Asymptotics of the eigenmodes and stability of an elastic structure with general feedback matrix

Abstract The distribution of natural frequencies of the Euler–Bernoulli beam subject to fully non-dissipative boundary conditions is investigated. The beam is clamped at the left end and equipped with a 4-parameter ($\alpha ,\beta ,k_1,k_2$) linear boundary feedback law at the right end. The $2 \tim...

Full description

Saved in:
Bibliographic Details
Published inIMA journal of applied mathematics Vol. 84; no. 5; pp. 873 - 911
Main Authors Shubov, Marianna A, Kindrat, Laszlo P
Format Journal Article
LanguageEnglish
Published Oxford University Press 11.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract The distribution of natural frequencies of the Euler–Bernoulli beam subject to fully non-dissipative boundary conditions is investigated. The beam is clamped at the left end and equipped with a 4-parameter ($\alpha ,\beta ,k_1,k_2$) linear boundary feedback law at the right end. The $2 \times 2$ boundary feedback matrix relates the control input (a vector of velocity and its spatial derivative at the right end), to the output (a vector of shear and moment at the right end). The initial boundary value problem describing the dynamics of the beam has been reduced to the first order in time evolution equation in the state Hilbert space equipped with the energy norm. The dynamics generator has a purely discrete spectrum (the vibrational modes) denoted by $\{\nu _n\}_{n\in \mathbb {Z}^{\prime}}$. The role of the control parameters is examined and the following results have been proven: (i) when $\beta \neq 0$, the set of vibrational modes is asymptotically close to the vertical line on the complex $\nu$-plane given by the equation $\Re \nu = \alpha + (1-k_1k_2)/\beta$; (ii) when $\beta = 0$ and the parameter $K = (1-k_1 k_2)/(k_1+k_2)$ is such that $\left |K\right |\neq 1$ then the following relations are valid: $\Re (\nu _n/n) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iii) when $\beta =0$, $|K| = 1$, and $\alpha = 0$, then the following relations are valid: $\Re (\nu _n/n^2) = O\left (1\right )$ and $\Im (\nu _n/n) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iv) when $\beta =0$, $|K| = 1$, and $\alpha>0$, then the following relations are valid: $\Re (\nu _n/\ln \left |n\right |) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$.
AbstractList The distribution of natural frequencies of the Euler–Bernoulli beam subject to fully non-dissipative boundary conditions is investigated. The beam is clamped at the left end and equipped with a 4-parameter ($\alpha ,\beta ,k_1,k_2$) linear boundary feedback law at the right end. The $2 \times 2$ boundary feedback matrix relates the control input (a vector of velocity and its spatial derivative at the right end), to the output (a vector of shear and moment at the right end). The initial boundary value problem describing the dynamics of the beam has been reduced to the first order in time evolution equation in the state Hilbert space equipped with the energy norm. The dynamics generator has a purely discrete spectrum (the vibrational modes) denoted by $\{\nu _n\}_{n\in \mathbb {Z}^{\prime}}$. The role of the control parameters is examined and the following results have been proven: (i) when $\beta \neq 0$, the set of vibrational modes is asymptotically close to the vertical line on the complex $\nu$-plane given by the equation $\Re \nu = \alpha + (1-k_1k_2)/\beta$; (ii) when $\beta = 0$ and the parameter $K = (1-k_1 k_2)/(k_1+k_2)$ is such that $\left |K\right |\neq 1$ then the following relations are valid: $\Re (\nu _n/n) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iii) when $\beta =0$, $|K| = 1$, and $\alpha = 0$, then the following relations are valid: $\Re (\nu _n/n^2) = O\left (1\right )$ and $\Im (\nu _n/n) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iv) when $\beta =0$, $|K| = 1$, and $\alpha>0$, then the following relations are valid: $\Re (\nu _n/\ln \left |n\right |) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$.
Abstract The distribution of natural frequencies of the Euler–Bernoulli beam subject to fully non-dissipative boundary conditions is investigated. The beam is clamped at the left end and equipped with a 4-parameter ($\alpha ,\beta ,k_1,k_2$) linear boundary feedback law at the right end. The $2 \times 2$ boundary feedback matrix relates the control input (a vector of velocity and its spatial derivative at the right end), to the output (a vector of shear and moment at the right end). The initial boundary value problem describing the dynamics of the beam has been reduced to the first order in time evolution equation in the state Hilbert space equipped with the energy norm. The dynamics generator has a purely discrete spectrum (the vibrational modes) denoted by $\{\nu _n\}_{n\in \mathbb {Z}^{\prime}}$. The role of the control parameters is examined and the following results have been proven: (i) when $\beta \neq 0$, the set of vibrational modes is asymptotically close to the vertical line on the complex $\nu$-plane given by the equation $\Re \nu = \alpha + (1-k_1k_2)/\beta$; (ii) when $\beta = 0$ and the parameter $K = (1-k_1 k_2)/(k_1+k_2)$ is such that $\left |K\right |\neq 1$ then the following relations are valid: $\Re (\nu _n/n) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iii) when $\beta =0$, $|K| = 1$, and $\alpha = 0$, then the following relations are valid: $\Re (\nu _n/n^2) = O\left (1\right )$ and $\Im (\nu _n/n) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iv) when $\beta =0$, $|K| = 1$, and $\alpha>0$, then the following relations are valid: $\Re (\nu _n/\ln \left |n\right |) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$.
Author Kindrat, Laszlo P
Shubov, Marianna A
Author_xml – sequence: 1
  givenname: Marianna A
  surname: Shubov
  fullname: Shubov, Marianna A
  email: marianna.shubov@unh.edu
  organization: Department of Mathematics & Statistics, University of New Hampshire, 33 Academic Way, Durham, NH 03824
– sequence: 2
  givenname: Laszlo P
  surname: Kindrat
  fullname: Kindrat, Laszlo P
  organization: Department of Mathematics & Statistics, University of New Hampshire, 33 Academic Way, Durham, NH 03824
BookMark eNqFkE1PwzAMhiM0JLbBkXuOXMqcpmvIcZr4kiZxgXNxU5cF2mZKMrHy6-lUTkgI-WDJfl7LemZs0rmOGLsUcC1Ay4VtscW42B6-QOgTNhVZniUyl9mETSFVaZLpHM7YLIR3ABBLBVP2ugp9u4suWhO4q3ncEif7Rl3rKgocu4qHiKVtbOyPe-w4NRgGfJj7vYl7T_zTxi0fMuSx4TVRVaL54MMv3h7O2WmNTaCLnz5nL3e3z-uHZPN0_7hebRKTKogJ5liCyFKpZKZllVGuYSipRFVpgzkp0jJfYo1aLqmsQUJdCq004I1RQso5k-Nd410InurC2IjRui56tE0hoDhKKkZJxShpSCW_Ujs_EL7_k78aebff_YN-A-qFfkw
CitedBy_id crossref_primary_10_37863_umzh_v73i10_6750
crossref_primary_10_1007_s11253_022_02012_6
crossref_primary_10_1098_rspa_2019_0544
crossref_primary_10_3233_ASY_211722
Cites_doi 10.1090/qam/644099
10.1007/978-3-642-58016-1
10.1007/1-4020-2721-4
10.1016/j.jfluidstructs.2004.04.012
10.2514/2.2685
10.1016/j.ifacol.2017.08.1102
10.1098/rspa.1987.0113
10.1090/qam/1330652
10.1137/0329019
10.1002/sapm1973523189
10.1137/0151015
10.1007/BF01766154
10.1137/S0363012996310703
10.1098/rspa.1986.0093
10.1002/mma.4922
10.1016/j.jsv.2018.05.016
10.1007/978-0-387-21526-6
10.1016/0895-7177(88)90645-0
10.1137/S0363012996302366
10.1007/978-1-4612-4224-6
10.1098/rspa.2016.0109
10.20906/CPS/CON-2016-1053
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2019
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2019
DBID AAYXX
CITATION
DOI 10.1093/imamat/hxz019
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1464-3634
EndPage 911
ExternalDocumentID 10_1093_imamat_hxz019
10.1093/imamat/hxz019
GroupedDBID -E4
-~X
.2P
.I3
0R~
18M
1TH
29I
4.4
482
48X
5GY
5VS
5WA
70D
AAIJN
AAJKP
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
ABAZT
ABDBF
ABDFA
ABDTM
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACUFI
ACUHS
ACUTJ
ACUXJ
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFYAG
AGINJ
AGKEF
AGQXC
AGSYK
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CDBKE
CS3
CZ4
DAKXR
DILTD
DU5
D~K
EBS
EE~
ESX
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
I-F
IOX
J21
JAVBF
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
M43
M49
N9A
NGC
NMDNZ
NOMLY
NU-
O9-
OCL
ODMLO
OJQWA
OJZSN
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
TJP
TN5
TUS
UPT
WH7
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
AAYXX
ABVLG
ADYJX
AGORE
AHGBF
AJBYB
AMVHM
CITATION
OXVGQ
ID FETCH-LOGICAL-c270t-a6ab0142373493d4e690909371dd9ca6e7e9365afa935ebf030fb19790a8c7133
ISSN 0272-4960
IngestDate Tue Jul 01 01:59:18 EDT 2025
Thu Apr 24 23:03:38 EDT 2025
Wed Apr 02 07:01:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Kantorovich’s theorem; asymptotic approximation
matrix differential operator; discrete spectrum; eigenvalues
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c270t-a6ab0142373493d4e690909371dd9ca6e7e9365afa935ebf030fb19790a8c7133
PageCount 39
ParticipantIDs crossref_citationtrail_10_1093_imamat_hxz019
crossref_primary_10_1093_imamat_hxz019
oup_primary_10_1093_imamat_hxz019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-11
PublicationDateYYYYMMDD 2019-10-11
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-11
  day: 11
PublicationDecade 2010
PublicationTitle IMA journal of applied mathematics
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Chen (2019101504354563900_ref4) 1987
Murray (2019101504354563900_ref25) 1994
Liu (2019101504354563900_ref21) 2000; 114
Chen (2019101504354563900_ref5) 1988; 11
Marcus (2019101504354563900_ref23) 1988
Conrad (2019101504354563900_ref7) 1998; 36
Liu (2019101504354563900_ref20) 1998; 36
Chen (2019101504354563900_ref6) 1982; 39
Russell (2019101504354563900_ref31) 1986
Littman (2019101504354563900_ref19) 1988; 152
Wang (2019101504354563900_ref35) 1991; 29
Paulsen (2019101504354563900_ref29) 1992
Shubov (2019101504354563900_ref32) 2018; 41
Gottlieb (2019101504354563900_ref16) 1987; 413
Paulsen (2019101504354563900_ref28) 1995; 53
Fernandes da Silva (2019101504354563900_ref11) 2016
Shubov (2019101504354563900_ref33) 2016; 472
Gohberg (2019101504354563900_ref14) 1996
Curtain (2019101504354563900_ref8) 1995
Patil (2019101504354563900_ref26) 2004; 19
Fedoryuk (2019101504354563900_ref10) 1993
Gladwell (2019101504354563900_ref13) 2005
Atkinson (2019101504354563900_ref1) 2001
Benaroya (2019101504354563900_ref2) 1998
Evgrafov (2019101504354563900_ref9) 1978
Gorrec (2019101504354563900_ref15) 2017; 50
Russell (2019101504354563900_ref30) 1973; 52
Chen (2019101504354563900_ref3) 1991; 51
Locker (2019101504354563900_ref22) 2000
Gladwell (2019101504354563900_ref12) 1986; 407
Mennicken (2019101504354563900_ref24) 2003
Patil (2019101504354563900_ref27) 2000; 37
Szökefalvi-Nagy (2019101504354563900_ref34) 1970
Hermansen (2019101504354563900_ref17) 2018; 429
Kantorovich (2019101504354563900_ref18) 1982
References_xml – volume: 39
  start-page: 433
  year: 1982
  ident: 2019101504354563900_ref6
  article-title: A mathematical model for linear elastic systems with structural damping
  publication-title: Quart. Appl. Math.
  doi: 10.1090/qam/644099
– volume-title: Analytic Functions
  year: 1978
  ident: 2019101504354563900_ref9
– volume-title: Asymptotic Analysis
  year: 1993
  ident: 2019101504354563900_ref10
  doi: 10.1007/978-3-642-58016-1
– volume-title: Inverse Problems in Vibration
  year: 2005
  ident: 2019101504354563900_ref13
  doi: 10.1007/1-4020-2721-4
– volume-title: Introduction to the Spectral Theory of Polynomial Operator Pencils. Translations of Mathematical Monographs
  year: 1988
  ident: 2019101504354563900_ref23
– volume: 19
  start-page: 905
  year: 2004
  ident: 2019101504354563900_ref26
  article-title: On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of high aspect-ratio wings
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2004.04.012
– volume: 37
  start-page: 753
  year: 2000
  ident: 2019101504354563900_ref27
  article-title: Nonlinear aeroelastic analysis of complete aircraft in subsonic flow
  publication-title: J. Aircraft
  doi: 10.2514/2.2685
– start-page: 67
  volume-title: Operator Methods for Optimal Control Problems
  year: 1987
  ident: 2019101504354563900_ref4
  article-title: The Euler–Bernoulli beam equations with boundary energy dissipation
– volume: 50
  start-page: 5580
  year: 2017
  ident: 2019101504354563900_ref15
  article-title: Asymptotic stability of an Euler–Bernoulli beam coupled to non-linear spring-damper systems
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2017.08.1102
– start-page: 2986
  volume-title: Proceedings of the 31st IEEE Conference on Decision and Control
  year: 1992
  ident: 2019101504354563900_ref29
  article-title: Eigenfrequencies of non-collinearly coupled beams with dissipative joints
– volume: 114
  start-page: 1
  year: 2000
  ident: 2019101504354563900_ref21
  article-title: Boundary stabilization of a nonhomogeneous beam with rotary inertia at the tip
  publication-title: J. Comput. Appl. Math.
– volume: 413
  start-page: 235
  year: 1987
  ident: 2019101504354563900_ref16
  article-title: Isospectral Euler–Bernoulli beams with continuous density and rigidity functions
  publication-title: Proc. R. Soc. Lond. A Math. Phys. Sci.
  doi: 10.1098/rspa.1987.0113
– volume: 53
  start-page: 259
  year: 1995
  ident: 2019101504354563900_ref28
  article-title: Eigenfrequencies of curved Euler–Bernoulli beam structures with dissipative joints
  publication-title: Quarterly Appl. Math.
  doi: 10.1090/qam/1330652
– volume: 29
  start-page: 347
  year: 1991
  ident: 2019101504354563900_ref35
  article-title: Asymptotic locations of eigenfrequencies of Euler–Bernoulli beam with non-homogeneous structural and viscous damping coefficients
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0329019
– volume: 52
  start-page: 189
  year: 1973
  ident: 2019101504354563900_ref30
  article-title: A unified boundary controllability theory for hyperbolic and parabolic partial differential equations
  publication-title: Stud. Appl. Math.
  doi: 10.1002/sapm1973523189
– volume-title: Inverse Problems in Vibration
  year: 1994
  ident: 2019101504354563900_ref25
– volume: 51
  start-page: 266
  year: 1991
  ident: 2019101504354563900_ref3
  article-title: Exponential decay of energy of evolution equations with locally distributed dampings
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0151015
– volume-title: Non-Self-Adjoint Boundary Eigenvalue Problems
  year: 2003
  ident: 2019101504354563900_ref24
– volume: 152
  start-page: 281
  year: 1988
  ident: 2019101504354563900_ref19
  article-title: Stabilization of a hybrid system of elasticity by feedback boundary damping
  publication-title: Ann. Mat. Pura Appl. Ser. IV
  doi: 10.1007/BF01766154
– volume: 36
  start-page: 1086
  year: 1998
  ident: 2019101504354563900_ref20
  article-title: Exponential decay of energy of the Euler–Bernoulli beam with locally Kelvin–Voigt damping
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012996310703
– volume: 407
  start-page: 199
  year: 1986
  ident: 2019101504354563900_ref12
  article-title: The inverse problem for the Euler–Bernoulli beam
  publication-title: Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences
  doi: 10.1098/rspa.1986.0093
– start-page: 177
  volume-title: Semigroups: Theory and Applications, Volume II
  year: 1986
  ident: 2019101504354563900_ref31
  article-title: Mathematical models for the elastic beam and their control-theoretical implications
– volume: 41
  start-page: 4691
  year: 2018
  ident: 2019101504354563900_ref32
  article-title: Spectral analysis of the Euler–Bernoulli beam model with fully non-conservative feedback matrix
  publication-title: Math. Methods Appl. Sci.,
  doi: 10.1002/mma.4922
– volume: 429
  start-page: 287
  year: 2018
  ident: 2019101504354563900_ref17
  article-title: Vibration-based estimation of beam boundary parameters
  publication-title: J. Sound Vibration
  doi: 10.1016/j.jsv.2018.05.016
– volume-title: Spectral Theory of Non-Self-Adjoint Two-Point Differential Operators. Mathematical Surveys and Monographs
  year: 2000
  ident: 2019101504354563900_ref22
– volume-title: Theoretical Numerical Analysis
  year: 2001
  ident: 2019101504354563900_ref1
  doi: 10.1007/978-0-387-21526-6
– volume: 11
  start-page: 1011
  year: 1988
  ident: 2019101504354563900_ref5
  article-title: Modeling, analysis and testing of dissipative beam joints – experiments and data smoothing
  publication-title: Math. Comput. Modelling
  doi: 10.1016/0895-7177(88)90645-0
– volume-title: Functional Analysis
  year: 1982
  ident: 2019101504354563900_ref18
– volume: 36
  start-page: 1962
  year: 1998
  ident: 2019101504354563900_ref7
  article-title: On the stabilization of a flexible beam with a tip mass
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012996302366
– volume-title: An Introduction to Infinite-Dimensional Linear Systems Theory
  year: 1995
  ident: 2019101504354563900_ref8
  doi: 10.1007/978-1-4612-4224-6
– volume: 472
  year: 2016
  ident: 2019101504354563900_ref33
  article-title: Stability of a flexible structure with destabilizing boundary conditions
  publication-title: Proc. R. Soc. Lond. A Math. Phys. Sci.
  doi: 10.1098/rspa.2016.0109
– volume-title: Introduction to the Theory of Nonselfadjoint Operators in Hilbert Space. Translations of Mathematical Monographs
  year: 1996
  ident: 2019101504354563900_ref14
– volume-title: IX Congresso Nacional de Engenharia Mecânica
  year: 2016
  ident: 2019101504354563900_ref11
  article-title: Free vibration analysis of Euler–Bernoulli beams under non-classical boundary conditions
  doi: 10.20906/CPS/CON-2016-1053
– volume-title: Harmonic Analysis of Operators on Hilbert Space
  year: 1970
  ident: 2019101504354563900_ref34
– volume-title: Mechanical Vibration: Analysis, Uncertainties, and Control
  year: 1998
  ident: 2019101504354563900_ref2
SSID ssj0001570
Score 2.183946
Snippet Abstract The distribution of natural frequencies of the Euler–Bernoulli beam subject to fully non-dissipative boundary conditions is investigated. The beam is...
The distribution of natural frequencies of the Euler–Bernoulli beam subject to fully non-dissipative boundary conditions is investigated. The beam is clamped...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 873
Title Asymptotics of the eigenmodes and stability of an elastic structure with general feedback matrix
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wIPiE8xvmQkxMvIFsdOHD92QDVA5YVN2lvxV7aJJZm0gkb55zn3vCQTFA1UKaqSk9vc_XI-n3O_I-SltcxmVSoS5bhMhJQuKTNRJYwpWxgvhXehOHn2qdg7EB8O88PR6OewumRhtu3yj3Ul_2NVOAd2DVWy_2DZblA4Ad_BvnAEC8PxWjaenP-ozxbtimk57vX7wK4Z2tsg9zLEfqu3X1f76PAoewiWA0Ur0saGzYNVIvYIyae3KpjLjLZft-rA3H8xjFzfzyZDmgkdo9e6o33tgvPPx99M-z0WAgH6Gt0nTD-eNA4whxXZ58vTNtaXxbwDU8Fhsz7vsKaeceC-MpklQmG3gG2P7lUUIuFFTF9G_4st4iLO8oEzLbHJSZyXFf74by4f6bBOal2Hfz89vlim0Qlf5dFeK3uDbGSwxsjGZGOy-3Z32k3kLJeYoos3EilaYZAdHGIHB7gS0oQyyUGEsn-H3I5LCzpBnNwlI9_cI7dmvYHuky8DxNC2onCJ9oihgBjaISZc1w2NiKEdYmhADI2IoZeIoYiYB-Rg-m7_zV4Se2wkNpPpItGFNrBKzrjkQnEnfKFS-HDJnFNWF156xYtcV1rx3JsK5oTKMCVVqksbEhwPybhpG_-IUOGE5KXnznsjGKuUgUGN5YXzuVGl3SSvL9U0t5GAPvRBOZ3jixB8jlqdo1Y3yatO_AyZV9YJvgCd_13m8TVknpCbPc6fkjGo1T-DiHNhnkdk_ALDfYtJ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotics+of+the+eigenmodes+and+stability+of+an+elastic+structure+with+general+feedback+matrix&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Shubov%2C+Marianna+A&rft.au=Kindrat%2C+Laszlo+P&rft.date=2019-10-11&rft.pub=Oxford+University+Press&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=84&rft.issue=5&rft.spage=873&rft.epage=911&rft_id=info:doi/10.1093%2Fimamat%2Fhxz019&rft.externalDocID=10.1093%2Fimamat%2Fhxz019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon