How far are we with automated machine learning? characterization and challenges of AutoML toolkits

Automated Machine Learning aka AutoML toolkits are low/no-code software that aim to democratize ML system application development by ensuring rapid prototyping of ML models and by enabling collaboration across different stakeholders in ML system design (e.g., domain experts, data scientists, etc.)....

Full description

Saved in:
Bibliographic Details
Published inEmpirical software engineering : an international journal Vol. 29; no. 4; p. 91
Main Authors Al Alamin, Md Abdullah, Uddin, Gias
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1382-3256
1573-7616
DOI10.1007/s10664-024-10450-y

Cover

Loading…
Abstract Automated Machine Learning aka AutoML toolkits are low/no-code software that aim to democratize ML system application development by ensuring rapid prototyping of ML models and by enabling collaboration across different stakeholders in ML system design (e.g., domain experts, data scientists, etc.). It is thus important to know the state of current AutoML toolkits and the challenges ML practitioners face while using those toolkits. In this paper, we first offer a characterization of currently available AutoML toolits by analyzing 37 top AutoML tools and platforms. We find that the top AutoML platforms are mostly cloud-based. Most of the tools are optimized for the adoption of shallow ML models. Second, we present an empirical study of 14.3K AutoML related posts from Stack Overflow (SO) that we analyzed using topic modelling algorithm LDA (Latent Dirichlet Allocation) to understand the challenges of ML practitioners while using the AutoML toolkits. We find 13 topics in the AutoML related discussions in SO. The 13 topics are grouped into four categories: MLOps (43% of all questions), Model (28% questions), Data (27% questions), and Documentation (2% questions). Most questions are asked during Model training (29%) and Data preparation (25%) phases. AutoML practitioners find the MLOps topic category most challenging. Topics related to the MLOps category are the most prevalent and popular for cloud-based AutoML toolkits. Based on our study findings, we provide 15 recommendations to improve the adoption and development of AutoML toolkits.
AbstractList Automated Machine Learning aka AutoML toolkits are low/no-code software that aim to democratize ML system application development by ensuring rapid prototyping of ML models and by enabling collaboration across different stakeholders in ML system design (e.g., domain experts, data scientists, etc.). It is thus important to know the state of current AutoML toolkits and the challenges ML practitioners face while using those toolkits. In this paper, we first offer a characterization of currently available AutoML toolits by analyzing 37 top AutoML tools and platforms. We find that the top AutoML platforms are mostly cloud-based. Most of the tools are optimized for the adoption of shallow ML models. Second, we present an empirical study of 14.3K AutoML related posts from Stack Overflow (SO) that we analyzed using topic modelling algorithm LDA (Latent Dirichlet Allocation) to understand the challenges of ML practitioners while using the AutoML toolkits. We find 13 topics in the AutoML related discussions in SO. The 13 topics are grouped into four categories: MLOps (43% of all questions), Model (28% questions), Data (27% questions), and Documentation (2% questions). Most questions are asked during Model training (29%) and Data preparation (25%) phases. AutoML practitioners find the MLOps topic category most challenging. Topics related to the MLOps category are the most prevalent and popular for cloud-based AutoML toolkits. Based on our study findings, we provide 15 recommendations to improve the adoption and development of AutoML toolkits.
ArticleNumber 91
Author Al Alamin, Md Abdullah
Uddin, Gias
Author_xml – sequence: 1
  givenname: Md Abdullah
  surname: Al Alamin
  fullname: Al Alamin, Md Abdullah
  organization: DISA Lab, University of Calgary
– sequence: 2
  givenname: Gias
  orcidid: 0000-0003-1376-095X
  surname: Uddin
  fullname: Uddin, Gias
  email: gias98@gmail.com
  organization: York University
BookMark eNp9kFtLAzEQhYMoWC9_wKeAz6uTzebSJyniDSq-6HOYZrPt1m1SkxSpv97UCr4JAzMM5zvDnBNy6IN3hFwwuGIA6joxkLKpoG4qBo2AantARkwoXinJ5GGZua4rXgt5TE5SWgLAWDViRGaP4ZN2GClGRz9L9XlBcZPDCrNr6QrtoveODg6j7_38htoFRrTZxf4Lcx88Rd_ulsPg_NwlGjo6KfjzlOYQhvc-pzNy1OGQ3PlvPyVv93evt4_V9OXh6XYyrWytIFcIILtOuTHrdKtmSmrecGANytY2rUDONHCrx1aKGWortdCgulZKjVah0PyUXO591zF8bFzKZhk20ZeThoNUrBZKjYuq3qtsDClF15l17FcYt4aB2WVp9lmakqX5ydJsC8T3UCri8mb8s_6H-gaks3mq
Cites_doi 10.1007/978-3-642-13657-3_43
10.1080/01621459.1957.10501395
10.1109/MSR52588.2021.00018
10.1007/s10664-022-10244-0
10.1016/j.knosys.2020.106622
10.1109/CVPR42600.2020.01210
10.1109/ACCESS.2020.2976199
10.1109/ICSE-SEIP.2019.00042
10.21437/Interspeech.2019-1916
10.1145/3377325.3377501
10.1007/s10664-020-09819-6
10.1080/13504851.2020.1725230
10.1007/s10664-008-9095-3
10.1145/2684822.2685324
10.1007/s00778-022-00752-2
10.1145/1985441.1985467
10.1145/3377811.3380404
10.1145/3338906.3338939
10.1007/s10664-021-10021-5
10.1007/s10664-012-9231-y
10.1145/3470918
10.1007/978-3-319-10509-3_3
10.1007/s10664-018-9595-8
10.1109/TSE.2007.1016
10.1016/j.infsof.2015.05.003
10.1145/2597073.2597083
10.1111/j.1468-0394.2005.00299.x
10.1145/3448016.3457274
10.1145/3459637.3483279
10.1007/s10664-015-9379-3
10.1109/ASE.2017.8115629
10.1109/SNPD.2016.7515925
10.1145/3239235.3239524
10.1109/TSE.2019.2937083
10.1109/MSR.2009.5069496
10.1109/SANER.2015.7081810
10.1145/1985441.1985451
10.1145/1806799.1806817
10.1145/3377811.3380395
10.1109/SEAA.2018.00018
10.1109/ESEM.2019.8870187
10.1016/j.scico.2012.08.003
10.1109/TSE.2013.60
10.1145/3382494.3410693
10.1109/ICTAI.2019.00209
10.1093/biomet/30.1-2.81
10.1109/MSR.2013.6624014
10.1109/ICCV.2019.00850
10.1007/s10664-015-9402-8
10.1109/MSR.2019.00052
10.1145/3368089.3409759
10.1145/3411764.3445306
10.1007/s11390-016-1672-0
10.1145/3213846.3213866
10.1145/3379597.3387472
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1007/s10664-024-10450-y
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central (New)
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Technology Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7616
ExternalDocumentID 10_1007_s10664_024_10450_y
GrantInformation_xml – fundername: NSERC
  grantid: RGPIN-2021-02575
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
8FD
ABRTQ
DWQXO
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c270t-a006ff7e91f8d7b768343014a6dc4d5a31803c89c65ba8c685807fd668ac7a583
IEDL.DBID 8FG
ISSN 1382-3256
IngestDate Sat Aug 23 14:57:07 EDT 2025
Tue Jul 01 03:32:23 EDT 2025
Fri Feb 21 02:40:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords AutoML
ML system engineering
Automated machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-a006ff7e91f8d7b768343014a6dc4d5a31803c89c65ba8c685807fd668ac7a583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1376-095X
PQID 3067125779
PQPubID 326341
ParticipantIDs proquest_journals_3067125779
crossref_primary_10_1007_s10664_024_10450_y
springer_journals_10_1007_s10664_024_10450_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Empirical software engineering : an international journal
PublicationTitleAbbrev Empir Software Eng
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Bagherzadeh M, Khatchadourian R (2019) Going big: A large-scale study on what big data developers ask. In Proceedings of the 2019 27th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, ESEC/FSE 2019, New York, NY, USA, ACM pp 432–442
Xin D, Wu EY, Lee DJ-L, Salehi N, Parameswaran A (2021) Whither automl? understanding the role of automation in machine learning workflows. In: Conference on human factors in computing systems (CHI), pp 1–16
Garner overview (2020) Available: https://www.gartner.com. [Online; accessed 5-Nov-2022]
Jiang H, et al. (2018) To trust or not to trust a classifier. In: Proc NeurIPS, pp 5546–5557
KruskalWHHistorical notes on the wilcoxon unpaired two-sample testJ Am Stat Assoc19575227935636010.1080/01621459.1957.10501395
KendallMGA new measure of rank correlationBiometrika1938301819310.1093/biomet/30.1-2.81
Mazzawi H, Gonzalvo X, Kracun A, Sridhar P, Subrahmanya NA, Lopez-Moreno I, Jin Park H, Violette P (2019) Improving keyword spotting and language identification via neural architecture search at scale. In Interspeech
Cloud AutoML Custom Machine Learning Models (2022) Available: https://cloud.google.com/automl . [Online; accessed 5-Nov-2022]
Li Y, Shen Y, Zhang W, Zhang C, Cui B (2022) Volcanoml: speeding up end-to-end automl via scalable search space decomposition. The VLDB Journal, pp 1–25
Bubeck S, Chandrasekaran V, Eldan R, Gehrke J, Horvitz E, Kamar E, Lee P, Lee YT, Li Y, Lundberg S, Nori H, Palangi H, Ribeiro MT, Zhang Y (2023) Sparks of artificial general intelligence: Early experiments with gpt-4
BaruaAThomasSWHassanAEWhat are developers talking about? an analysis of topics and trends in stack overflowEmpir Softw Eng201419361965410.1007/s10664-012-9231-y
Ahmed S, Bagherzadeh M (2018) What do concurrency developers ask about? a large-scale study using stack overflow. In: Proceedings of the 12th ACM/IEEE International symposium on empirical software engineering and measurement, ESEM ’18, New York, NY, USA . Association for Computing Machinery
Amazon SageMaker Overview (2022) Available: https://aws.amazon.com/sagemaker/ . [Online; accessed 5-Nov-2022]
Wan Z, et al. (2019) How does machine learning change software development practices? In: TSE
Wan Z, Xia X, Hassan AE (2019) What is discussed about blockchain? a case study on the use of balanced lda and the reference architecture of a domain to capture online discussions about blockchain platforms across the stack exchange communities. IEEE Trans Softw Eng
Wang D, Liao QV, Zhang Y, Khurana U, Samulowitz H, Park S, Muller M, Amini L (2021) How much automation does a data scientist want?
Thomas SW, Adams B, Hassan AE, Blostein D (2014) Studying software evolution using topic models. Sci Comput Program 80(B):457–479
Li C, Yuan X, Lin C, Guo M, Wu W, Yan J, Ouyang W (2019) Am-lfs: Automl for loss function search. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 8410–8419
Sun X, Liu X, Li B, Duan Y, Yang H, Hu J (2016) Exploring topic models in software engineering data analysis: A survey. In: 17th IEEE/ACIS International conference on software engineering, artificial intelligence, networking and parallel/distributed computing, pp 357–362
UddinGSabirFGuéhéneucY-GAlamOKhomhFAn empirical study of iot topics in iot developer discussions on stack overflowEmpirical Softw Eng2021261110.1007/s10664-021-10021-5
Arpteg A, Brinne B, Crnkovic-Friis L, Bosch J (2018) Software engineering challenges of deep learning. In: 2018 44th Euromicro conference on software engineering and advanced applications (SEAA). Prague, pp 50–59, https://doi.org/10.1109/SEAA.2018.00018
BavotaGOlivetoRGethersMPoshyvanykDLuciaADMethodbook: Recommending move method refactorings via relational topic modelsIEEE Trans Software Eng201440767169410.1109/TSE.2013.60
Hu S, Xie S, Zheng H, Liu C, Shi J, Liu X, Lin D (2020) Dsnas: Direct neural architecture search without parameter retraining. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 12084–12092
Sun X, Li B, Li Y, Chen Y (2015) What information in software historical repositories do we need to support software maintenance tasks? an approach based on topic model. Computer and Information Science, pp 22–37
Amazon Lex - Conversational AI and Chatbots (2022) Available: https://aws.amazon.com/lex/. [Online; accessed 5-Nov-2022]
Azure Machine Learning - ML as a Service (2022) Available: https://azure.microsoft.com/en-us/services/machine-learning/ . [Online; accessed 5-Nov-2022]
Agrapetidou A, Charonyktakis P, Gogas P, Papadimitriou T, Tsamardinos I (2021) An automl application to forecasting bank failures. Appl Econ Lett 28(1):5–9
Cummaudo A, Vasa R, Barnett S, Grundy J, Abdelrazek M (2020) Interpreting cloud computer vision pain-points: A mining study of stack overflow. In: 2020 IEEE/ACM 42nd international conference on software engineering (ICSE), IEEE. pp 1584–1596
Chen Z, Cao Y, Liu Y, Wang H, Xie T, Liu X (2020) A comprehensive study on challenges in deploying deep learning based software. In: Proceedings of the 28th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, pp 750–762
Drozdal J, Weisz J, Wang D, Dass G, Yao B, Zhao C, Muller M, Ju L, Su H (2020) Trust in automl: exploring information needs for establishing trust in automated machine learning systems. In: 25th International conference on intelligent user interfaces (IUI), pp 297–307
ChenT-HPThomasSWHassanAEA survey on the use of topic models when mining software repositoriesEmpir Softw Eng20162151843191910.1007/s10664-015-9402-8
Exchange S (2020) Stack exchange data dump . Available: https://archive.org/details/stackexchange. [Online; accessed 5-Nov-2022]
OpenAI (2023) Gpt-4 technical report
Abdellatif A, Costa D, Badran K, Abdalkareem R, Shihab E (2020) Challenges in chatbot development: A study of stack overflow posts. In: Proceedings of the 17th international conference on mining software repositories, MSR ’20, New York, NY, USA, 2020. Association for Computing Machinery pp 174-185
Linares-Vásquez M, Dit B, Poshyvanyk D (2013) An exploratory analysis of mobile development issues using stack overflow. In 2013 10th working conference on mining software repositories (MSR), IEEE. pp 93–96
Mellor J, Turner J, Storkey A, Crowley EJ (2021) Neural architecture search without training. In: International conference on machine learning, PMLR. pp 7588–7598
Tian K, Revelle M, Poshyvanyk D (2009) Using latent dirichlet allocation for automatic categorization of software. In: 6th international working conference on mining software repositories, pp 163–166
Pham H, Guan M, Zoph B, Le Q, Dean J (2018) Efficient neural architecture search via parameters sharing. In International conference on machine learning, PMLR. pp 4095–4104
Thomas SW, Adams B, Hassan AE, Blostein D (2011) Modeling the evolution of topics in source code histories. In: 8th working conference on mining software repositories, pp 173–182
ElskenTMetzenJHHutterFNeural architecture search: A surveyThe J Mach Learn Res2019201199720173948095
AWS Announces Nine New Amazon SageMaker Capabilities (2022) Available: https://www.businesswire.com/news/home/20201208005335/en/AWS-Announces-Nine-New-Amazon-SageMaker-Capabilities . [Online; accessed 5-Nov-2022]
Hu J, Sun X, Lo D, Li B (2015) Modeling the evolution of development topics using dynamic topic models. In IEEE 22nd international conference on software analysis, evolution, and reengineering, pp 3–12
Röder M, Both A, Hinneburg A (2015) Exploring the space of topic coherence measures. In Proceedings of the eighth ACM international conference on Web search and data mining, pp 399–408
DasKBeheraRNA survey on machine learning: concept, algorithms and applicationsInt J Innov Res Comput Commun Eng20175213011309
Haque MU, Iwaya LH, Babar MA (2020) Challenges in docker development: A large-scale study using stack overflow. In Proceedings of the 14th ACM/IEEE international symposium on empirical software engineering and measurement (ESEM), pp 1–11
Rehurek R, Sojka P (2010) Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 workshop on new challenges for NLP frameworks. Citeseer
Humbatova N, Jahangirova G, Bavota G, Riccio V, Stocco A, Tonella P (2020) Taxonomy of real faults in deep learning systems. In Proceedings of the ACM/IEEE 42nd international conference on software engineering, pp 1110–1121
Rao S, Kak AC (2011) Retrieval from software libraries for bug localization: a comparative study of generic and composite text models. In 8th working conference on mining software repositories, pp 43-52
HanJShihabEWanZDengSXiaXWhat do programmers discuss about deep learning frameworksEmpir Softw Eng20202542694274710.1007/s10664-020-09819-6
BleiDMNgAYJordanMILatent dirichlet allocationJ Mach Learn Res200334–59931022
SunXLiBLeungHLiBLiYMsr4sm: Using topic models to effectively mining software repositories for software maintenance tasksInf Softw Technol20156667169410.1016/j.infsof.2015.05.003
RapidMiner (2022) Amplify the Impact of Your People, Expertise. Available: https://rapidminer.com/ . [Online; accessed 5-Nov-2022]
RosenCShihabEWhat are mobile developers asking about? a large scale study using stack overflowEmpir Softw Eng20162131192122310.1007/s10664-015-9379-3
HeXZhaoKChuXAutoml: A survey of the state-of-the-artKnowl-Based Syst202121210.1016/j.knosys.2020.106622
Alamin MAA, Malakar S, Uddin G, Afroz S, Haider TB, Iqbal A (2021) An empirical study of developer discussions on low-code software development challenges. In 2021 IEEE/ACM 18th International conference on mining software repositories (MSR), IEEE pp 46–57
Splunk (2022) The Data Platform for the Hybrid World. Available: https://www.splunk.com/. [Online; accessed 5-Nov-2022]
Shah V, Lacanlale J, Kumar P, Yang K, Kumar A (2021) Towards benchmarking feature type inference for automl platforms. In: Proceedings of the 2021 international con
MG Kendall (10450_CR50) 1938; 30
T Elsken (10450_CR34) 2019; 20
S Fincher (10450_CR36) 2005; 22
10450_CR29
SK Karmaker (10450_CR49) 2021; 54
10450_CR25
10450_CR69
10450_CR24
10450_CR68
10450_CR27
X-L Yang (10450_CR90) 2016; 31
10450_CR76
10450_CR31
10450_CR75
10450_CR78
B Cleary (10450_CR28) 2009; 14
10450_CR33
10450_CR72
10450_CR71
10450_CR30
10450_CR74
10450_CR70
A Barua (10450_CR20) 2014; 19
WH Kruskal (10450_CR51) 1957; 52
10450_CR39
10450_CR35
10450_CR79
10450_CR38
10450_CR37
10450_CR43
10450_CR87
10450_CR86
10450_CR45
G Uddin (10450_CR84) 2021; 26
10450_CR89
10450_CR44
10450_CR88
10450_CR83
10450_CR82
10450_CR41
10450_CR85
10450_CR81
10450_CR80
DM Blei (10450_CR23) 2003; 3
G Bavota (10450_CR21) 2014; 40
J Han (10450_CR40) 2020; 25
K Das (10450_CR32) 2017; 5
10450_CR47
10450_CR46
10450_CR48
10450_CR10
10450_CR54
C Ramasubramanian (10450_CR67) 2013; 2
10450_CR12
10450_CR56
10450_CR11
10450_CR55
10450_CR52
T-HP Chen (10450_CR26) 2016; 21
10450_CR91
X He (10450_CR42) 2021; 212
10450_CR5
10450_CR4
10450_CR3
10450_CR2
10450_CR1
10450_CR18
H Li (10450_CR53) 2018; 23
10450_CR17
10450_CR19
10450_CR9
10450_CR14
10450_CR58
10450_CR8
10450_CR13
10450_CR57
10450_CR7
10450_CR16
10450_CR6
10450_CR15
10450_CR59
10450_CR65
10450_CR64
10450_CR22
10450_CR61
10450_CR60
10450_CR63
10450_CR62
D Poshyvanyk (10450_CR66) 2007; 33
X Sun (10450_CR77) 2015; 66
C Rosen (10450_CR73) 2016; 21
References_xml – reference: Li C, Yuan X, Lin C, Guo M, Wu W, Yan J, Ouyang W (2019) Am-lfs: Automl for loss function search. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 8410–8419
– reference: Li Y, Shen Y, Zhang W, Zhang C, Cui B (2022) Volcanoml: speeding up end-to-end automl via scalable search space decomposition. The VLDB Journal, pp 1–25
– reference: YangX-LLoDXiaXWanZ-YSunJ-LWhat security questions do developers ask? a large-scale study of stack overflow postsJ Comput Sci Technol201631591092410.1007/s11390-016-1672-0
– reference: Asuncion HU, Asuncion AU, Taylor RN (2010) Software traceability with topic modeling. In: 2010 ACM/IEEE 32nd international conference on software engineering, vol 1, pp 95–104. IEEE
– reference: Jiang H, et al. (2018) To trust or not to trust a classifier. In: Proc NeurIPS, pp 5546–5557
– reference: Mellor J, Turner J, Storkey A, Crowley EJ (2021) Neural architecture search without training. In: International conference on machine learning, PMLR. pp 7588–7598
– reference: BavotaGOlivetoRGethersMPoshyvanykDLuciaADMethodbook: Recommending move method refactorings via relational topic modelsIEEE Trans Software Eng201440767169410.1109/TSE.2013.60
– reference: Lee DJ-L, Macke S (2020) A human-in-the-loop perspective on automl: Milestones and the road ahead. IEEE Data Engineering Bulletin
– reference: Bangash AA, Sahar H, Chowdhury S, Wong AW, Hindle A, Ali K (2019) What do developers know about machine learning: a study of ml discussions on stackoverflow. In: 2019 IEEE/ACM 16th international conference on mining software repositories (MSR), IEEE. pp 260–264
– reference: Shah V, Lacanlale J, Kumar P, Yang K, Kumar A (2021) Towards benchmarking feature type inference for automl platforms. In: Proceedings of the 2021 international conference on management of data, pp 1584–1596
– reference: Automated Machine Learning Market Size & Share Analysis - Growth Trends & Forecasts (2024 - 2029). Available: https://www.mordorintelligence.com/industry-reports/automated-machine-learning-market. [Online; accessed 14 Jan 2024]
– reference: AWS Announces Nine New Amazon SageMaker Capabilities (2022) Available: https://www.businesswire.com/news/home/20201208005335/en/AWS-Announces-Nine-New-Amazon-SageMaker-Capabilities . [Online; accessed 5-Nov-2022]
– reference: Linares-Vásquez M, Dit B, Poshyvanyk D (2013) An exploratory analysis of mobile development issues using stack overflow. In 2013 10th working conference on mining software repositories (MSR), IEEE. pp 93–96
– reference: Wan Z, et al. (2019) How does machine learning change software development practices? In: TSE
– reference: AutoFolio Automated Algorithm Selection with Hyperparameter Optimization Library (2022) Available: https://github.com/automl/AutoFolio . [Online; accessed 5-Nov-2022]
– reference: Islam MJ, Nguyen HA, Pan R, Rajan H (2019) What do developers ask about ml libraries? a large-scale study using stack overflow. arXiv preprint arXiv:1906.11940
– reference: Majidi F, Openja M, Khomh F, Li H (2020) An empirical study on the usage of automated machine learning tools. pp 59–70
– reference: Arun R, Suresh V, Madhavan CV, Murthy MN (2010) On finding the natural number of topics with latent dirichlet allocation: Some observations. In: Pacific-Asia conference on knowledge discovery and data mining, Springer. pp 391–402
– reference: DasKBeheraRNA survey on machine learning: concept, algorithms and applicationsInt J Innov Res Comput Commun Eng20175213011309
– reference: ChenT-HPThomasSWHassanAEA survey on the use of topic models when mining software repositoriesEmpir Softw Eng20162151843191910.1007/s10664-015-9402-8
– reference: Thomas SW, Adams B, Hassan AE, Blostein D (2014) Studying software evolution using topic models. Sci Comput Program 80(B):457–479
– reference: Truong A, Walters A, Goodsitt J, Hines K, Bruss CB, Farivar R (2019) Towards automated machine learning: Evaluation and comparison of automl approaches and tools. In: 2019 IEEE 31st international conference on tools with artificial intelligence (ICTAI), IEEE. pp 1471–1479
– reference: Amazon SageMaker Overview (2022) Available: https://aws.amazon.com/sagemaker/ . [Online; accessed 5-Nov-2022]
– reference: Agrapetidou A, Charonyktakis P, Gogas P, Papadimitriou T, Tsamardinos I (2021) An automl application to forecasting bank failures. Appl Econ Lett 28(1):5–9
– reference: FincherSTenenbergJMaking sense of card sorting dataExpert Syst2005223899310.1111/j.1468-0394.2005.00299.x
– reference: Abdellatif A, Costa D, Badran K, Abdalkareem R, Shihab E (2020) Challenges in chatbot development: A study of stack overflow posts. In: Proceedings of the 17th international conference on mining software repositories, MSR ’20, New York, NY, USA, 2020. Association for Computing Machinery pp 174-185
– reference: Bahrampour S, Ramakrishnan N, Schott L, Shah M (2018) Comparative study of deep learning software frameworks. arXiv preprint arXiv:1511.06435
– reference: KruskalWHHistorical notes on the wilcoxon unpaired two-sample testJ Am Stat Assoc19575227935636010.1080/01621459.1957.10501395
– reference: Wan Z, Xia X, Hassan AE (2019) What is discussed about blockchain? a case study on the use of balanced lda and the reference architecture of a domain to capture online discussions about blockchain platforms across the stack exchange communities. IEEE Trans Softw Eng
– reference: Pham H, Guan M, Zoph B, Le Q, Dean J (2018) Efficient neural architecture search via parameters sharing. In International conference on machine learning, PMLR. pp 4095–4104
– reference: RapidMiner (2022) Amplify the Impact of Your People, Expertise. Available: https://rapidminer.com/ . [Online; accessed 5-Nov-2022]
– reference: ClearyBExtonCBuckleyJEnglishMAn empirical analysis of information retrieval based concept location techniques in software comprehensionEmpir Softw Eng2009149313010.1007/s10664-008-9095-3
– reference: PoshyvanykDGuéhéneucY-GMarcusAAntoniolGRajlichVTFeature location using probabilistic ranking of methods based on execution scenarios and information retrievalIEEE Trans Softw Eng200733642043210.1109/TSE.2007.1016
– reference: Azure Machine Learning - ML as a Service (2022) Available: https://azure.microsoft.com/en-us/services/machine-learning/ . [Online; accessed 5-Nov-2022]
– reference: Haque MU, Iwaya LH, Babar MA (2020) Challenges in docker development: A large-scale study using stack overflow. In Proceedings of the 14th ACM/IEEE international symposium on empirical software engineering and measurement (ESEM), pp 1–11
– reference: Humbatova N, Jahangirova G, Bavota G, Riccio V, Stocco A, Tonella P (2020) Taxonomy of real faults in deep learning systems. In Proceedings of the ACM/IEEE 42nd international conference on software engineering, pp 1110–1121
– reference: Garner overview (2020) Available: https://www.gartner.com. [Online; accessed 5-Nov-2022]
– reference: Roscher R, Bohn B, Duarte, MF, Garcke J (2020) Explainable machine learning for scientific insights and discoveries. IEEE Access 8:42200–42216. https://doi.org/10.1109/ACCESS.2020.2976199
– reference: KarmakerSKHassanMMSmithMJXuLZhaiCVeeramachaneniKAutoml to date and beyond: Challenges and opportunitiesACM Computing Surveys (CSUR)202154813610.1145/3470918
– reference: SunXLiBLeungHLiBLiYMsr4sm: Using topic models to effectively mining software repositories for software maintenance tasksInf Softw Technol20156667169410.1016/j.infsof.2015.05.003
– reference: Li Y, Wang Z, Xie Y, Ding B, Zeng K, Zhang C (2021) Automl: From methodology to application. In: Proceedings of the 30th ACM international conference on information & knowledge management, pp 4853–4856
– reference: UddinGSabirFGuéhéneucY-GAlamOKhomhFAn empirical study of iot topics in iot developer discussions on stack overflowEmpirical Softw Eng2021261110.1007/s10664-021-10021-5
– reference: RosenCShihabEWhat are mobile developers asking about? a large scale study using stack overflowEmpir Softw Eng20162131192122310.1007/s10664-015-9379-3
– reference: Chen T-H, Thomas SW, Nagappan M, Hassan AE (2012) Explaining software defects using topic models. In: 9th working conference on mining software repositories, pp 189–198
– reference: Alshangiti M, Sapkota H, Murukannaiah PK, Liu X, Yu Q (2019) Why is developing machine learning applications challenging? a study on stack overflow posts. In: 2019 ACM/IEEE international symposium on empirical software engineering and measurement (ESEM), IEEE. pp 1–11
– reference: OpenAI (2023) Gpt-4 technical report
– reference: Bagherzadeh M, Khatchadourian R (2019) Going big: A large-scale study on what big data developers ask. In Proceedings of the 2019 27th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, ESEC/FSE 2019, New York, NY, USA, ACM pp 432–442
– reference: RamasubramanianCRamyaREffective pre-processing activities in text mining using improved porter’s stemming algorithmInt J Adv Res Comput Commun Eng201321245364538
– reference: KendallMGA new measure of rank correlationBiometrika1938301819310.1093/biomet/30.1-2.81
– reference: Sculley D, et al. (2015) Hidden technical debt in machine learning systems. In: 28th International conference on neural information processing systems, vol 2, pp 2503–2511
– reference: Tian K, Revelle M, Poshyvanyk D (2009) Using latent dirichlet allocation for automatic categorization of software. In: 6th international working conference on mining software repositories, pp 163–166
– reference: Alamin MAA, Malakar S, Uddin G, Afroz S, Haider TB, Iqbal A (2021) An empirical study of developer discussions on low-code software development challenges. In 2021 IEEE/ACM 18th International conference on mining software repositories (MSR), IEEE pp 46–57
– reference: Bubeck S, Chandrasekaran V, Eldan R, Gehrke J, Horvitz E, Kamar E, Lee P, Lee YT, Li Y, Lundberg S, Nori H, Palangi H, Ribeiro MT, Zhang Y (2023) Sparks of artificial general intelligence: Early experiments with gpt-4
– reference: MLBox platform overview (2022) Available: https://bigml.com/. [Online; accessed 5-Nov-2022]
– reference: Hu J, Sun X, Lo D, Li B (2015) Modeling the evolution of development topics using dynamic topic models. In IEEE 22nd international conference on software analysis, evolution, and reengineering, pp 3–12
– reference: HeXZhaoKChuXAutoml: A survey of the state-of-the-artKnowl-Based Syst202121210.1016/j.knosys.2020.106622
– reference: Ahmed S, Bagherzadeh M (2018) What do concurrency developers ask about? a large-scale study using stack overflow. In: Proceedings of the 12th ACM/IEEE International symposium on empirical software engineering and measurement, ESEM ’18, New York, NY, USA . Association for Computing Machinery
– reference: BaruaAThomasSWHassanAEWhat are developers talking about? an analysis of topics and trends in stack overflowEmpir Softw Eng201419361965410.1007/s10664-012-9231-y
– reference: Hutter F, Kotthoff L, Vanschoren J (2019) AutoML: Methods, systems, challenges. Springer series on challenges in machine learning
– reference: Amazon Lex - Conversational AI and Chatbots (2022) Available: https://aws.amazon.com/lex/. [Online; accessed 5-Nov-2022]
– reference: Cummaudo A, Vasa R, Barnett S, Grundy J, Abdelrazek M (2020) Interpreting cloud computer vision pain-points: A mining study of stack overflow. In: 2020 IEEE/ACM 42nd international conference on software engineering (ICSE), IEEE. pp 1584–1596
– reference: G2 overview (2022) Available: https://www.g2.com/. [Online; accessed 5-Nov-2022]
– reference: Patel K, Fogarty J, Landay JA, Harrison BL (2008) Examining difficulties software developers encounter in the adoption of statistical machine learning. In AAAI, pp 1563–1566
– reference: Zhang Y, Chen Y, Cheung S-C, Xiong Y, Zhang L (2018) An empirical study on tensorflow program bugs. In: Proceedings of the 27th ACM SIGSOFT International symposium on software testing and analysis, pp 129–140
– reference: Mazzawi H, Gonzalvo X, Kracun A, Sridhar P, Subrahmanya NA, Lopez-Moreno I, Jin Park H, Violette P (2019) Improving keyword spotting and language identification via neural architecture search at scale. In Interspeech
– reference: Rehurek R, Sojka P (2010) Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 workshop on new challenges for NLP frameworks. Citeseer
– reference: Arpteg A, Brinne B, Crnkovic-Friis L, Bosch J (2018) Software engineering challenges of deep learning. In: 2018 44th Euromicro conference on software engineering and advanced applications (SEAA). Prague, pp 50–59, https://doi.org/10.1109/SEAA.2018.00018
– reference: BleiDMNgAYJordanMILatent dirichlet allocationJ Mach Learn Res200334–59931022
– reference: Splunk (2022) The Data Platform for the Hybrid World. Available: https://www.splunk.com/. [Online; accessed 5-Nov-2022]
– reference: Sun X, Liu X, Li B, Duan Y, Yang H, Hu J (2016) Exploring topic models in software engineering data analysis: A survey. In: 17th IEEE/ACIS International conference on software engineering, artificial intelligence, networking and parallel/distributed computing, pp 357–362
– reference: LiHChenT-HPShangWHassanAEStudying software logging using topic modelsEmpir Softw Eng2018232655269410.1007/s10664-018-9595-8
– reference: Custom models with ml kit (2023) Available: https://developers.google.com/ml-kit/custom-models. [Online; accessed 6-Nov-2023]
– reference: Thomas SW, Adams B, Hassan AE, Blostein D (2011) Modeling the evolution of topics in source code histories. In: 8th working conference on mining software repositories, pp 173–182
– reference: McCallum AK (2002) Mallet: A machine learning for language toolkit. http://mallet. cs. umass. edu
– reference: Hu S, Xie S, Zheng H, Liu C, Shi J, Liu X, Lin D (2020) Dsnas: Direct neural architecture search without parameter retraining. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 12084–12092
– reference: Alamin MAA, Uddin G, Malakar S, Afroz S, Haider TB, Iqbal A (2022) Developer discussion topics on the adoption and barriers of low code software development platforms. Empirical Software Engineering
– reference: Cloud AutoML Custom Machine Learning Models (2022) Available: https://cloud.google.com/automl . [Online; accessed 5-Nov-2022]
– reference: ElskenTMetzenJHHutterFNeural architecture search: A surveyThe J Mach Learn Res2019201199720173948095
– reference: Exchange S (2020) Stack exchange data dump . Available: https://archive.org/details/stackexchange. [Online; accessed 5-Nov-2022]
– reference: Rao S, Kak AC (2011) Retrieval from software libraries for bug localization: a comparative study of generic and composite text models. In 8th working conference on mining software repositories, pp 43-52
– reference: Xin D, Wu EY, Lee DJ-L, Salehi N, Parameswaran A (2021) Whither automl? understanding the role of automation in machine learning workflows. In: Conference on human factors in computing systems (CHI), pp 1–16
– reference: Chen Z, Cao Y, Liu Y, Wang H, Xie T, Liu X (2020) A comprehensive study on challenges in deploying deep learning based software. In: Proceedings of the 28th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, pp 750–762
– reference: HanJShihabEWanZDengSXiaXWhat do programmers discuss about deep learning frameworksEmpir Softw Eng20202542694274710.1007/s10664-020-09819-6
– reference: Amershi S, et al. (2019) Software engineering for machine learning: A case study. In: 2019 IEEE/ACM 41st international conference on software engineering: software engineering in practice (ICSE-SEIP). Montreal, pp 291–300, https://doi.org/10.1109/ICSE-SEIP.2019.00042
– reference: H2O (2022) ai: AI Cloud Platform. Available: https://h2o.ai/. [Online; accessed 5-Nov-2022]
– reference: Bajaj K, Pattabiraman K, Mesbah A (2014) Mining questions asked by web developers. In: Proceedings of the 11th working conference on mining software repositories, pp 112–121
– reference: Drozdal J, Weisz J, Wang D, Dass G, Yao B, Zhao C, Muller M, Ju L, Su H (2020) Trust in automl: exploring information needs for establishing trust in automated machine learning systems. In: 25th International conference on intelligent user interfaces (IUI), pp 297–307
– reference: Röder M, Both A, Hinneburg A (2015) Exploring the space of topic coherence measures. In Proceedings of the eighth ACM international conference on Web search and data mining, pp 399–408
– reference: Sun X, Li B, Li Y, Chen Y (2015) What information in software historical repositories do we need to support software maintenance tasks? an approach based on topic model. Computer and Information Science, pp 22–37
– reference: Uddin G, Khomh F (2017) Automatic summarization of api reviews. In: 2017 32nd IEEE/ACM international conference on automated software engineering (ASE), IEEE. pp 159–170
– reference: Wang D, Liao QV, Zhang Y, Khurana U, Samulowitz H, Park S, Muller M, Amini L (2021) How much automation does a data scientist want?
– ident: 10450_CR15
– ident: 10450_CR10
  doi: 10.1007/978-3-642-13657-3_43
– volume: 52
  start-page: 356
  issue: 279
  year: 1957
  ident: 10450_CR51
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1957.10501395
– ident: 10450_CR4
  doi: 10.1109/MSR52588.2021.00018
– ident: 10450_CR7
– ident: 10450_CR5
  doi: 10.1007/s10664-022-10244-0
– ident: 10450_CR38
– ident: 10450_CR29
– volume: 212
  year: 2021
  ident: 10450_CR42
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.106622
– ident: 10450_CR46
  doi: 10.1109/CVPR42600.2020.01210
– ident: 10450_CR72
  doi: 10.1109/ACCESS.2020.2976199
– ident: 10450_CR48
– ident: 10450_CR22
  doi: 10.1109/ICSE-SEIP.2019.00042
– ident: 10450_CR25
– ident: 10450_CR59
  doi: 10.21437/Interspeech.2019-1916
– ident: 10450_CR63
– ident: 10450_CR33
  doi: 10.1145/3377325.3377501
– volume: 25
  start-page: 2694
  issue: 4
  year: 2020
  ident: 10450_CR40
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-020-09819-6
– ident: 10450_CR35
– ident: 10450_CR2
  doi: 10.1080/13504851.2020.1725230
– ident: 10450_CR14
– volume: 14
  start-page: 93
  year: 2009
  ident: 10450_CR28
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-008-9095-3
– ident: 10450_CR71
  doi: 10.1145/2684822.2685324
– ident: 10450_CR55
  doi: 10.1007/s00778-022-00752-2
– ident: 10450_CR76
– ident: 10450_CR80
  doi: 10.1145/1985441.1985467
– ident: 10450_CR30
  doi: 10.1145/3377811.3380404
– ident: 10450_CR39
– ident: 10450_CR16
  doi: 10.1145/3338906.3338939
– ident: 10450_CR31
– volume: 26
  start-page: 11
  year: 2021
  ident: 10450_CR84
  publication-title: Empirical Softw Eng
  doi: 10.1007/s10664-021-10021-5
– ident: 10450_CR24
– volume: 19
  start-page: 619
  issue: 3
  year: 2014
  ident: 10450_CR20
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-012-9231-y
– volume: 54
  start-page: 1
  issue: 8
  year: 2021
  ident: 10450_CR49
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/3470918
– ident: 10450_CR78
  doi: 10.1007/978-3-319-10509-3_3
– ident: 10450_CR87
– ident: 10450_CR45
– volume: 23
  start-page: 2655
  year: 2018
  ident: 10450_CR53
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-018-9595-8
– volume: 33
  start-page: 420
  issue: 6
  year: 2007
  ident: 10450_CR66
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2007.1016
– ident: 10450_CR62
– volume: 66
  start-page: 671
  year: 2015
  ident: 10450_CR77
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2015.05.003
– ident: 10450_CR17
– ident: 10450_CR18
  doi: 10.1145/2597073.2597083
– volume: 22
  start-page: 89
  issue: 3
  year: 2005
  ident: 10450_CR36
  publication-title: Expert Syst
  doi: 10.1111/j.1468-0394.2005.00299.x
– ident: 10450_CR75
  doi: 10.1145/3448016.3457274
– ident: 10450_CR88
– ident: 10450_CR56
  doi: 10.1145/3459637.3483279
– ident: 10450_CR13
– volume: 21
  start-page: 1192
  issue: 3
  year: 2016
  ident: 10450_CR73
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-015-9379-3
– ident: 10450_CR85
  doi: 10.1109/ASE.2017.8115629
– ident: 10450_CR79
  doi: 10.1109/SNPD.2016.7515925
– ident: 10450_CR3
  doi: 10.1145/3239235.3239524
– ident: 10450_CR52
– ident: 10450_CR86
  doi: 10.1109/TSE.2019.2937083
– ident: 10450_CR82
  doi: 10.1109/MSR.2009.5069496
– ident: 10450_CR44
  doi: 10.1109/SANER.2015.7081810
– ident: 10450_CR68
  doi: 10.1145/1985441.1985451
– ident: 10450_CR11
  doi: 10.1145/1806799.1806817
– volume: 20
  start-page: 1997
  issue: 1
  year: 2019
  ident: 10450_CR34
  publication-title: The J Mach Learn Res
– ident: 10450_CR43
  doi: 10.1145/3377811.3380395
– ident: 10450_CR61
– ident: 10450_CR9
  doi: 10.1109/SEAA.2018.00018
– ident: 10450_CR6
  doi: 10.1109/ESEM.2019.8870187
– ident: 10450_CR81
  doi: 10.1016/j.scico.2012.08.003
– volume: 3
  start-page: 993
  issue: 4–5
  year: 2003
  ident: 10450_CR23
  publication-title: J Mach Learn Res
– ident: 10450_CR69
– ident: 10450_CR65
– volume: 40
  start-page: 671
  issue: 7
  year: 2014
  ident: 10450_CR21
  publication-title: IEEE Trans Software Eng
  doi: 10.1109/TSE.2013.60
– ident: 10450_CR41
  doi: 10.1145/3382494.3410693
– volume: 5
  start-page: 1301
  issue: 2
  year: 2017
  ident: 10450_CR32
  publication-title: Int J Innov Res Comput Commun Eng
– ident: 10450_CR83
  doi: 10.1109/ICTAI.2019.00209
– ident: 10450_CR12
– volume: 30
  start-page: 81
  issue: 1
  year: 1938
  ident: 10450_CR50
  publication-title: Biometrika
  doi: 10.1093/biomet/30.1-2.81
– ident: 10450_CR54
  doi: 10.1109/MSR.2013.6624014
– ident: 10450_CR8
– ident: 10450_CR70
– ident: 10450_CR58
– ident: 10450_CR37
– ident: 10450_CR74
– ident: 10450_CR57
  doi: 10.1109/ICCV.2019.00850
– volume: 21
  start-page: 1843
  issue: 5
  year: 2016
  ident: 10450_CR26
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-015-9402-8
– ident: 10450_CR60
– ident: 10450_CR19
  doi: 10.1109/MSR.2019.00052
– ident: 10450_CR27
  doi: 10.1145/3368089.3409759
– ident: 10450_CR89
  doi: 10.1145/3411764.3445306
– volume: 31
  start-page: 910
  issue: 5
  year: 2016
  ident: 10450_CR90
  publication-title: J Comput Sci Technol
  doi: 10.1007/s11390-016-1672-0
– ident: 10450_CR91
  doi: 10.1145/3213846.3213866
– ident: 10450_CR1
  doi: 10.1145/3379597.3387472
– ident: 10450_CR47
– ident: 10450_CR64
– volume: 2
  start-page: 4536
  issue: 12
  year: 2013
  ident: 10450_CR67
  publication-title: Int J Adv Res Comput Commun Eng
SSID ssj0009745
Score 2.3815866
Snippet Automated Machine Learning aka AutoML toolkits are low/no-code software that aim to democratize ML system application development by ensuring rapid prototyping...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 91
SubjectTerms Algorithms
Automation
Cloud computing
Collaboration
Compilers
Computer Science
Dirichlet problem
Empirical analysis
Interpreters
Machine learning
Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE)
Programming Languages
Questions
Rapid prototyping
Software engineering
Software Engineering/Programming and Operating Systems
Subject specialists
Systems design
Toolkits
Virtual communities
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgLCx8IwoFeWADS2ns2MmEKkRVIWCiUrfI8QdUQIOaVFX_PWcnIYBgQMqUOB6efb578t07hM4Vp5kCGyKRpYYwCTxFamVJIo1OGBM00T7b4oGPxux2Ek3qorCiyXZvriT9Sf2l2I1zRsCnwNHBooCs1tFGBNzd7etxOGildoVvTezE9QgFj16Xyvw-x3d31MaYP65FvbcZ7qCtOkzEg2pdd9Game2h7aYFA64tch9lo3yJrZxjOTd4Cc-0fMZyUeYQiBqN33yqpMF1b4inK6w-BZqr-kssZ9q9rDqqFDi3eAC_39_hMs9fX6ZlcYDGw5vH6xGp2yYQFYqgJBIMyVphkr6NtciAT1DmiJPkWjEdSbDigKo4UTzKZKycAH0grOY8lkrIKKaHqDPLZ-YIYS5DZUMbUiWANsog1hCvJDpjVve5YqaLLhr00vdKHSNtdZAd1ilgnXqs01UX9RqA09pSitRRFgiyhEi66LIBvf3892zH_xt-gjZDt-4-07aHOuV8YU4hniizM799PgCBKMLO
  priority: 102
  providerName: Springer Nature
Title How far are we with automated machine learning? characterization and challenges of AutoML toolkits
URI https://link.springer.com/article/10.1007/s10664-024-10450-y
https://www.proquest.com/docview/3067125779
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA46X3zxLs7LyINvGuzaNGmfxpTN4Q0RB_pU0lxU1FXXDvHfe9KmFgWFQiGlefhOzi05OR9C-5IFqQQdIqEJNKEC8hShpCGx0CqmlAexKqstrthoTM_uwju34Za7ssraJpaGWmXS7pEf2dAWnDHnce_tnVjWKHu66ig05tFCFzyNXeHR8LRpustLkmLbZo8E4NvdpRl3dY4xSsBDgSGioUc-fzqmJtr8dUBa-p3hClpyASPuVxJeRXN6soaWazIG7HRzHaWj7AMbMcViqvEHPE_FIxazIoOQVCv8WhZNauxYIh56WH63aq5uYmIxUXaw4lbJcWZwH36_vMBFlr08PxX5BhoPB7cnI-IIFIj0uVcQASplDNdx10SKp5BZBNSmUIIpSVUoQJ-9QEaxZGEqImlb0XvcKMYiIbkIo2ATtSbZRG8hzIQvjW_8QHJIIIUXKYhcYpVSo7pMUt1GBzV6yVvVJyNpOiJbrBPAOimxTj7baLcGOHE6kyeNhNvosAa9-fz3bNv_z7aDFn0r57LGdhe1iulM70EkUaSdcrl00EL_9P58AO_jwdX1DYyO_f4XvfXJig
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONALj0LFAi0-0FOxGmLHTg4IIcqywMIJJG7B8QMQsIHdoNX-KX5jx3k0AgluSDklig-fxzPfJDPzAWxqwTKNZ4hGjlnKFeYpymhHE2VNwrlkiSmrLc5E74IfX0aXU_DS9ML4ssrGJ5aO2uTafyP_46ktBmMpk93HJ-pVo_zf1UZCozKLEzsZY8o22jn6i_v7Kwy7B-f7PVqrClAdyqCgCu3MOWmTbRcbmSHdZtznFUoYzU2k0MgDpuNEiyhTsfbz2QPpjBCx0lJFMcN1v8AMZyzxJYRx97Ad8itLUWQ_1o8y5BJ1k07dqicEpxgR0fHxKKCT14GwZbdvfsiWca67AHM1QSV7lUUtwpQdfIP5RvyB1L5gCbJePiZODYkaWjLG67a4Ieq5yJECW0MeyiJNS2pViutdov-Phq46P4kaGH-z0nIZkdyRPXz9tE-KPL-_uy1Gy3DxKdB-h-lBPrArQIQKtQtdyLTEhFUFsUGmlJiMO7MtNLcd-N2glz5WcznSdgKzxzpFrNMS63TSgfUG4LQ-o6O0tagObDWgt4_fX23149U2YLZ3ftpP-0dnJ2vwNfR7Xtb3rsN0MXy2P5DFFNnP0nQIXH22rf4D_vkBlg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xkBAXKBTEAi0-wKlYhNixkwNCqHRZHkUcQOIWHD8oKmxgN2i1f41fxziPRkWCG1JOieLD-PPMN8nMfACbWrBM4xmikWOWcoV5ijLa0URZk3AuWWLKaotz0bviJ9fR9QS8NL0wvqyy8Ymloza59t_Idzy1xWAsZbLj6rKIi8Pu_uMT9QpS_k9rI6dRQeTUjkeYvg33jg9xr7fCsPvr8meP1goDVIcyKKhCzDknbbLrYiMzpN6M-xxDCaO5iRQCPmA6TrSIMhVrP6s9kM4IESstVRQzXHcSpiWLA6-eEHeP2oG_shRI9iP-KENeUTfs1G17QnCK0RGdII8COv4_KLZM983P2TLmdb_AXE1WyUGFrgWYsP1FmG-EIEjtF75C1stHxKkBUQNLRnjdFX-Iei5ypMPWkIeyYNOSWqHidp_of2Oiqy5QovrG36x0XYYkd-QAX_99Roo8v_97VwyX4OpTTLsMU_28b1eACBVqF7qQaYnJqwpig6wpMRl3Zldobjvwo7Fe-ljN6Ejbacze1inaOi1tnY47sN4YOK3P6zBt0dWB7cbo7eP3V1v9eLUNmEGUpmfH56drMBv6LS9Lfddhqhg8229IaIrse4kcAjefDdVXz2MFww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+far+are+we+with+automated+machine+learning%3F+characterization+and+challenges+of+AutoML+toolkits&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Al+Alamin%2C+Md+Abdullah&rft.au=Uddin%2C+Gias&rft.date=2024-07-01&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=29&rft.issue=4&rft_id=info:doi/10.1007%2Fs10664-024-10450-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10664_024_10450_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon