towards understanding how developers spend their effort during maintenance activities. In: 2013 20th Working conference on reverse engineering (WCRE), pp 152–16. https://doi.org/10.1109/WCRE.2013.6671290 Ali A, Meilă M (2012) Experiments with kemeny ranking: What works when? Math Soc Sci 64(1):28–40. https://doi.org/10.1016/j.mathsocsci.2011.08.008, computational Foundations of Social Choice Brancotte B, Yang B, Blin G, Cohen-Boulakia S, Denise A, Hamel S (2015) Rank aggregation with ties: Experiments and analysis. Proc VLDB Endow 8(11):1202–1212. https://doi.org/10.14778/2809974.2809982 Cubranic D, Murphy G (2003) Hipikat: recommending pertinent software development artifacts. In: 25th International conference on software engineering, 2003. Proceedings., pp 408–41. https://doi.org/10.1109/ICSE.2003.1201219 Soh Z, Khomh F, Guéhéneuc YG, Antoniol G, Adams B (2013b) On the effect of program exploration on maintenance tasks. In: 2013 20th Working conference on reverse engineering (WCRE), pp 391–400. https://doi.org/10.1109/WCRE.2013.6671314 Chattopadhyay S, Nelson N, Gonzalez YR, Leon AA, Pandita R, Sarma A (2019) Latent patterns in activities: A field study of how developers manage context. In: 2019 IEEE/ACM 41st international conference on software engineering (ICSE), IEEE, pp 373–383 Ramsauer R, Lohmann D, Mauerer W (2016) Observing custom software modifications: A quantitative approach of tracking the evolution of patch stacks. In: Proceedings of the 12th international symposium on open collaboration, association for computing machinery, New York, NY, USA, OpenSym ’1. https://doi.org/10.1145/2957792.2957810 Pennock DM, Horvitz E, Giles CL (2000) Social choice theory and recommender systems: Analysis of the axiomatic foundations of collaborative filtering. In: Proceedings of the seventeenth national conference on artificial intelligence and twelfth conference on innovative applications of artificial intelligence, AAAI Press, pp 729–734 RobillardMPTopology analysis of software dependenciesACM Trans Softw Eng Methodol (TOSEM)200817413610.1145/13487689.13487691 RobillardMCoelhoWMurphyGHow effective developers investigate source code: an exploratory studyIEEE Trans Softw Eng200430128899010.1109/TSE.2004.101 YingAMurphyGNgRChu-CarrollMPredicting source code changes by mining change historyIEEE Trans Softw Eng20043095745810.1109/TSE.2004.52 Wang J, Peng X, Xing Z, Zhao W (2011) An exploratory study of feature location process: Distinct phases, recurring patterns, and elementary actions. In: 2011 27th IEEE international conference on software maintenance (ICSM), pp 213–22https://doi.org/10.1109/ICSM.2011.6080788 Sahm A, Maalej W (2010) Switch! recommending artifacts needed next based on personal and shared context. In: Engels G, Luckey M, Pretschner A, Reussner RH (eds) Software Engineering 2010 - Workshopband (inkl. Doktorandensymposium), Fachtagung des GI-Fachbereichs Softwaretechnik, 22.-26.02.2010, Paderborn, GI, LNI, vol P-160, pp 473–484 Singer J, Elves R, Storey MA (2005) Navtracks: supporting navigation in software maintenance. In: 21st IEEE international conference on software maintenance (ICSM’05), pp 325–33. https://doi.org/10.1109/ICSM.2005.66 Bao L, Xing Z, Xia X, Lo D, Li S (2017) Who will leave the company?: a large-scale industry study of developer turnover by mining monthly work report. In: 2017 IEEE/ACM 14th international conference on mining software repositories (MSR), IEEE, pp 170–181 Lee S, Kang S (2011) Clustering and recommending collections of code relevant to tasks. In: 2011 27th IEEE international conference on software maintenance (ICSM), pp 536–53. https://doi.org/10.1109/ICSM.2011.6080826 Robbes R, Pollet D, Lanza M (2010) Replaying ide interactions to evaluate and improve change prediction approaches. 2010 7th IEEE working conference on mining software repositories (MSR 2010) pp 161–170. https://doi.org/10.1109/MSR.2010.5463278 SohZKhomhFGuéhéneucYGAntoniolGNoise in mylyn interaction traces and its impact on developers and recommendation systemsEmpir Softw Eng201823264569210.1007/s10664-017-9529-x Ying AT, Robillard MP (2011) The influence of the task on programmer behaviour. In: 2011 IEEE 19th international conference on program comprehension, pp 31–4. https://doi.org/10.1109/ICPC.2011.35 Ailon N, Charikar M, Newman A (2008) Aggregating inconsistent information: Ranking and clustering. J ACM 55(5). https://doi.org/10.1145/1411509.1411513 Rothlisberger D, Nierstrasz O, Ducasse S, Pollet D, Robbes R (2009) Supporting task-oriented navigation in ides with configurable heatmaps. In: 2009 IEEE 17th international conference on program comprehension, pp 253–257,https://doi.org/10.1109/ICPC.2009.5090052 Zou L, Godfrey MW, Hassan AE (2007) Detecting interaction coupling from task interaction histories. In: 15th IEEE international conference on program comprehension (ICPC ’07), pp 135–14. https://doi.org/10.1109/ICPC.2007.18 TeitelmanWMasinterLThe interlisp programming environmentComputer198114425310.1109/C-M.1981.220410 Amann S, Proksch S, Nadi S (2016) Feedbag: An interaction tracker for visual studio. In: 2016 IEEE 24th international conference on program comprehension (ICPC), pp 1–https://doi.org/10.1109/ICPC.2016.7503741 DeLine R, Czerwinski M, Robertson G (2005) Easing program comprehension by sharing navigation data. In: 2005 IEEE symposium on visual languages and human-centric computing (VL/HCC’05), pp 241–24. https://doi.org/10.1109/VLHCC.2005.32 Minelli R, Mocci A, Lanza M, Kobayashi T (2014) Quantifying program comprehension with interaction data. In: 2014 14th In 10528_CR51 10528_CR50 10528_CR1 10528_CR12 10528_CR11 10528_CR10 10528_CR16 10528_CR15 10528_CR13 MP Robillard (10528_CR34) 2008; 17 10528_CR19 S Lee (10528_CR24) 2014; 41 10528_CR17 10528_CR9 10528_CR8 10528_CR7 M Robillard (10528_CR33) 2004; 30 10528_CR6 10528_CR5 10528_CR41 10528_CR4 10528_CR40 10528_CR3 10528_CR2 10528_CR44 10528_CR42 10528_CR49 10528_CR47 10528_CR46 A Erlebacher (10528_CR14) 1977; 84 AJ Ko (10528_CR20) 2006; 32 S Lee (10528_CR23) 2013; 86 10528_CR30 R Robbes (10528_CR31) 2010; 17 10528_CR32 10528_CR38 10528_CR37 Z Soh (10528_CR43) 2018; 23 10528_CR36 10528_CR39 A Ying (10528_CR48) 2004; 30 10528_CR22 MP Robillard (10528_CR35) 2010; 22 10528_CR21 10528_CR27 10528_CR26 JG Kemeny (10528_CR18) 1959; 88 10528_CR25 10528_CR29 10528_CR28 W Teitelman (10528_CR45) 1981; 14 |
References_xml | – reference: Fagin R, Kumar R, Mahdian M, Sivakumar D, Vee E (2004) Comparing and aggregating rankings with ties. In: Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems, Association for Computing Machinery, New York, NY, USA, PODS ’04, pp 47–58,https://doi.org/10.1145/1055558.1055568 – reference: Ailon N, Charikar M, Newman A (2008) Aggregating inconsistent information: Ranking and clustering. J ACM 55(5). https://doi.org/10.1145/1411509.1411513 – reference: Ali A, Meilă M (2012) Experiments with kemeny ranking: What works when? Math Soc Sci 64(1):28–40. https://doi.org/10.1016/j.mathsocsci.2011.08.008, computational Foundations of Social Choice – reference: RobillardMCoelhoWMurphyGHow effective developers investigate source code: an exploratory studyIEEE Trans Softw Eng200430128899010.1109/TSE.2004.101 – reference: Avazpour I, Pitakrat T, Grunske L, Grundy J (2014) Dimensions and Metrics for Evaluating Recommendation Systems. In: Robillard MP, Maalej W, Walker RJ, Zimmermann T (eds) Recommendation systems in software engineering, Springer Berlin Heidelberg, pp 245–273. https://doi.org/10.1007/978-3-642-45135-5_10 – reference: Wang J, Peng X, Xing Z, Zhao W (2011) An exploratory study of feature location process: Distinct phases, recurring patterns, and elementary actions. In: 2011 27th IEEE international conference on software maintenance (ICSM), pp 213–22https://doi.org/10.1109/ICSM.2011.6080788 – reference: Starke J, Luce C, Sillito J (2009) Searching and skimming: An exploratory study. In: 2009 IEEE international conference on software maintenance, pp 157–16. https://doi.org/10.1109/ICSM.2009.5306335 – reference: Bao L, Xing Z, Xia X, Lo D, Li S (2017) Who will leave the company?: a large-scale industry study of developer turnover by mining monthly work report. In: 2017 IEEE/ACM 14th international conference on mining software repositories (MSR), IEEE, pp 170–181 – reference: Soh Z, Khomh F, Guéhéneuc YG, Antoniol G (2013a) Towards understanding how developers spend their effort during maintenance activities. In: 2013 20th Working conference on reverse engineering (WCRE), pp 152–16. https://doi.org/10.1109/WCRE.2013.6671290 – reference: ErlebacherADesign and analysis of experiments contrasting the within-and between-subjects manipulation of the independent variablePsychol Bull19778422110.1037/0033-2909.84.2.212 – reference: Majid I, Robillard MP (2005) Nacin: an eclipse plug-in for program navigation-based concern inference. In: Proceedings of the 2005 OOPSLA workshop on Eclipse Technology eXchange, ETX 2005, San Diego, California, USA, October 16-17, 2005, ACM, pp 70–7. https://doi.org/10.1145/1117696.1117711 – reference: RobbesRLanzaMImproving code completion with program historyAutom Softw Eng201017218121210.1007/s10515-010-0064-x – reference: Pennock DM, Horvitz E, Giles CL (2000) Social choice theory and recommender systems: Analysis of the axiomatic foundations of collaborative filtering. In: Proceedings of the seventeenth national conference on artificial intelligence and twelfth conference on innovative applications of artificial intelligence, AAAI Press, pp 729–734 – reference: CRM (2022) 17 crm statistics: Growth, revenue, adoption rates & more facts. https://crm.org/crmland/crm-statistics – reference: SohZKhomhFGuéhéneucYGAntoniolGNoise in mylyn interaction traces and its impact on developers and recommendation systemsEmpir Softw Eng201823264569210.1007/s10664-017-9529-x – reference: Chattopadhyay S, Nelson N, Gonzalez YR, Leon AA, Pandita R, Sarma A (2019) Latent patterns in activities: A field study of how developers manage context. In: 2019 IEEE/ACM 41st international conference on software engineering (ICSE), IEEE, pp 373–383 – reference: Critchlow DE (1985) Metric methods for analyzing partially ranked data, vol 34. Springer Science & Business Media – reference: Sanchez H, Robbes R, Gonzalez VM (2015) An empirical study of work fragmentation in software evolution tasks. In: 2015 IEEE 22nd international conference on software analysis, evolution, and reengineering (SANER), pp 251–26.https://doi.org/10.1109/SANER.2015.7081835 – reference: Fritz T, Shepherd DC, Kevic K, Snipes W, Bräunlich C (2014) Developers’ code context models for change tasks. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering, Association for Computing Machinery, New York, NY, USA, FSE 2014, pp 7–18. https://doi.org/10.1145/2635868.2635905 – reference: RobillardMPDagenaisBRecommending change clusters to support software investigation: an empirical studyJ Softw Maint Evol Res Pract201022314316410.1002/smr.413 – reference: KoAJMyersBACoblenzMJAungHHAn exploratory study of how developers seek, relate, and collect relevant information during software maintenance tasksIEEE Trans Softw Eng2006321297198710.1109/TSE.2006.116 – reference: Hammouda I, Lundell B, Mikkonen T, Scacchi W (2012) Open Source Systems: Long-Term Sustainability. Springer – reference: Soh Z, Khomh F, Guéhéneuc YG, Antoniol G, Adams B (2013b) On the effect of program exploration on maintenance tasks. In: 2013 20th Working conference on reverse engineering (WCRE), pp 391–400. https://doi.org/10.1109/WCRE.2013.6671314 – reference: Robbes R, Pollet D, Lanza M (2010) Replaying ide interactions to evaluate and improve change prediction approaches. 2010 7th IEEE working conference on mining software repositories (MSR 2010) pp 161–170. https://doi.org/10.1109/MSR.2010.5463278 – reference: Singer J, Elves R, Storey MA (2005) Navtracks: supporting navigation in software maintenance. In: 21st IEEE international conference on software maintenance (ICSM’05), pp 325–33. https://doi.org/10.1109/ICSM.2005.66 – reference: KemenyJGMathematics without numbersDaedalus1959884577591 – reference: Sahm A, Maalej W (2010) Switch! recommending artifacts needed next based on personal and shared context. In: Engels G, Luckey M, Pretschner A, Reussner RH (eds) Software Engineering 2010 - Workshopband (inkl. Doktorandensymposium), Fachtagung des GI-Fachbereichs Softwaretechnik, 22.-26.02.2010, Paderborn, GI, LNI, vol P-160, pp 473–484 – reference: Sillito J, Murphy GC, De Volder K (2006) Questions programmers ask during software evolution tasks. In: Proceedings of the 14th ACM SIGSOFT international symposium on foundations of software engineering, Association for Computing Machinery, pp 23–3. https://doi.org/10.1145/1181775.1181779 – reference: Ying AT, Robillard MP (2011) The influence of the task on programmer behaviour. In: 2011 IEEE 19th international conference on program comprehension, pp 31–4. https://doi.org/10.1109/ICPC.2011.35 – reference: LaToza TD, Venolia G, DeLine R (2006) Maintaining mental models: A study of developer work habits. In: Proceedings of the 28th international conference on software engineering, association for computing machinery, New York, NY, USA, ICSE ’06, pp 492–50. https://doi.org/10.1145/1134285.1134355 – reference: RobillardMPTopology analysis of software dependenciesACM Trans Softw Eng Methodol (TOSEM)200817413610.1145/13487689.13487691 – reference: YingAMurphyGNgRChu-CarrollMPredicting source code changes by mining change historyIEEE Trans Softw Eng20043095745810.1109/TSE.2004.52 – reference: DeLine R, Czerwinski M, Robertson G (2005) Easing program comprehension by sharing navigation data. In: 2005 IEEE symposium on visual languages and human-centric computing (VL/HCC’05), pp 241–24. https://doi.org/10.1109/VLHCC.2005.32 – reference: Lee S, Kang S (2011) Clustering and recommending collections of code relevant to tasks. In: 2011 27th IEEE international conference on software maintenance (ICSM), pp 536–53. https://doi.org/10.1109/ICSM.2011.6080826 – reference: Ramsauer R, Lohmann D, Mauerer W (2016) Observing custom software modifications: A quantitative approach of tracking the evolution of patch stacks. In: Proceedings of the 12th international symposium on open collaboration, association for computing machinery, New York, NY, USA, OpenSym ’1. https://doi.org/10.1145/2957792.2957810 – reference: Oracle (2022) 60 critical erp statistics: 2022 market trends, data and analysis. https://www.netsuite.com/portal/resource/articles/erp/erp-statistics.shtml – reference: Kersten M, Murphy GC (2006) Using task context to improve programmer productivity. In: Proceedings of the 14th ACM SIGSOFT international symposium on foundations of software engineering, Association for Computing Machinery, New York, NY, USA, SIGSOFT ’06/FSE-14, p 1–11. https://doi.org/10.1145/1181775.1181777 – reference: Biegel B, Baltes S, Scarpellini I, Diehl S (2015) Code basket: Making developers’ mental model visible and explorable. In: 2015 IEEE/ACM 2nd international workshop on context for software development, IEEE, pp 20–24 – reference: LeeSKangSClustering navigation sequences to create contexts for guiding code navigationJ Syst Softw20138682154216510.1016/j.jss.2013.03.103 – reference: Rothlisberger D, Nierstrasz O, Ducasse S, Pollet D, Robbes R (2009) Supporting task-oriented navigation in ides with configurable heatmaps. In: 2009 IEEE 17th international conference on program comprehension, pp 253–257,https://doi.org/10.1109/ICPC.2009.5090052 – reference: Zou L, Godfrey MW, Hassan AE (2007) Detecting interaction coupling from task interaction histories. In: 15th IEEE international conference on program comprehension (ICPC ’07), pp 135–14. https://doi.org/10.1109/ICPC.2007.18 – reference: LeeSKangSKimSStaatsMThe impact of view histories on edit recommendationsIEEE Trans Softw Eng201441331433010.1109/TSE.2014.2362138 – reference: Parnin C, Rugaber S (2009) Resumption strategies for interrupted programming tasks. In: 2009 IEEE 17th international conference on program comprehension, pp 80–8. https://doi.org/10.1109/ICPC.2009.5090030 – reference: Cubranic D, Murphy G (2003) Hipikat: recommending pertinent software development artifacts. In: 25th International conference on software engineering, 2003. Proceedings., pp 408–41. https://doi.org/10.1109/ICSE.2003.1201219 – reference: Cohen-Boulakia S, Denise A, Hamel S (2011) Using medians to generate consensus rankings for biological data. In: Proceedings of the 23rd international conference on scientific and statistical database management, Springer-Verlag, Berlin, Heidelberg, SSDBM’11, p 73–90 – reference: TeitelmanWMasinterLThe interlisp programming environmentComputer198114425310.1109/C-M.1981.220410 – reference: Brancotte B, Yang B, Blin G, Cohen-Boulakia S, Denise A, Hamel S (2015) Rank aggregation with ties: Experiments and analysis. Proc VLDB Endow 8(11):1202–1212. https://doi.org/10.14778/2809974.2809982 – reference: Amann S, Proksch S, Nadi S (2016) Feedbag: An interaction tracker for visual studio. In: 2016 IEEE 24th international conference on program comprehension (ICPC), pp 1–https://doi.org/10.1109/ICPC.2016.7503741 – reference: Zimmermann T, Weibgerber P, Diehl S, Zeller A (2004) Mining version histories to guide software changes. In: Proceedings. 26th international conference on software engineering, pp 563–57. https://doi.org/10.1109/ICSE.2004.1317478 – reference: Minelli R, Mocci A, Lanza M, Kobayashi T (2014) Quantifying program comprehension with interaction data. In: 2014 14th International conference on quality software, pp 276–28. https://doi.org/10.1109/QSIC.2014.11 – reference: Wan Z, Murphy GC, Xia X (2020) Predicting code context models for software development tasks. In: 2020 35th IEEE/ACM international conference on automated software engineering (ASE), IEEE, pp 809–820 – ident: 10528_CR16 doi: 10.1145/2635868.2635905 – ident: 10528_CR30 doi: 10.1145/2957792.2957810 – ident: 10528_CR39 doi: 10.1145/1181775.1181779 – ident: 10528_CR49 doi: 10.1109/ICPC.2011.35 – ident: 10528_CR36 doi: 10.1109/ICPC.2009.5090052 – ident: 10528_CR8 doi: 10.1109/ICSE.2019.00051 – ident: 10528_CR17 doi: 10.1007/978-3-642-33442-9 – ident: 10528_CR19 doi: 10.1145/1181775.1181777 – ident: 10528_CR47 doi: 10.1109/ICSM.2011.6080788 – ident: 10528_CR1 doi: 10.1145/1411509.1411513 – ident: 10528_CR6 doi: 10.1109/CSD.2015.12 – ident: 10528_CR7 doi: 10.14778/2809974.2809982 – ident: 10528_CR44 doi: 10.1109/ICSM.2009.5306335 – volume: 22 start-page: 143 issue: 3 year: 2010 ident: 10528_CR35 publication-title: J Softw Maint Evol Res Pract doi: 10.1002/smr.413 – ident: 10528_CR32 doi: 10.1109/MSR.2010.5463278 – ident: 10528_CR9 doi: 10.1007/978-3-642-22351-8_5 – ident: 10528_CR26 doi: 10.1109/QSIC.2014.11 – volume: 23 start-page: 645 issue: 2 year: 2018 ident: 10528_CR43 publication-title: Empir Softw Eng doi: 10.1007/s10664-017-9529-x – ident: 10528_CR50 doi: 10.1109/ICSE.2004.1317478 – ident: 10528_CR5 doi: 10.1109/MSR.2017.58 – ident: 10528_CR10 doi: 10.1007/978-1-4612-1106-8 – volume: 30 start-page: 574 issue: 9 year: 2004 ident: 10528_CR48 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2004.52 – ident: 10528_CR12 doi: 10.1109/ICSE.2003.1201219 – ident: 10528_CR29 – ident: 10528_CR38 doi: 10.1109/SANER.2015.7081835 – ident: 10528_CR2 doi: 10.1016/j.mathsocsci.2011.08.008 – ident: 10528_CR46 doi: 10.1145/3324884.3416544 – ident: 10528_CR42 doi: 10.1109/WCRE.2013.6671314 – ident: 10528_CR3 doi: 10.1109/ICPC.2016.7503741 – ident: 10528_CR4 doi: 10.1007/978-3-642-45135-5_10 – volume: 32 start-page: 971 issue: 12 year: 2006 ident: 10528_CR20 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2006.116 – ident: 10528_CR11 – volume: 30 start-page: 889 issue: 12 year: 2004 ident: 10528_CR33 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2004.101 – ident: 10528_CR28 doi: 10.1109/ICPC.2009.5090030 – ident: 10528_CR40 doi: 10.1109/ICSM.2005.66 – ident: 10528_CR51 doi: 10.1109/ICPC.2007.18 – volume: 88 start-page: 577 issue: 4 year: 1959 ident: 10528_CR18 publication-title: Daedalus – volume: 17 start-page: 181 issue: 2 year: 2010 ident: 10528_CR31 publication-title: Autom Softw Eng doi: 10.1007/s10515-010-0064-x – volume: 17 start-page: 1 issue: 4 year: 2008 ident: 10528_CR34 publication-title: ACM Trans Softw Eng Methodol (TOSEM) doi: 10.1145/13487689.13487691 – ident: 10528_CR37 – ident: 10528_CR22 doi: 10.1109/ICSM.2011.6080826 – ident: 10528_CR15 doi: 10.1145/1055558.1055568 – ident: 10528_CR25 doi: 10.1145/1117696.1117711 – volume: 84 start-page: 21 issue: 2 year: 1977 ident: 10528_CR14 publication-title: Psychol Bull doi: 10.1037/0033-2909.84.2.212 – volume: 86 start-page: 2154 issue: 8 year: 2013 ident: 10528_CR23 publication-title: J Syst Softw doi: 10.1016/j.jss.2013.03.103 – ident: 10528_CR41 doi: 10.1109/WCRE.2013.6671290 – volume: 41 start-page: 314 issue: 3 year: 2014 ident: 10528_CR24 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2014.2362138 – ident: 10528_CR27 – ident: 10528_CR21 doi: 10.1145/1134285.1134355 – ident: 10528_CR13 doi: 10.1109/VLHCC.2005.32 – volume: 14 start-page: 25 issue: 4 year: 1981 ident: 10528_CR45 publication-title: Computer doi: 10.1109/C-M.1981.220410 |
SSID | ssj0009745 |
Score | 2.3737514 |
Snippet | Developers must complete change tasks on large software systems for maintenance and development purposes. Having a custom software system with numerous... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 147 |
SubjectTerms | Algorithms Compilers Computer Science Effectiveness Evaluation Interpreters Navigation Programming Languages Software Software engineering Software Engineering/Programming and Operating Systems Software industry Source code State-of-the-art reviews Task complexity |
Title | Consensus task interaction trace recommender to guide developers’ software navigation |
URI | https://link.springer.com/article/10.1007/s10664-024-10528-7 https://www.proquest.com/docview/3099926055 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgXVh4Iwql8sAGltzEeY0VakEgmKgoU-THDUKoKWpSWPkNfo8v4dpNFEAwsEVK5OHYvudcO_ceQo4BNbTpm4Ah9QFDvo1ZrJRgkc600JobcEcX1zfhxVhcToJJVRRW1H-711eSLlJ_KXYLQ8GQUzB0BF7MolXSDmzujqt47A2aVruRsya2zfWYj4xelcr8PsZ3Omo05o9rUcc2o02yXslEOljO6xZZgXybbNQWDLTakTvkzhpuWreKgpayeKK2-8N8WatAS3wAajPe6dQZxtFyRh8WjwZoVSqF0u_j7Z0WGIpf5RxoLl9cx41ZvkvGo-Ht2QWrvBKY9iJeMpmIEEAZFYJEjQNce5Jz8GWIpGw46ERIrkMR-AkIrqVvU5dYGKkyEDrh_h5p5bMc9gntGyUziH3IIhRLSkrDY8zSlAeZh2Ix7pCTGrL0edkSI22aH1uAUwQ4dQCnUYd0a1TTansUqW91qc2kgg45rZFuXv892sH_Pj8ka56bbHtk0iWtcr6AIxQRpeqR9uD8_mrYc2vnE5vMwhc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgDLDwRhQKeGADS27iPDpWiKpA26kV3SI_bhBCTVGTwspv8Ht8CdduogKCgS1SIg_H8T3n2r73EHIOqKFN0wQMqQ8Y8m3MYqUEi3SqhdbcgNu66A_C7kjcjoNxWRSWV7fdqyNJF6m_FLuFoWDIKRg6Ai9m0SpZQzEQ24tcI6-9bLUbOWti21yP-cjoZanM72N8p6OlxvxxLOrYprNNNkuZSNuLed0hK5Dtkq3KgoGWK3KP3FvDTetWkdNC5k_Udn-YLWoVaIEPQG3GO5k4wzhaTOnD_NEALUulUPp9vL3THEPxq5wBzeSL67gxzfbJqHM9vOqy0iuBaS_iBZMtEQIoo0KQqHGAa09yDr4MkZQNB90SkutQBH4LBNfSt6lLLIxUKQjd4v4BqWXTDA4JbRolU4h9SCMUS0pKw2PM0pQHqYdiMa6Tiwqy5HnREiNZNj-2ACcIcOIATqI6aVSoJuXyyBPf6lKbSQV1clkhvXz992hH__v8jKx3h_1e0rsZ3B2TDc9NvN0-aZBaMZvDCQqKQp26_-cTzQXDdg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLO6JQwAduYOEmztJjBVRlqzhQ0VvkZYIQalq1KVz5DX6PL2HsJmpBcOAWKZEPY3veGzvvDSHHgBza1E3AEPqAId7GLFZKsEinWmjNDbiji7tO2O6K617Qm1Pxu7_dyyvJqabBujRl-dnQpGdzwrcwFAzxBdNI4MUsWiRLmI7rdl13vebMdjdybYqt0R7zEd0L2czvY3yHphnf_HFF6pCntU5WC8pIm9M53iALkG2StbIdAy125xZ5tM03beeKMc3l-IVaJ4jRVLdAc3wAaqvfft81j6P5gD5Nng3QQjaFNPDz_YOOMS2_yRHQTL46941Btk26rcuH8zYr-iYw7UU8Z7IhQgBlVAgS-Q5w7UnOwZchArThoBtCch2KwG-A4Fr6toyJhZEqBaEb3N8hlWyQwS6hdaNkCrEPaYTESUlpeIwVm_Ig9ZA4xlVyUoYsGU7tMZKZEbINcIIBTlyAk6hKamVUk2KrjBPfclRbVQVVclpGevb679H2_vf5EVm-v2glt1edm32y4rl5tycpNVLJRxM4QG6Rq0O3fL4AP5HHsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consensus+task+interaction+trace+recommender+to+guide+developers%E2%80%99+software+navigation&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Etaiwi%2C+Layan&rft.au=Sager%2C+Pascal&rft.au=Gu%C3%A9h%C3%A9neuc%2C+Yann-Ga%C3%ABl&rft.au=Hamel%2C+Sylvie&rft.date=2024-11-01&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=29&rft.issue=6&rft_id=info:doi/10.1007%2Fs10664-024-10528-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10664_024_10528_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon |