Asymptotics of the eigenmodes and stability of an elastic structure with general feedback matrix
Abstract The distribution of natural frequencies of the Euler–Bernoulli beam subject to fully non-dissipative boundary conditions is investigated. The beam is clamped at the left end and equipped with a 4-parameter ($\alpha ,\beta ,k_1,k_2$) linear boundary feedback law at the right end. The $2 \tim...
Saved in:
Published in | IMA journal of applied mathematics Vol. 84; no. 5; pp. 873 - 911 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
11.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
The distribution of natural frequencies of the Euler–Bernoulli beam subject to fully non-dissipative boundary conditions is investigated. The beam is clamped at the left end and equipped with a 4-parameter ($\alpha ,\beta ,k_1,k_2$) linear boundary feedback law at the right end. The $2 \times 2$ boundary feedback matrix relates the control input (a vector of velocity and its spatial derivative at the right end), to the output (a vector of shear and moment at the right end). The initial boundary value problem describing the dynamics of the beam has been reduced to the first order in time evolution equation in the state Hilbert space equipped with the energy norm. The dynamics generator has a purely discrete spectrum (the vibrational modes) denoted by $\{\nu _n\}_{n\in \mathbb {Z}^{\prime}}$. The role of the control parameters is examined and the following results have been proven: (i) when $\beta \neq 0$, the set of vibrational modes is asymptotically close to the vertical line on the complex $\nu$-plane given by the equation $\Re \nu = \alpha + (1-k_1k_2)/\beta$; (ii) when $\beta = 0$ and the parameter $K = (1-k_1 k_2)/(k_1+k_2)$ is such that $\left |K\right |\neq 1$ then the following relations are valid: $\Re (\nu _n/n) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iii) when $\beta =0$, $|K| = 1$, and $\alpha = 0$, then the following relations are valid: $\Re (\nu _n/n^2) = O\left (1\right )$ and $\Im (\nu _n/n) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iv) when $\beta =0$, $|K| = 1$, and $\alpha>0$, then the following relations are valid: $\Re (\nu _n/\ln \left |n\right |) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$. |
---|---|
AbstractList | The distribution of natural frequencies of the Euler–Bernoulli beam subject to fully non-dissipative boundary conditions is investigated. The beam is clamped at the left end and equipped with a 4-parameter ($\alpha ,\beta ,k_1,k_2$) linear boundary feedback law at the right end. The $2 \times 2$ boundary feedback matrix relates the control input (a vector of velocity and its spatial derivative at the right end), to the output (a vector of shear and moment at the right end). The initial boundary value problem describing the dynamics of the beam has been reduced to the first order in time evolution equation in the state Hilbert space equipped with the energy norm. The dynamics generator has a purely discrete spectrum (the vibrational modes) denoted by $\{\nu _n\}_{n\in \mathbb {Z}^{\prime}}$. The role of the control parameters is examined and the following results have been proven: (i) when $\beta \neq 0$, the set of vibrational modes is asymptotically close to the vertical line on the complex $\nu$-plane given by the equation $\Re \nu = \alpha + (1-k_1k_2)/\beta$; (ii) when $\beta = 0$ and the parameter $K = (1-k_1 k_2)/(k_1+k_2)$ is such that $\left |K\right |\neq 1$ then the following relations are valid: $\Re (\nu _n/n) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iii) when $\beta =0$, $|K| = 1$, and $\alpha = 0$, then the following relations are valid: $\Re (\nu _n/n^2) = O\left (1\right )$ and $\Im (\nu _n/n) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iv) when $\beta =0$, $|K| = 1$, and $\alpha>0$, then the following relations are valid: $\Re (\nu _n/\ln \left |n\right |) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$. Abstract The distribution of natural frequencies of the Euler–Bernoulli beam subject to fully non-dissipative boundary conditions is investigated. The beam is clamped at the left end and equipped with a 4-parameter ($\alpha ,\beta ,k_1,k_2$) linear boundary feedback law at the right end. The $2 \times 2$ boundary feedback matrix relates the control input (a vector of velocity and its spatial derivative at the right end), to the output (a vector of shear and moment at the right end). The initial boundary value problem describing the dynamics of the beam has been reduced to the first order in time evolution equation in the state Hilbert space equipped with the energy norm. The dynamics generator has a purely discrete spectrum (the vibrational modes) denoted by $\{\nu _n\}_{n\in \mathbb {Z}^{\prime}}$. The role of the control parameters is examined and the following results have been proven: (i) when $\beta \neq 0$, the set of vibrational modes is asymptotically close to the vertical line on the complex $\nu$-plane given by the equation $\Re \nu = \alpha + (1-k_1k_2)/\beta$; (ii) when $\beta = 0$ and the parameter $K = (1-k_1 k_2)/(k_1+k_2)$ is such that $\left |K\right |\neq 1$ then the following relations are valid: $\Re (\nu _n/n) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iii) when $\beta =0$, $|K| = 1$, and $\alpha = 0$, then the following relations are valid: $\Re (\nu _n/n^2) = O\left (1\right )$ and $\Im (\nu _n/n) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iv) when $\beta =0$, $|K| = 1$, and $\alpha>0$, then the following relations are valid: $\Re (\nu _n/\ln \left |n\right |) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$. |
Author | Kindrat, Laszlo P Shubov, Marianna A |
Author_xml | – sequence: 1 givenname: Marianna A surname: Shubov fullname: Shubov, Marianna A email: marianna.shubov@unh.edu organization: Department of Mathematics & Statistics, University of New Hampshire, 33 Academic Way, Durham, NH 03824 – sequence: 2 givenname: Laszlo P surname: Kindrat fullname: Kindrat, Laszlo P organization: Department of Mathematics & Statistics, University of New Hampshire, 33 Academic Way, Durham, NH 03824 |
BookMark | eNqFkE1PwzAMhiM0JLbBkXuOXMqcpmvIcZr4kiZxgXNxU5cF2mZKMrHy6-lUTkgI-WDJfl7LemZs0rmOGLsUcC1Ay4VtscW42B6-QOgTNhVZniUyl9mETSFVaZLpHM7YLIR3ABBLBVP2ugp9u4suWhO4q3ncEif7Rl3rKgocu4qHiKVtbOyPe-w4NRgGfJj7vYl7T_zTxi0fMuSx4TVRVaL54MMv3h7O2WmNTaCLnz5nL3e3z-uHZPN0_7hebRKTKogJ5liCyFKpZKZllVGuYSipRFVpgzkp0jJfYo1aLqmsQUJdCq004I1RQso5k-Nd410InurC2IjRui56tE0hoDhKKkZJxShpSCW_Ujs_EL7_k78aebff_YN-A-qFfkw |
CitedBy_id | crossref_primary_10_37863_umzh_v73i10_6750 crossref_primary_10_1007_s11253_022_02012_6 crossref_primary_10_1098_rspa_2019_0544 crossref_primary_10_3233_ASY_211722 |
Cites_doi | 10.1090/qam/644099 10.1007/978-3-642-58016-1 10.1007/1-4020-2721-4 10.1016/j.jfluidstructs.2004.04.012 10.2514/2.2685 10.1016/j.ifacol.2017.08.1102 10.1098/rspa.1987.0113 10.1090/qam/1330652 10.1137/0329019 10.1002/sapm1973523189 10.1137/0151015 10.1007/BF01766154 10.1137/S0363012996310703 10.1098/rspa.1986.0093 10.1002/mma.4922 10.1016/j.jsv.2018.05.016 10.1007/978-0-387-21526-6 10.1016/0895-7177(88)90645-0 10.1137/S0363012996302366 10.1007/978-1-4612-4224-6 10.1098/rspa.2016.0109 10.20906/CPS/CON-2016-1053 |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2019 |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2019 |
DBID | AAYXX CITATION |
DOI | 10.1093/imamat/hxz019 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1464-3634 |
EndPage | 911 |
ExternalDocumentID | 10_1093_imamat_hxz019 10.1093/imamat/hxz019 |
GroupedDBID | -E4 -~X .2P .I3 0R~ 18M 1TH 29I 4.4 482 48X 5GY 5VS 5WA 70D AAIJN AAJKP AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP ABAZT ABDBF ABDFA ABDTM ABEJV ABEUO ABGNP ABIXL ABJNI ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACUFI ACUHS ACUTJ ACUXJ ACYTK ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFYAG AGINJ AGKEF AGQXC AGSYK AHXPO AIAGR AIJHB AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG APIBT APWMN ATGXG AXUDD AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CDBKE CS3 CZ4 DAKXR DILTD DU5 D~K EBS EE~ ESX F9B FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ I-F IOX J21 JAVBF JXSIZ KAQDR KBUDW KOP KSI KSN M-Z M43 M49 N9A NGC NMDNZ NOMLY NU- O9- OCL ODMLO OJQWA OJZSN P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO TJP TN5 TUS UPT WH7 X7H YAYTL YKOAZ YXANX ZKX ~91 AAYXX ABVLG ADYJX AGORE AHGBF AJBYB AMVHM CITATION OXVGQ |
ID | FETCH-LOGICAL-c270t-a6ab0142373493d4e690909371dd9ca6e7e9365afa935ebf030fb19790a8c7133 |
ISSN | 0272-4960 |
IngestDate | Tue Jul 01 01:59:18 EDT 2025 Thu Apr 24 23:03:38 EDT 2025 Wed Apr 02 07:01:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Kantorovich’s theorem; asymptotic approximation matrix differential operator; discrete spectrum; eigenvalues |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c270t-a6ab0142373493d4e690909371dd9ca6e7e9365afa935ebf030fb19790a8c7133 |
PageCount | 39 |
ParticipantIDs | crossref_citationtrail_10_1093_imamat_hxz019 crossref_primary_10_1093_imamat_hxz019 oup_primary_10_1093_imamat_hxz019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-11 |
PublicationDateYYYYMMDD | 2019-10-11 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-11 day: 11 |
PublicationDecade | 2010 |
PublicationTitle | IMA journal of applied mathematics |
PublicationYear | 2019 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Chen (2019101504354563900_ref4) 1987 Murray (2019101504354563900_ref25) 1994 Liu (2019101504354563900_ref21) 2000; 114 Chen (2019101504354563900_ref5) 1988; 11 Marcus (2019101504354563900_ref23) 1988 Conrad (2019101504354563900_ref7) 1998; 36 Liu (2019101504354563900_ref20) 1998; 36 Chen (2019101504354563900_ref6) 1982; 39 Russell (2019101504354563900_ref31) 1986 Littman (2019101504354563900_ref19) 1988; 152 Wang (2019101504354563900_ref35) 1991; 29 Paulsen (2019101504354563900_ref29) 1992 Shubov (2019101504354563900_ref32) 2018; 41 Gottlieb (2019101504354563900_ref16) 1987; 413 Paulsen (2019101504354563900_ref28) 1995; 53 Fernandes da Silva (2019101504354563900_ref11) 2016 Shubov (2019101504354563900_ref33) 2016; 472 Gohberg (2019101504354563900_ref14) 1996 Curtain (2019101504354563900_ref8) 1995 Patil (2019101504354563900_ref26) 2004; 19 Fedoryuk (2019101504354563900_ref10) 1993 Gladwell (2019101504354563900_ref13) 2005 Atkinson (2019101504354563900_ref1) 2001 Benaroya (2019101504354563900_ref2) 1998 Evgrafov (2019101504354563900_ref9) 1978 Gorrec (2019101504354563900_ref15) 2017; 50 Russell (2019101504354563900_ref30) 1973; 52 Chen (2019101504354563900_ref3) 1991; 51 Locker (2019101504354563900_ref22) 2000 Gladwell (2019101504354563900_ref12) 1986; 407 Mennicken (2019101504354563900_ref24) 2003 Patil (2019101504354563900_ref27) 2000; 37 Szökefalvi-Nagy (2019101504354563900_ref34) 1970 Hermansen (2019101504354563900_ref17) 2018; 429 Kantorovich (2019101504354563900_ref18) 1982 |
References_xml | – volume: 39 start-page: 433 year: 1982 ident: 2019101504354563900_ref6 article-title: A mathematical model for linear elastic systems with structural damping publication-title: Quart. Appl. Math. doi: 10.1090/qam/644099 – volume-title: Analytic Functions year: 1978 ident: 2019101504354563900_ref9 – volume-title: Asymptotic Analysis year: 1993 ident: 2019101504354563900_ref10 doi: 10.1007/978-3-642-58016-1 – volume-title: Inverse Problems in Vibration year: 2005 ident: 2019101504354563900_ref13 doi: 10.1007/1-4020-2721-4 – volume-title: Introduction to the Spectral Theory of Polynomial Operator Pencils. Translations of Mathematical Monographs year: 1988 ident: 2019101504354563900_ref23 – volume: 19 start-page: 905 year: 2004 ident: 2019101504354563900_ref26 article-title: On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of high aspect-ratio wings publication-title: Journal of Fluids and Structures doi: 10.1016/j.jfluidstructs.2004.04.012 – volume: 37 start-page: 753 year: 2000 ident: 2019101504354563900_ref27 article-title: Nonlinear aeroelastic analysis of complete aircraft in subsonic flow publication-title: J. Aircraft doi: 10.2514/2.2685 – start-page: 67 volume-title: Operator Methods for Optimal Control Problems year: 1987 ident: 2019101504354563900_ref4 article-title: The Euler–Bernoulli beam equations with boundary energy dissipation – volume: 50 start-page: 5580 year: 2017 ident: 2019101504354563900_ref15 article-title: Asymptotic stability of an Euler–Bernoulli beam coupled to non-linear spring-damper systems publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2017.08.1102 – start-page: 2986 volume-title: Proceedings of the 31st IEEE Conference on Decision and Control year: 1992 ident: 2019101504354563900_ref29 article-title: Eigenfrequencies of non-collinearly coupled beams with dissipative joints – volume: 114 start-page: 1 year: 2000 ident: 2019101504354563900_ref21 article-title: Boundary stabilization of a nonhomogeneous beam with rotary inertia at the tip publication-title: J. Comput. Appl. Math. – volume: 413 start-page: 235 year: 1987 ident: 2019101504354563900_ref16 article-title: Isospectral Euler–Bernoulli beams with continuous density and rigidity functions publication-title: Proc. R. Soc. Lond. A Math. Phys. Sci. doi: 10.1098/rspa.1987.0113 – volume: 53 start-page: 259 year: 1995 ident: 2019101504354563900_ref28 article-title: Eigenfrequencies of curved Euler–Bernoulli beam structures with dissipative joints publication-title: Quarterly Appl. Math. doi: 10.1090/qam/1330652 – volume: 29 start-page: 347 year: 1991 ident: 2019101504354563900_ref35 article-title: Asymptotic locations of eigenfrequencies of Euler–Bernoulli beam with non-homogeneous structural and viscous damping coefficients publication-title: SIAM J. Control Optim. doi: 10.1137/0329019 – volume: 52 start-page: 189 year: 1973 ident: 2019101504354563900_ref30 article-title: A unified boundary controllability theory for hyperbolic and parabolic partial differential equations publication-title: Stud. Appl. Math. doi: 10.1002/sapm1973523189 – volume-title: Inverse Problems in Vibration year: 1994 ident: 2019101504354563900_ref25 – volume: 51 start-page: 266 year: 1991 ident: 2019101504354563900_ref3 article-title: Exponential decay of energy of evolution equations with locally distributed dampings publication-title: SIAM J. Appl. Math. doi: 10.1137/0151015 – volume-title: Non-Self-Adjoint Boundary Eigenvalue Problems year: 2003 ident: 2019101504354563900_ref24 – volume: 152 start-page: 281 year: 1988 ident: 2019101504354563900_ref19 article-title: Stabilization of a hybrid system of elasticity by feedback boundary damping publication-title: Ann. Mat. Pura Appl. Ser. IV doi: 10.1007/BF01766154 – volume: 36 start-page: 1086 year: 1998 ident: 2019101504354563900_ref20 article-title: Exponential decay of energy of the Euler–Bernoulli beam with locally Kelvin–Voigt damping publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012996310703 – volume: 407 start-page: 199 year: 1986 ident: 2019101504354563900_ref12 article-title: The inverse problem for the Euler–Bernoulli beam publication-title: Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences doi: 10.1098/rspa.1986.0093 – start-page: 177 volume-title: Semigroups: Theory and Applications, Volume II year: 1986 ident: 2019101504354563900_ref31 article-title: Mathematical models for the elastic beam and their control-theoretical implications – volume: 41 start-page: 4691 year: 2018 ident: 2019101504354563900_ref32 article-title: Spectral analysis of the Euler–Bernoulli beam model with fully non-conservative feedback matrix publication-title: Math. Methods Appl. Sci., doi: 10.1002/mma.4922 – volume: 429 start-page: 287 year: 2018 ident: 2019101504354563900_ref17 article-title: Vibration-based estimation of beam boundary parameters publication-title: J. Sound Vibration doi: 10.1016/j.jsv.2018.05.016 – volume-title: Spectral Theory of Non-Self-Adjoint Two-Point Differential Operators. Mathematical Surveys and Monographs year: 2000 ident: 2019101504354563900_ref22 – volume-title: Theoretical Numerical Analysis year: 2001 ident: 2019101504354563900_ref1 doi: 10.1007/978-0-387-21526-6 – volume: 11 start-page: 1011 year: 1988 ident: 2019101504354563900_ref5 article-title: Modeling, analysis and testing of dissipative beam joints – experiments and data smoothing publication-title: Math. Comput. Modelling doi: 10.1016/0895-7177(88)90645-0 – volume-title: Functional Analysis year: 1982 ident: 2019101504354563900_ref18 – volume: 36 start-page: 1962 year: 1998 ident: 2019101504354563900_ref7 article-title: On the stabilization of a flexible beam with a tip mass publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012996302366 – volume-title: An Introduction to Infinite-Dimensional Linear Systems Theory year: 1995 ident: 2019101504354563900_ref8 doi: 10.1007/978-1-4612-4224-6 – volume: 472 year: 2016 ident: 2019101504354563900_ref33 article-title: Stability of a flexible structure with destabilizing boundary conditions publication-title: Proc. R. Soc. Lond. A Math. Phys. Sci. doi: 10.1098/rspa.2016.0109 – volume-title: Introduction to the Theory of Nonselfadjoint Operators in Hilbert Space. Translations of Mathematical Monographs year: 1996 ident: 2019101504354563900_ref14 – volume-title: IX Congresso Nacional de Engenharia Mecânica year: 2016 ident: 2019101504354563900_ref11 article-title: Free vibration analysis of Euler–Bernoulli beams under non-classical boundary conditions doi: 10.20906/CPS/CON-2016-1053 – volume-title: Harmonic Analysis of Operators on Hilbert Space year: 1970 ident: 2019101504354563900_ref34 – volume-title: Mechanical Vibration: Analysis, Uncertainties, and Control year: 1998 ident: 2019101504354563900_ref2 |
SSID | ssj0001570 |
Score | 2.183946 |
Snippet | Abstract
The distribution of natural frequencies of the Euler–Bernoulli beam subject to fully non-dissipative boundary conditions is investigated. The beam is... The distribution of natural frequencies of the Euler–Bernoulli beam subject to fully non-dissipative boundary conditions is investigated. The beam is clamped... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 873 |
Title | Asymptotics of the eigenmodes and stability of an elastic structure with general feedback matrix |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wIPiE8xvmQkxMvIFsdOHD92QDVA5YVN2lvxV7aJJZm0gkb55zn3vCQTFA1UKaqSk9vc_XI-n3O_I-SltcxmVSoS5bhMhJQuKTNRJYwpWxgvhXehOHn2qdg7EB8O88PR6OewumRhtu3yj3Ul_2NVOAd2DVWy_2DZblA4Ad_BvnAEC8PxWjaenP-ozxbtimk57vX7wK4Z2tsg9zLEfqu3X1f76PAoewiWA0Ur0saGzYNVIvYIyae3KpjLjLZft-rA3H8xjFzfzyZDmgkdo9e6o33tgvPPx99M-z0WAgH6Gt0nTD-eNA4whxXZ58vTNtaXxbwDU8Fhsz7vsKaeceC-MpklQmG3gG2P7lUUIuFFTF9G_4st4iLO8oEzLbHJSZyXFf74by4f6bBOal2Hfz89vlim0Qlf5dFeK3uDbGSwxsjGZGOy-3Z32k3kLJeYoos3EilaYZAdHGIHB7gS0oQyyUGEsn-H3I5LCzpBnNwlI9_cI7dmvYHuky8DxNC2onCJ9oihgBjaISZc1w2NiKEdYmhADI2IoZeIoYiYB-Rg-m7_zV4Se2wkNpPpItGFNrBKzrjkQnEnfKFS-HDJnFNWF156xYtcV1rx3JsK5oTKMCVVqksbEhwPybhpG_-IUOGE5KXnznsjGKuUgUGN5YXzuVGl3SSvL9U0t5GAPvRBOZ3jixB8jlqdo1Y3yatO_AyZV9YJvgCd_13m8TVknpCbPc6fkjGo1T-DiHNhnkdk_ALDfYtJ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotics+of+the+eigenmodes+and+stability+of+an+elastic+structure+with+general+feedback+matrix&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Shubov%2C+Marianna+A&rft.au=Kindrat%2C+Laszlo+P&rft.date=2019-10-11&rft.pub=Oxford+University+Press&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=84&rft.issue=5&rft.spage=873&rft.epage=911&rft_id=info:doi/10.1093%2Fimamat%2Fhxz019&rft.externalDocID=10.1093%2Fimamat%2Fhxz019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon |