How far are we with automated machine learning? characterization and challenges of AutoML toolkits
Automated Machine Learning aka AutoML toolkits are low/no-code software that aim to democratize ML system application development by ensuring rapid prototyping of ML models and by enabling collaboration across different stakeholders in ML system design (e.g., domain experts, data scientists, etc.)....
Saved in:
Published in | Empirical software engineering : an international journal Vol. 29; no. 4; p. 91 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1382-3256 1573-7616 |
DOI | 10.1007/s10664-024-10450-y |
Cover
Loading…
Abstract | Automated Machine Learning aka AutoML toolkits are low/no-code software that aim to democratize ML system application development by ensuring rapid prototyping of ML models and by enabling collaboration across different stakeholders in ML system design (e.g., domain experts, data scientists, etc.). It is thus important to know the state of current AutoML toolkits and the challenges ML practitioners face while using those toolkits. In this paper, we first offer a characterization of currently available AutoML toolits by analyzing 37 top AutoML tools and platforms. We find that the top AutoML platforms are mostly cloud-based. Most of the tools are optimized for the adoption of shallow ML models. Second, we present an empirical study of 14.3K AutoML related posts from Stack Overflow (SO) that we analyzed using topic modelling algorithm LDA (Latent Dirichlet Allocation) to understand the challenges of ML practitioners while using the AutoML toolkits. We find 13 topics in the AutoML related discussions in SO. The 13 topics are grouped into four categories: MLOps (43% of all questions), Model (28% questions), Data (27% questions), and Documentation (2% questions). Most questions are asked during Model training (29%) and Data preparation (25%) phases. AutoML practitioners find the MLOps topic category most challenging. Topics related to the MLOps category are the most prevalent and popular for cloud-based AutoML toolkits. Based on our study findings, we provide 15 recommendations to improve the adoption and development of AutoML toolkits. |
---|---|
AbstractList | Automated Machine Learning aka AutoML toolkits are low/no-code software that aim to democratize ML system application development by ensuring rapid prototyping of ML models and by enabling collaboration across different stakeholders in ML system design (e.g., domain experts, data scientists, etc.). It is thus important to know the state of current AutoML toolkits and the challenges ML practitioners face while using those toolkits. In this paper, we first offer a characterization of currently available AutoML toolits by analyzing 37 top AutoML tools and platforms. We find that the top AutoML platforms are mostly cloud-based. Most of the tools are optimized for the adoption of shallow ML models. Second, we present an empirical study of 14.3K AutoML related posts from Stack Overflow (SO) that we analyzed using topic modelling algorithm LDA (Latent Dirichlet Allocation) to understand the challenges of ML practitioners while using the AutoML toolkits. We find 13 topics in the AutoML related discussions in SO. The 13 topics are grouped into four categories: MLOps (43% of all questions), Model (28% questions), Data (27% questions), and Documentation (2% questions). Most questions are asked during Model training (29%) and Data preparation (25%) phases. AutoML practitioners find the MLOps topic category most challenging. Topics related to the MLOps category are the most prevalent and popular for cloud-based AutoML toolkits. Based on our study findings, we provide 15 recommendations to improve the adoption and development of AutoML toolkits. |
ArticleNumber | 91 |
Author | Al Alamin, Md Abdullah Uddin, Gias |
Author_xml | – sequence: 1 givenname: Md Abdullah surname: Al Alamin fullname: Al Alamin, Md Abdullah organization: DISA Lab, University of Calgary – sequence: 2 givenname: Gias orcidid: 0000-0003-1376-095X surname: Uddin fullname: Uddin, Gias email: gias98@gmail.com organization: York University |
BookMark | eNp9kFtLAzEQhYMoWC9_wKeAz6uTzebSJyniDSq-6HOYZrPt1m1SkxSpv97UCr4JAzMM5zvDnBNy6IN3hFwwuGIA6joxkLKpoG4qBo2AantARkwoXinJ5GGZua4rXgt5TE5SWgLAWDViRGaP4ZN2GClGRz9L9XlBcZPDCrNr6QrtoveODg6j7_38htoFRrTZxf4Lcx88Rd_ulsPg_NwlGjo6KfjzlOYQhvc-pzNy1OGQ3PlvPyVv93evt4_V9OXh6XYyrWytIFcIILtOuTHrdKtmSmrecGANytY2rUDONHCrx1aKGWortdCgulZKjVah0PyUXO591zF8bFzKZhk20ZeThoNUrBZKjYuq3qtsDClF15l17FcYt4aB2WVp9lmakqX5ydJsC8T3UCri8mb8s_6H-gaks3mq |
Cites_doi | 10.1007/978-3-642-13657-3_43 10.1080/01621459.1957.10501395 10.1109/MSR52588.2021.00018 10.1007/s10664-022-10244-0 10.1016/j.knosys.2020.106622 10.1109/CVPR42600.2020.01210 10.1109/ACCESS.2020.2976199 10.1109/ICSE-SEIP.2019.00042 10.21437/Interspeech.2019-1916 10.1145/3377325.3377501 10.1007/s10664-020-09819-6 10.1080/13504851.2020.1725230 10.1007/s10664-008-9095-3 10.1145/2684822.2685324 10.1007/s00778-022-00752-2 10.1145/1985441.1985467 10.1145/3377811.3380404 10.1145/3338906.3338939 10.1007/s10664-021-10021-5 10.1007/s10664-012-9231-y 10.1145/3470918 10.1007/978-3-319-10509-3_3 10.1007/s10664-018-9595-8 10.1109/TSE.2007.1016 10.1016/j.infsof.2015.05.003 10.1145/2597073.2597083 10.1111/j.1468-0394.2005.00299.x 10.1145/3448016.3457274 10.1145/3459637.3483279 10.1007/s10664-015-9379-3 10.1109/ASE.2017.8115629 10.1109/SNPD.2016.7515925 10.1145/3239235.3239524 10.1109/TSE.2019.2937083 10.1109/MSR.2009.5069496 10.1109/SANER.2015.7081810 10.1145/1985441.1985451 10.1145/1806799.1806817 10.1145/3377811.3380395 10.1109/SEAA.2018.00018 10.1109/ESEM.2019.8870187 10.1016/j.scico.2012.08.003 10.1109/TSE.2013.60 10.1145/3382494.3410693 10.1109/ICTAI.2019.00209 10.1093/biomet/30.1-2.81 10.1109/MSR.2013.6624014 10.1109/ICCV.2019.00850 10.1007/s10664-015-9402-8 10.1109/MSR.2019.00052 10.1145/3368089.3409759 10.1145/3411764.3445306 10.1007/s11390-016-1672-0 10.1145/3213846.3213866 10.1145/3379597.3387472 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ JQ2 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS S0W |
DOI | 10.1007/s10664-024-10450-y |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central (New) ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Technology Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-7616 |
ExternalDocumentID | 10_1007_s10664_024_10450_y |
GrantInformation_xml | – fundername: NSERC grantid: RGPIN-2021-02575 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8R Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 8FD ABRTQ DWQXO JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c270t-a006ff7e91f8d7b768343014a6dc4d5a31803c89c65ba8c685807fd668ac7a583 |
IEDL.DBID | 8FG |
ISSN | 1382-3256 |
IngestDate | Sat Aug 23 14:57:07 EDT 2025 Tue Jul 01 03:32:23 EDT 2025 Fri Feb 21 02:40:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | AutoML ML system engineering Automated machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-a006ff7e91f8d7b768343014a6dc4d5a31803c89c65ba8c685807fd668ac7a583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1376-095X |
PQID | 3067125779 |
PQPubID | 326341 |
ParticipantIDs | proquest_journals_3067125779 crossref_primary_10_1007_s10664_024_10450_y springer_journals_10_1007_s10664_024_10450_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Empirical software engineering : an international journal |
PublicationTitleAbbrev | Empir Software Eng |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Bagherzadeh M, Khatchadourian R (2019) Going big: A large-scale study on what big data developers ask. In Proceedings of the 2019 27th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, ESEC/FSE 2019, New York, NY, USA, ACM pp 432–442 Xin D, Wu EY, Lee DJ-L, Salehi N, Parameswaran A (2021) Whither automl? understanding the role of automation in machine learning workflows. In: Conference on human factors in computing systems (CHI), pp 1–16 Garner overview (2020) Available: https://www.gartner.com. [Online; accessed 5-Nov-2022] Jiang H, et al. (2018) To trust or not to trust a classifier. In: Proc NeurIPS, pp 5546–5557 KruskalWHHistorical notes on the wilcoxon unpaired two-sample testJ Am Stat Assoc19575227935636010.1080/01621459.1957.10501395 KendallMGA new measure of rank correlationBiometrika1938301819310.1093/biomet/30.1-2.81 Mazzawi H, Gonzalvo X, Kracun A, Sridhar P, Subrahmanya NA, Lopez-Moreno I, Jin Park H, Violette P (2019) Improving keyword spotting and language identification via neural architecture search at scale. In Interspeech Cloud AutoML Custom Machine Learning Models (2022) Available: https://cloud.google.com/automl . [Online; accessed 5-Nov-2022] Li Y, Shen Y, Zhang W, Zhang C, Cui B (2022) Volcanoml: speeding up end-to-end automl via scalable search space decomposition. The VLDB Journal, pp 1–25 Bubeck S, Chandrasekaran V, Eldan R, Gehrke J, Horvitz E, Kamar E, Lee P, Lee YT, Li Y, Lundberg S, Nori H, Palangi H, Ribeiro MT, Zhang Y (2023) Sparks of artificial general intelligence: Early experiments with gpt-4 BaruaAThomasSWHassanAEWhat are developers talking about? an analysis of topics and trends in stack overflowEmpir Softw Eng201419361965410.1007/s10664-012-9231-y Ahmed S, Bagherzadeh M (2018) What do concurrency developers ask about? a large-scale study using stack overflow. In: Proceedings of the 12th ACM/IEEE International symposium on empirical software engineering and measurement, ESEM ’18, New York, NY, USA . Association for Computing Machinery Amazon SageMaker Overview (2022) Available: https://aws.amazon.com/sagemaker/ . [Online; accessed 5-Nov-2022] Wan Z, et al. (2019) How does machine learning change software development practices? In: TSE Wan Z, Xia X, Hassan AE (2019) What is discussed about blockchain? a case study on the use of balanced lda and the reference architecture of a domain to capture online discussions about blockchain platforms across the stack exchange communities. IEEE Trans Softw Eng Wang D, Liao QV, Zhang Y, Khurana U, Samulowitz H, Park S, Muller M, Amini L (2021) How much automation does a data scientist want? Thomas SW, Adams B, Hassan AE, Blostein D (2014) Studying software evolution using topic models. Sci Comput Program 80(B):457–479 Li C, Yuan X, Lin C, Guo M, Wu W, Yan J, Ouyang W (2019) Am-lfs: Automl for loss function search. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 8410–8419 Sun X, Liu X, Li B, Duan Y, Yang H, Hu J (2016) Exploring topic models in software engineering data analysis: A survey. In: 17th IEEE/ACIS International conference on software engineering, artificial intelligence, networking and parallel/distributed computing, pp 357–362 UddinGSabirFGuéhéneucY-GAlamOKhomhFAn empirical study of iot topics in iot developer discussions on stack overflowEmpirical Softw Eng2021261110.1007/s10664-021-10021-5 Arpteg A, Brinne B, Crnkovic-Friis L, Bosch J (2018) Software engineering challenges of deep learning. In: 2018 44th Euromicro conference on software engineering and advanced applications (SEAA). Prague, pp 50–59, https://doi.org/10.1109/SEAA.2018.00018 BavotaGOlivetoRGethersMPoshyvanykDLuciaADMethodbook: Recommending move method refactorings via relational topic modelsIEEE Trans Software Eng201440767169410.1109/TSE.2013.60 Hu S, Xie S, Zheng H, Liu C, Shi J, Liu X, Lin D (2020) Dsnas: Direct neural architecture search without parameter retraining. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 12084–12092 Sun X, Li B, Li Y, Chen Y (2015) What information in software historical repositories do we need to support software maintenance tasks? an approach based on topic model. Computer and Information Science, pp 22–37 Amazon Lex - Conversational AI and Chatbots (2022) Available: https://aws.amazon.com/lex/. [Online; accessed 5-Nov-2022] Azure Machine Learning - ML as a Service (2022) Available: https://azure.microsoft.com/en-us/services/machine-learning/ . [Online; accessed 5-Nov-2022] Agrapetidou A, Charonyktakis P, Gogas P, Papadimitriou T, Tsamardinos I (2021) An automl application to forecasting bank failures. Appl Econ Lett 28(1):5–9 Cummaudo A, Vasa R, Barnett S, Grundy J, Abdelrazek M (2020) Interpreting cloud computer vision pain-points: A mining study of stack overflow. In: 2020 IEEE/ACM 42nd international conference on software engineering (ICSE), IEEE. pp 1584–1596 Chen Z, Cao Y, Liu Y, Wang H, Xie T, Liu X (2020) A comprehensive study on challenges in deploying deep learning based software. In: Proceedings of the 28th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, pp 750–762 Drozdal J, Weisz J, Wang D, Dass G, Yao B, Zhao C, Muller M, Ju L, Su H (2020) Trust in automl: exploring information needs for establishing trust in automated machine learning systems. In: 25th International conference on intelligent user interfaces (IUI), pp 297–307 ChenT-HPThomasSWHassanAEA survey on the use of topic models when mining software repositoriesEmpir Softw Eng20162151843191910.1007/s10664-015-9402-8 Exchange S (2020) Stack exchange data dump . Available: https://archive.org/details/stackexchange. [Online; accessed 5-Nov-2022] OpenAI (2023) Gpt-4 technical report Abdellatif A, Costa D, Badran K, Abdalkareem R, Shihab E (2020) Challenges in chatbot development: A study of stack overflow posts. In: Proceedings of the 17th international conference on mining software repositories, MSR ’20, New York, NY, USA, 2020. Association for Computing Machinery pp 174-185 Linares-Vásquez M, Dit B, Poshyvanyk D (2013) An exploratory analysis of mobile development issues using stack overflow. In 2013 10th working conference on mining software repositories (MSR), IEEE. pp 93–96 Mellor J, Turner J, Storkey A, Crowley EJ (2021) Neural architecture search without training. In: International conference on machine learning, PMLR. pp 7588–7598 Tian K, Revelle M, Poshyvanyk D (2009) Using latent dirichlet allocation for automatic categorization of software. In: 6th international working conference on mining software repositories, pp 163–166 Pham H, Guan M, Zoph B, Le Q, Dean J (2018) Efficient neural architecture search via parameters sharing. In International conference on machine learning, PMLR. pp 4095–4104 Thomas SW, Adams B, Hassan AE, Blostein D (2011) Modeling the evolution of topics in source code histories. In: 8th working conference on mining software repositories, pp 173–182 ElskenTMetzenJHHutterFNeural architecture search: A surveyThe J Mach Learn Res2019201199720173948095 AWS Announces Nine New Amazon SageMaker Capabilities (2022) Available: https://www.businesswire.com/news/home/20201208005335/en/AWS-Announces-Nine-New-Amazon-SageMaker-Capabilities . [Online; accessed 5-Nov-2022] Hu J, Sun X, Lo D, Li B (2015) Modeling the evolution of development topics using dynamic topic models. In IEEE 22nd international conference on software analysis, evolution, and reengineering, pp 3–12 Röder M, Both A, Hinneburg A (2015) Exploring the space of topic coherence measures. In Proceedings of the eighth ACM international conference on Web search and data mining, pp 399–408 DasKBeheraRNA survey on machine learning: concept, algorithms and applicationsInt J Innov Res Comput Commun Eng20175213011309 Haque MU, Iwaya LH, Babar MA (2020) Challenges in docker development: A large-scale study using stack overflow. In Proceedings of the 14th ACM/IEEE international symposium on empirical software engineering and measurement (ESEM), pp 1–11 Rehurek R, Sojka P (2010) Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 workshop on new challenges for NLP frameworks. Citeseer Humbatova N, Jahangirova G, Bavota G, Riccio V, Stocco A, Tonella P (2020) Taxonomy of real faults in deep learning systems. In Proceedings of the ACM/IEEE 42nd international conference on software engineering, pp 1110–1121 Rao S, Kak AC (2011) Retrieval from software libraries for bug localization: a comparative study of generic and composite text models. In 8th working conference on mining software repositories, pp 43-52 HanJShihabEWanZDengSXiaXWhat do programmers discuss about deep learning frameworksEmpir Softw Eng20202542694274710.1007/s10664-020-09819-6 BleiDMNgAYJordanMILatent dirichlet allocationJ Mach Learn Res200334–59931022 SunXLiBLeungHLiBLiYMsr4sm: Using topic models to effectively mining software repositories for software maintenance tasksInf Softw Technol20156667169410.1016/j.infsof.2015.05.003 RapidMiner (2022) Amplify the Impact of Your People, Expertise. Available: https://rapidminer.com/ . [Online; accessed 5-Nov-2022] RosenCShihabEWhat are mobile developers asking about? a large scale study using stack overflowEmpir Softw Eng20162131192122310.1007/s10664-015-9379-3 HeXZhaoKChuXAutoml: A survey of the state-of-the-artKnowl-Based Syst202121210.1016/j.knosys.2020.106622 Alamin MAA, Malakar S, Uddin G, Afroz S, Haider TB, Iqbal A (2021) An empirical study of developer discussions on low-code software development challenges. In 2021 IEEE/ACM 18th International conference on mining software repositories (MSR), IEEE pp 46–57 Splunk (2022) The Data Platform for the Hybrid World. Available: https://www.splunk.com/. [Online; accessed 5-Nov-2022] Shah V, Lacanlale J, Kumar P, Yang K, Kumar A (2021) Towards benchmarking feature type inference for automl platforms. In: Proceedings of the 2021 international con MG Kendall (10450_CR50) 1938; 30 T Elsken (10450_CR34) 2019; 20 S Fincher (10450_CR36) 2005; 22 10450_CR29 SK Karmaker (10450_CR49) 2021; 54 10450_CR25 10450_CR69 10450_CR24 10450_CR68 10450_CR27 X-L Yang (10450_CR90) 2016; 31 10450_CR76 10450_CR31 10450_CR75 10450_CR78 B Cleary (10450_CR28) 2009; 14 10450_CR33 10450_CR72 10450_CR71 10450_CR30 10450_CR74 10450_CR70 A Barua (10450_CR20) 2014; 19 WH Kruskal (10450_CR51) 1957; 52 10450_CR39 10450_CR35 10450_CR79 10450_CR38 10450_CR37 10450_CR43 10450_CR87 10450_CR86 10450_CR45 G Uddin (10450_CR84) 2021; 26 10450_CR89 10450_CR44 10450_CR88 10450_CR83 10450_CR82 10450_CR41 10450_CR85 10450_CR81 10450_CR80 DM Blei (10450_CR23) 2003; 3 G Bavota (10450_CR21) 2014; 40 J Han (10450_CR40) 2020; 25 K Das (10450_CR32) 2017; 5 10450_CR47 10450_CR46 10450_CR48 10450_CR10 10450_CR54 C Ramasubramanian (10450_CR67) 2013; 2 10450_CR12 10450_CR56 10450_CR11 10450_CR55 10450_CR52 T-HP Chen (10450_CR26) 2016; 21 10450_CR91 X He (10450_CR42) 2021; 212 10450_CR5 10450_CR4 10450_CR3 10450_CR2 10450_CR1 10450_CR18 H Li (10450_CR53) 2018; 23 10450_CR17 10450_CR19 10450_CR9 10450_CR14 10450_CR58 10450_CR8 10450_CR13 10450_CR57 10450_CR7 10450_CR16 10450_CR6 10450_CR15 10450_CR59 10450_CR65 10450_CR64 10450_CR22 10450_CR61 10450_CR60 10450_CR63 10450_CR62 D Poshyvanyk (10450_CR66) 2007; 33 X Sun (10450_CR77) 2015; 66 C Rosen (10450_CR73) 2016; 21 |
References_xml | – reference: Li C, Yuan X, Lin C, Guo M, Wu W, Yan J, Ouyang W (2019) Am-lfs: Automl for loss function search. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 8410–8419 – reference: Li Y, Shen Y, Zhang W, Zhang C, Cui B (2022) Volcanoml: speeding up end-to-end automl via scalable search space decomposition. The VLDB Journal, pp 1–25 – reference: YangX-LLoDXiaXWanZ-YSunJ-LWhat security questions do developers ask? a large-scale study of stack overflow postsJ Comput Sci Technol201631591092410.1007/s11390-016-1672-0 – reference: Asuncion HU, Asuncion AU, Taylor RN (2010) Software traceability with topic modeling. In: 2010 ACM/IEEE 32nd international conference on software engineering, vol 1, pp 95–104. IEEE – reference: Jiang H, et al. (2018) To trust or not to trust a classifier. In: Proc NeurIPS, pp 5546–5557 – reference: Mellor J, Turner J, Storkey A, Crowley EJ (2021) Neural architecture search without training. In: International conference on machine learning, PMLR. pp 7588–7598 – reference: BavotaGOlivetoRGethersMPoshyvanykDLuciaADMethodbook: Recommending move method refactorings via relational topic modelsIEEE Trans Software Eng201440767169410.1109/TSE.2013.60 – reference: Lee DJ-L, Macke S (2020) A human-in-the-loop perspective on automl: Milestones and the road ahead. IEEE Data Engineering Bulletin – reference: Bangash AA, Sahar H, Chowdhury S, Wong AW, Hindle A, Ali K (2019) What do developers know about machine learning: a study of ml discussions on stackoverflow. In: 2019 IEEE/ACM 16th international conference on mining software repositories (MSR), IEEE. pp 260–264 – reference: Shah V, Lacanlale J, Kumar P, Yang K, Kumar A (2021) Towards benchmarking feature type inference for automl platforms. In: Proceedings of the 2021 international conference on management of data, pp 1584–1596 – reference: Automated Machine Learning Market Size & Share Analysis - Growth Trends & Forecasts (2024 - 2029). Available: https://www.mordorintelligence.com/industry-reports/automated-machine-learning-market. [Online; accessed 14 Jan 2024] – reference: AWS Announces Nine New Amazon SageMaker Capabilities (2022) Available: https://www.businesswire.com/news/home/20201208005335/en/AWS-Announces-Nine-New-Amazon-SageMaker-Capabilities . [Online; accessed 5-Nov-2022] – reference: Linares-Vásquez M, Dit B, Poshyvanyk D (2013) An exploratory analysis of mobile development issues using stack overflow. In 2013 10th working conference on mining software repositories (MSR), IEEE. pp 93–96 – reference: Wan Z, et al. (2019) How does machine learning change software development practices? In: TSE – reference: AutoFolio Automated Algorithm Selection with Hyperparameter Optimization Library (2022) Available: https://github.com/automl/AutoFolio . [Online; accessed 5-Nov-2022] – reference: Islam MJ, Nguyen HA, Pan R, Rajan H (2019) What do developers ask about ml libraries? a large-scale study using stack overflow. arXiv preprint arXiv:1906.11940 – reference: Majidi F, Openja M, Khomh F, Li H (2020) An empirical study on the usage of automated machine learning tools. pp 59–70 – reference: Arun R, Suresh V, Madhavan CV, Murthy MN (2010) On finding the natural number of topics with latent dirichlet allocation: Some observations. In: Pacific-Asia conference on knowledge discovery and data mining, Springer. pp 391–402 – reference: DasKBeheraRNA survey on machine learning: concept, algorithms and applicationsInt J Innov Res Comput Commun Eng20175213011309 – reference: ChenT-HPThomasSWHassanAEA survey on the use of topic models when mining software repositoriesEmpir Softw Eng20162151843191910.1007/s10664-015-9402-8 – reference: Thomas SW, Adams B, Hassan AE, Blostein D (2014) Studying software evolution using topic models. Sci Comput Program 80(B):457–479 – reference: Truong A, Walters A, Goodsitt J, Hines K, Bruss CB, Farivar R (2019) Towards automated machine learning: Evaluation and comparison of automl approaches and tools. In: 2019 IEEE 31st international conference on tools with artificial intelligence (ICTAI), IEEE. pp 1471–1479 – reference: Amazon SageMaker Overview (2022) Available: https://aws.amazon.com/sagemaker/ . [Online; accessed 5-Nov-2022] – reference: Agrapetidou A, Charonyktakis P, Gogas P, Papadimitriou T, Tsamardinos I (2021) An automl application to forecasting bank failures. Appl Econ Lett 28(1):5–9 – reference: FincherSTenenbergJMaking sense of card sorting dataExpert Syst2005223899310.1111/j.1468-0394.2005.00299.x – reference: Abdellatif A, Costa D, Badran K, Abdalkareem R, Shihab E (2020) Challenges in chatbot development: A study of stack overflow posts. In: Proceedings of the 17th international conference on mining software repositories, MSR ’20, New York, NY, USA, 2020. Association for Computing Machinery pp 174-185 – reference: Bahrampour S, Ramakrishnan N, Schott L, Shah M (2018) Comparative study of deep learning software frameworks. arXiv preprint arXiv:1511.06435 – reference: KruskalWHHistorical notes on the wilcoxon unpaired two-sample testJ Am Stat Assoc19575227935636010.1080/01621459.1957.10501395 – reference: Wan Z, Xia X, Hassan AE (2019) What is discussed about blockchain? a case study on the use of balanced lda and the reference architecture of a domain to capture online discussions about blockchain platforms across the stack exchange communities. IEEE Trans Softw Eng – reference: Pham H, Guan M, Zoph B, Le Q, Dean J (2018) Efficient neural architecture search via parameters sharing. In International conference on machine learning, PMLR. pp 4095–4104 – reference: RapidMiner (2022) Amplify the Impact of Your People, Expertise. Available: https://rapidminer.com/ . [Online; accessed 5-Nov-2022] – reference: ClearyBExtonCBuckleyJEnglishMAn empirical analysis of information retrieval based concept location techniques in software comprehensionEmpir Softw Eng2009149313010.1007/s10664-008-9095-3 – reference: PoshyvanykDGuéhéneucY-GMarcusAAntoniolGRajlichVTFeature location using probabilistic ranking of methods based on execution scenarios and information retrievalIEEE Trans Softw Eng200733642043210.1109/TSE.2007.1016 – reference: Azure Machine Learning - ML as a Service (2022) Available: https://azure.microsoft.com/en-us/services/machine-learning/ . [Online; accessed 5-Nov-2022] – reference: Haque MU, Iwaya LH, Babar MA (2020) Challenges in docker development: A large-scale study using stack overflow. In Proceedings of the 14th ACM/IEEE international symposium on empirical software engineering and measurement (ESEM), pp 1–11 – reference: Humbatova N, Jahangirova G, Bavota G, Riccio V, Stocco A, Tonella P (2020) Taxonomy of real faults in deep learning systems. In Proceedings of the ACM/IEEE 42nd international conference on software engineering, pp 1110–1121 – reference: Garner overview (2020) Available: https://www.gartner.com. [Online; accessed 5-Nov-2022] – reference: Roscher R, Bohn B, Duarte, MF, Garcke J (2020) Explainable machine learning for scientific insights and discoveries. IEEE Access 8:42200–42216. https://doi.org/10.1109/ACCESS.2020.2976199 – reference: KarmakerSKHassanMMSmithMJXuLZhaiCVeeramachaneniKAutoml to date and beyond: Challenges and opportunitiesACM Computing Surveys (CSUR)202154813610.1145/3470918 – reference: SunXLiBLeungHLiBLiYMsr4sm: Using topic models to effectively mining software repositories for software maintenance tasksInf Softw Technol20156667169410.1016/j.infsof.2015.05.003 – reference: Li Y, Wang Z, Xie Y, Ding B, Zeng K, Zhang C (2021) Automl: From methodology to application. In: Proceedings of the 30th ACM international conference on information & knowledge management, pp 4853–4856 – reference: UddinGSabirFGuéhéneucY-GAlamOKhomhFAn empirical study of iot topics in iot developer discussions on stack overflowEmpirical Softw Eng2021261110.1007/s10664-021-10021-5 – reference: RosenCShihabEWhat are mobile developers asking about? a large scale study using stack overflowEmpir Softw Eng20162131192122310.1007/s10664-015-9379-3 – reference: Chen T-H, Thomas SW, Nagappan M, Hassan AE (2012) Explaining software defects using topic models. In: 9th working conference on mining software repositories, pp 189–198 – reference: Alshangiti M, Sapkota H, Murukannaiah PK, Liu X, Yu Q (2019) Why is developing machine learning applications challenging? a study on stack overflow posts. In: 2019 ACM/IEEE international symposium on empirical software engineering and measurement (ESEM), IEEE. pp 1–11 – reference: OpenAI (2023) Gpt-4 technical report – reference: Bagherzadeh M, Khatchadourian R (2019) Going big: A large-scale study on what big data developers ask. In Proceedings of the 2019 27th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, ESEC/FSE 2019, New York, NY, USA, ACM pp 432–442 – reference: RamasubramanianCRamyaREffective pre-processing activities in text mining using improved porter’s stemming algorithmInt J Adv Res Comput Commun Eng201321245364538 – reference: KendallMGA new measure of rank correlationBiometrika1938301819310.1093/biomet/30.1-2.81 – reference: Sculley D, et al. (2015) Hidden technical debt in machine learning systems. In: 28th International conference on neural information processing systems, vol 2, pp 2503–2511 – reference: Tian K, Revelle M, Poshyvanyk D (2009) Using latent dirichlet allocation for automatic categorization of software. In: 6th international working conference on mining software repositories, pp 163–166 – reference: Alamin MAA, Malakar S, Uddin G, Afroz S, Haider TB, Iqbal A (2021) An empirical study of developer discussions on low-code software development challenges. In 2021 IEEE/ACM 18th International conference on mining software repositories (MSR), IEEE pp 46–57 – reference: Bubeck S, Chandrasekaran V, Eldan R, Gehrke J, Horvitz E, Kamar E, Lee P, Lee YT, Li Y, Lundberg S, Nori H, Palangi H, Ribeiro MT, Zhang Y (2023) Sparks of artificial general intelligence: Early experiments with gpt-4 – reference: MLBox platform overview (2022) Available: https://bigml.com/. [Online; accessed 5-Nov-2022] – reference: Hu J, Sun X, Lo D, Li B (2015) Modeling the evolution of development topics using dynamic topic models. In IEEE 22nd international conference on software analysis, evolution, and reengineering, pp 3–12 – reference: HeXZhaoKChuXAutoml: A survey of the state-of-the-artKnowl-Based Syst202121210.1016/j.knosys.2020.106622 – reference: Ahmed S, Bagherzadeh M (2018) What do concurrency developers ask about? a large-scale study using stack overflow. In: Proceedings of the 12th ACM/IEEE International symposium on empirical software engineering and measurement, ESEM ’18, New York, NY, USA . Association for Computing Machinery – reference: BaruaAThomasSWHassanAEWhat are developers talking about? an analysis of topics and trends in stack overflowEmpir Softw Eng201419361965410.1007/s10664-012-9231-y – reference: Hutter F, Kotthoff L, Vanschoren J (2019) AutoML: Methods, systems, challenges. Springer series on challenges in machine learning – reference: Amazon Lex - Conversational AI and Chatbots (2022) Available: https://aws.amazon.com/lex/. [Online; accessed 5-Nov-2022] – reference: Cummaudo A, Vasa R, Barnett S, Grundy J, Abdelrazek M (2020) Interpreting cloud computer vision pain-points: A mining study of stack overflow. In: 2020 IEEE/ACM 42nd international conference on software engineering (ICSE), IEEE. pp 1584–1596 – reference: G2 overview (2022) Available: https://www.g2.com/. [Online; accessed 5-Nov-2022] – reference: Patel K, Fogarty J, Landay JA, Harrison BL (2008) Examining difficulties software developers encounter in the adoption of statistical machine learning. In AAAI, pp 1563–1566 – reference: Zhang Y, Chen Y, Cheung S-C, Xiong Y, Zhang L (2018) An empirical study on tensorflow program bugs. In: Proceedings of the 27th ACM SIGSOFT International symposium on software testing and analysis, pp 129–140 – reference: Mazzawi H, Gonzalvo X, Kracun A, Sridhar P, Subrahmanya NA, Lopez-Moreno I, Jin Park H, Violette P (2019) Improving keyword spotting and language identification via neural architecture search at scale. In Interspeech – reference: Rehurek R, Sojka P (2010) Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 workshop on new challenges for NLP frameworks. Citeseer – reference: Arpteg A, Brinne B, Crnkovic-Friis L, Bosch J (2018) Software engineering challenges of deep learning. In: 2018 44th Euromicro conference on software engineering and advanced applications (SEAA). Prague, pp 50–59, https://doi.org/10.1109/SEAA.2018.00018 – reference: BleiDMNgAYJordanMILatent dirichlet allocationJ Mach Learn Res200334–59931022 – reference: Splunk (2022) The Data Platform for the Hybrid World. Available: https://www.splunk.com/. [Online; accessed 5-Nov-2022] – reference: Sun X, Liu X, Li B, Duan Y, Yang H, Hu J (2016) Exploring topic models in software engineering data analysis: A survey. In: 17th IEEE/ACIS International conference on software engineering, artificial intelligence, networking and parallel/distributed computing, pp 357–362 – reference: LiHChenT-HPShangWHassanAEStudying software logging using topic modelsEmpir Softw Eng2018232655269410.1007/s10664-018-9595-8 – reference: Custom models with ml kit (2023) Available: https://developers.google.com/ml-kit/custom-models. [Online; accessed 6-Nov-2023] – reference: Thomas SW, Adams B, Hassan AE, Blostein D (2011) Modeling the evolution of topics in source code histories. In: 8th working conference on mining software repositories, pp 173–182 – reference: McCallum AK (2002) Mallet: A machine learning for language toolkit. http://mallet. cs. umass. edu – reference: Hu S, Xie S, Zheng H, Liu C, Shi J, Liu X, Lin D (2020) Dsnas: Direct neural architecture search without parameter retraining. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 12084–12092 – reference: Alamin MAA, Uddin G, Malakar S, Afroz S, Haider TB, Iqbal A (2022) Developer discussion topics on the adoption and barriers of low code software development platforms. Empirical Software Engineering – reference: Cloud AutoML Custom Machine Learning Models (2022) Available: https://cloud.google.com/automl . [Online; accessed 5-Nov-2022] – reference: ElskenTMetzenJHHutterFNeural architecture search: A surveyThe J Mach Learn Res2019201199720173948095 – reference: Exchange S (2020) Stack exchange data dump . Available: https://archive.org/details/stackexchange. [Online; accessed 5-Nov-2022] – reference: Rao S, Kak AC (2011) Retrieval from software libraries for bug localization: a comparative study of generic and composite text models. In 8th working conference on mining software repositories, pp 43-52 – reference: Xin D, Wu EY, Lee DJ-L, Salehi N, Parameswaran A (2021) Whither automl? understanding the role of automation in machine learning workflows. In: Conference on human factors in computing systems (CHI), pp 1–16 – reference: Chen Z, Cao Y, Liu Y, Wang H, Xie T, Liu X (2020) A comprehensive study on challenges in deploying deep learning based software. In: Proceedings of the 28th ACM joint meeting on European software engineering conference and symposium on the foundations of software engineering, pp 750–762 – reference: HanJShihabEWanZDengSXiaXWhat do programmers discuss about deep learning frameworksEmpir Softw Eng20202542694274710.1007/s10664-020-09819-6 – reference: Amershi S, et al. (2019) Software engineering for machine learning: A case study. In: 2019 IEEE/ACM 41st international conference on software engineering: software engineering in practice (ICSE-SEIP). Montreal, pp 291–300, https://doi.org/10.1109/ICSE-SEIP.2019.00042 – reference: H2O (2022) ai: AI Cloud Platform. Available: https://h2o.ai/. [Online; accessed 5-Nov-2022] – reference: Bajaj K, Pattabiraman K, Mesbah A (2014) Mining questions asked by web developers. In: Proceedings of the 11th working conference on mining software repositories, pp 112–121 – reference: Drozdal J, Weisz J, Wang D, Dass G, Yao B, Zhao C, Muller M, Ju L, Su H (2020) Trust in automl: exploring information needs for establishing trust in automated machine learning systems. In: 25th International conference on intelligent user interfaces (IUI), pp 297–307 – reference: Röder M, Both A, Hinneburg A (2015) Exploring the space of topic coherence measures. In Proceedings of the eighth ACM international conference on Web search and data mining, pp 399–408 – reference: Sun X, Li B, Li Y, Chen Y (2015) What information in software historical repositories do we need to support software maintenance tasks? an approach based on topic model. Computer and Information Science, pp 22–37 – reference: Uddin G, Khomh F (2017) Automatic summarization of api reviews. In: 2017 32nd IEEE/ACM international conference on automated software engineering (ASE), IEEE. pp 159–170 – reference: Wang D, Liao QV, Zhang Y, Khurana U, Samulowitz H, Park S, Muller M, Amini L (2021) How much automation does a data scientist want? – ident: 10450_CR15 – ident: 10450_CR10 doi: 10.1007/978-3-642-13657-3_43 – volume: 52 start-page: 356 issue: 279 year: 1957 ident: 10450_CR51 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1957.10501395 – ident: 10450_CR4 doi: 10.1109/MSR52588.2021.00018 – ident: 10450_CR7 – ident: 10450_CR5 doi: 10.1007/s10664-022-10244-0 – ident: 10450_CR38 – ident: 10450_CR29 – volume: 212 year: 2021 ident: 10450_CR42 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2020.106622 – ident: 10450_CR46 doi: 10.1109/CVPR42600.2020.01210 – ident: 10450_CR72 doi: 10.1109/ACCESS.2020.2976199 – ident: 10450_CR48 – ident: 10450_CR22 doi: 10.1109/ICSE-SEIP.2019.00042 – ident: 10450_CR25 – ident: 10450_CR59 doi: 10.21437/Interspeech.2019-1916 – ident: 10450_CR63 – ident: 10450_CR33 doi: 10.1145/3377325.3377501 – volume: 25 start-page: 2694 issue: 4 year: 2020 ident: 10450_CR40 publication-title: Empir Softw Eng doi: 10.1007/s10664-020-09819-6 – ident: 10450_CR35 – ident: 10450_CR2 doi: 10.1080/13504851.2020.1725230 – ident: 10450_CR14 – volume: 14 start-page: 93 year: 2009 ident: 10450_CR28 publication-title: Empir Softw Eng doi: 10.1007/s10664-008-9095-3 – ident: 10450_CR71 doi: 10.1145/2684822.2685324 – ident: 10450_CR55 doi: 10.1007/s00778-022-00752-2 – ident: 10450_CR76 – ident: 10450_CR80 doi: 10.1145/1985441.1985467 – ident: 10450_CR30 doi: 10.1145/3377811.3380404 – ident: 10450_CR39 – ident: 10450_CR16 doi: 10.1145/3338906.3338939 – ident: 10450_CR31 – volume: 26 start-page: 11 year: 2021 ident: 10450_CR84 publication-title: Empirical Softw Eng doi: 10.1007/s10664-021-10021-5 – ident: 10450_CR24 – volume: 19 start-page: 619 issue: 3 year: 2014 ident: 10450_CR20 publication-title: Empir Softw Eng doi: 10.1007/s10664-012-9231-y – volume: 54 start-page: 1 issue: 8 year: 2021 ident: 10450_CR49 publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3470918 – ident: 10450_CR78 doi: 10.1007/978-3-319-10509-3_3 – ident: 10450_CR87 – ident: 10450_CR45 – volume: 23 start-page: 2655 year: 2018 ident: 10450_CR53 publication-title: Empir Softw Eng doi: 10.1007/s10664-018-9595-8 – volume: 33 start-page: 420 issue: 6 year: 2007 ident: 10450_CR66 publication-title: IEEE Trans Softw Eng doi: 10.1109/TSE.2007.1016 – ident: 10450_CR62 – volume: 66 start-page: 671 year: 2015 ident: 10450_CR77 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2015.05.003 – ident: 10450_CR17 – ident: 10450_CR18 doi: 10.1145/2597073.2597083 – volume: 22 start-page: 89 issue: 3 year: 2005 ident: 10450_CR36 publication-title: Expert Syst doi: 10.1111/j.1468-0394.2005.00299.x – ident: 10450_CR75 doi: 10.1145/3448016.3457274 – ident: 10450_CR88 – ident: 10450_CR56 doi: 10.1145/3459637.3483279 – ident: 10450_CR13 – volume: 21 start-page: 1192 issue: 3 year: 2016 ident: 10450_CR73 publication-title: Empir Softw Eng doi: 10.1007/s10664-015-9379-3 – ident: 10450_CR85 doi: 10.1109/ASE.2017.8115629 – ident: 10450_CR79 doi: 10.1109/SNPD.2016.7515925 – ident: 10450_CR3 doi: 10.1145/3239235.3239524 – ident: 10450_CR52 – ident: 10450_CR86 doi: 10.1109/TSE.2019.2937083 – ident: 10450_CR82 doi: 10.1109/MSR.2009.5069496 – ident: 10450_CR44 doi: 10.1109/SANER.2015.7081810 – ident: 10450_CR68 doi: 10.1145/1985441.1985451 – ident: 10450_CR11 doi: 10.1145/1806799.1806817 – volume: 20 start-page: 1997 issue: 1 year: 2019 ident: 10450_CR34 publication-title: The J Mach Learn Res – ident: 10450_CR43 doi: 10.1145/3377811.3380395 – ident: 10450_CR61 – ident: 10450_CR9 doi: 10.1109/SEAA.2018.00018 – ident: 10450_CR6 doi: 10.1109/ESEM.2019.8870187 – ident: 10450_CR81 doi: 10.1016/j.scico.2012.08.003 – volume: 3 start-page: 993 issue: 4–5 year: 2003 ident: 10450_CR23 publication-title: J Mach Learn Res – ident: 10450_CR69 – ident: 10450_CR65 – volume: 40 start-page: 671 issue: 7 year: 2014 ident: 10450_CR21 publication-title: IEEE Trans Software Eng doi: 10.1109/TSE.2013.60 – ident: 10450_CR41 doi: 10.1145/3382494.3410693 – volume: 5 start-page: 1301 issue: 2 year: 2017 ident: 10450_CR32 publication-title: Int J Innov Res Comput Commun Eng – ident: 10450_CR83 doi: 10.1109/ICTAI.2019.00209 – ident: 10450_CR12 – volume: 30 start-page: 81 issue: 1 year: 1938 ident: 10450_CR50 publication-title: Biometrika doi: 10.1093/biomet/30.1-2.81 – ident: 10450_CR54 doi: 10.1109/MSR.2013.6624014 – ident: 10450_CR8 – ident: 10450_CR70 – ident: 10450_CR58 – ident: 10450_CR37 – ident: 10450_CR74 – ident: 10450_CR57 doi: 10.1109/ICCV.2019.00850 – volume: 21 start-page: 1843 issue: 5 year: 2016 ident: 10450_CR26 publication-title: Empir Softw Eng doi: 10.1007/s10664-015-9402-8 – ident: 10450_CR60 – ident: 10450_CR19 doi: 10.1109/MSR.2019.00052 – ident: 10450_CR27 doi: 10.1145/3368089.3409759 – ident: 10450_CR89 doi: 10.1145/3411764.3445306 – volume: 31 start-page: 910 issue: 5 year: 2016 ident: 10450_CR90 publication-title: J Comput Sci Technol doi: 10.1007/s11390-016-1672-0 – ident: 10450_CR91 doi: 10.1145/3213846.3213866 – ident: 10450_CR1 doi: 10.1145/3379597.3387472 – ident: 10450_CR47 – ident: 10450_CR64 – volume: 2 start-page: 4536 issue: 12 year: 2013 ident: 10450_CR67 publication-title: Int J Adv Res Comput Commun Eng |
SSID | ssj0009745 |
Score | 2.3815866 |
Snippet | Automated Machine Learning aka AutoML toolkits are low/no-code software that aim to democratize ML system application development by ensuring rapid prototyping... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 91 |
SubjectTerms | Algorithms Automation Cloud computing Collaboration Compilers Computer Science Dirichlet problem Empirical analysis Interpreters Machine learning Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE) Programming Languages Questions Rapid prototyping Software engineering Software Engineering/Programming and Operating Systems Subject specialists Systems design Toolkits Virtual communities |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgLCx8IwoFeWADS2ns2MmEKkRVIWCiUrfI8QdUQIOaVFX_PWcnIYBgQMqUOB6efb578t07hM4Vp5kCGyKRpYYwCTxFamVJIo1OGBM00T7b4oGPxux2Ek3qorCiyXZvriT9Sf2l2I1zRsCnwNHBooCs1tFGBNzd7etxOGildoVvTezE9QgFj16Xyvw-x3d31MaYP65FvbcZ7qCtOkzEg2pdd9Game2h7aYFA64tch9lo3yJrZxjOTd4Cc-0fMZyUeYQiBqN33yqpMF1b4inK6w-BZqr-kssZ9q9rDqqFDi3eAC_39_hMs9fX6ZlcYDGw5vH6xGp2yYQFYqgJBIMyVphkr6NtciAT1DmiJPkWjEdSbDigKo4UTzKZKycAH0grOY8lkrIKKaHqDPLZ-YIYS5DZUMbUiWANsog1hCvJDpjVve5YqaLLhr00vdKHSNtdZAd1ilgnXqs01UX9RqA09pSitRRFgiyhEi66LIBvf3892zH_xt-gjZDt-4-07aHOuV8YU4hniizM799PgCBKMLO priority: 102 providerName: Springer Nature |
Title | How far are we with automated machine learning? characterization and challenges of AutoML toolkits |
URI | https://link.springer.com/article/10.1007/s10664-024-10450-y https://www.proquest.com/docview/3067125779 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA46X3zxLs7LyINvGuzaNGmfxpTN4Q0RB_pU0lxU1FXXDvHfe9KmFgWFQiGlefhOzi05OR9C-5IFqQQdIqEJNKEC8hShpCGx0CqmlAexKqstrthoTM_uwju34Za7ssraJpaGWmXS7pEf2dAWnDHnce_tnVjWKHu66ig05tFCFzyNXeHR8LRpustLkmLbZo8E4NvdpRl3dY4xSsBDgSGioUc-fzqmJtr8dUBa-p3hClpyASPuVxJeRXN6soaWazIG7HRzHaWj7AMbMcViqvEHPE_FIxazIoOQVCv8WhZNauxYIh56WH63aq5uYmIxUXaw4lbJcWZwH36_vMBFlr08PxX5BhoPB7cnI-IIFIj0uVcQASplDNdx10SKp5BZBNSmUIIpSVUoQJ-9QEaxZGEqImlb0XvcKMYiIbkIo2ATtSbZRG8hzIQvjW_8QHJIIIUXKYhcYpVSo7pMUt1GBzV6yVvVJyNpOiJbrBPAOimxTj7baLcGOHE6kyeNhNvosAa9-fz3bNv_z7aDFn0r57LGdhe1iulM70EkUaSdcrl00EL_9P58AO_jwdX1DYyO_f4XvfXJig |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONALj0LFAi0-0FOxGmLHTg4IIcqywMIJJG7B8QMQsIHdoNX-KX5jx3k0AgluSDklig-fxzPfJDPzAWxqwTKNZ4hGjlnKFeYpymhHE2VNwrlkiSmrLc5E74IfX0aXU_DS9ML4ssrGJ5aO2uTafyP_46ktBmMpk93HJ-pVo_zf1UZCozKLEzsZY8o22jn6i_v7Kwy7B-f7PVqrClAdyqCgCu3MOWmTbRcbmSHdZtznFUoYzU2k0MgDpuNEiyhTsfbz2QPpjBCx0lJFMcN1v8AMZyzxJYRx97Ad8itLUWQ_1o8y5BJ1k07dqicEpxgR0fHxKKCT14GwZbdvfsiWca67AHM1QSV7lUUtwpQdfIP5RvyB1L5gCbJePiZODYkaWjLG67a4Ieq5yJECW0MeyiJNS2pViutdov-Phq46P4kaGH-z0nIZkdyRPXz9tE-KPL-_uy1Gy3DxKdB-h-lBPrArQIQKtQtdyLTEhFUFsUGmlJiMO7MtNLcd-N2glz5WcznSdgKzxzpFrNMS63TSgfUG4LQ-o6O0tagObDWgt4_fX23149U2YLZ3ftpP-0dnJ2vwNfR7Xtb3rsN0MXy2P5DFFNnP0nQIXH22rf4D_vkBlg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xkBAXKBTEAi0-wKlYhNixkwNCqHRZHkUcQOIWHD8oKmxgN2i1f41fxziPRkWCG1JOieLD-PPMN8nMfACbWrBM4xmikWOWcoV5ijLa0URZk3AuWWLKaotz0bviJ9fR9QS8NL0wvqyy8Ymloza59t_Idzy1xWAsZbLj6rKIi8Pu_uMT9QpS_k9rI6dRQeTUjkeYvg33jg9xr7fCsPvr8meP1goDVIcyKKhCzDknbbLrYiMzpN6M-xxDCaO5iRQCPmA6TrSIMhVrP6s9kM4IESstVRQzXHcSpiWLA6-eEHeP2oG_shRI9iP-KENeUTfs1G17QnCK0RGdII8COv4_KLZM983P2TLmdb_AXE1WyUGFrgWYsP1FmG-EIEjtF75C1stHxKkBUQNLRnjdFX-Iei5ypMPWkIeyYNOSWqHidp_of2Oiqy5QovrG36x0XYYkd-QAX_99Roo8v_97VwyX4OpTTLsMU_28b1eACBVqF7qQaYnJqwpig6wpMRl3Zldobjvwo7Fe-ljN6Ejbacze1inaOi1tnY47sN4YOK3P6zBt0dWB7cbo7eP3V1v9eLUNmEGUpmfH56drMBv6LS9Lfddhqhg8229IaIrse4kcAjefDdVXz2MFww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+far+are+we+with+automated+machine+learning%3F+characterization+and+challenges+of+AutoML+toolkits&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Al+Alamin%2C+Md+Abdullah&rft.au=Uddin%2C+Gias&rft.date=2024-07-01&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=29&rft.issue=4&rft_id=info:doi/10.1007%2Fs10664-024-10450-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10664_024_10450_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon |