Sums of k-th powers and Fourier coefficients of cusp forms

In this paper, we will first establish a power saving result for the shifted convolution sums of k -th powers and the normalized Fourier coefficients of SL 2 ( Z ) cusp forms. Later we will generalize the result to higher rank cases.

Saved in:
Bibliographic Details
Published inThe Ramanujan journal Vol. 60; no. 2; pp. 295 - 316
Main Author Wei, Zhining
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we will first establish a power saving result for the shifted convolution sums of k -th powers and the normalized Fourier coefficients of SL 2 ( Z ) cusp forms. Later we will generalize the result to higher rank cases.
AbstractList In this paper, we will first establish a power saving result for the shifted convolution sums of k-th powers and the normalized Fourier coefficients of SL2(Z) cusp forms. Later we will generalize the result to higher rank cases.
In this paper, we will first establish a power saving result for the shifted convolution sums of k -th powers and the normalized Fourier coefficients of SL 2 ( Z ) cusp forms. Later we will generalize the result to higher rank cases.
Author Wei, Zhining
Author_xml – sequence: 1
  givenname: Zhining
  orcidid: 0000-0001-7541-3350
  surname: Wei
  fullname: Wei, Zhining
  email: wei.863@buckeyemail.osu.edu
  organization: Mathematics Department, Ohio State University
BookMark eNp9kMFKxDAQhoOs4O7qC3gKeI5OkjZpvcniqrDgQT2HNp1oV7epSYvs2xu3gjdPMzDfPzN8CzLrfIeEnHO45AD6KnLOZclACAagtGb7IzLnuRaslCBnqZeFYBmUcEIWMW4BIAOp5-T6adxF6h19Z8Mb7f0XhkirrqFrP4YWA7UenWtti91w4OwYe-p82MVTcuyqj4hnv3VJXta3z6t7tnm8e1jdbJgVGgZWYq3rHFUmEQpQlbQl5I3NGmkV5KpyoBOihLRYloniqnACeZo1ha21k0tyMe3tg_8cMQ5mm37r0kkjtAYpeKGLRImJssHHGNCZPrS7KuwNB_PjyEyOTHJkDo7MPoXkFIoJ7l4x_K3-J_UNFv9qnA
Cites_doi 10.1215/00127094-2371416
10.1112/jlms/s1-2.3.202
10.11650/tjm.20.2016.7389
10.1093/imrn/rnw083
10.1016/j.aim.2016.02.033
10.1017/CBO9780511470929
10.1017/S030500410200628X
10.1215/S0012-7094-95-07711-4
10.1007/s12188-010-0046-8
10.4007/annals.2016.184.2.7
10.1112/jlms/s2-26.1.1
10.1515/forum-2017-0269
10.1515/crll.1988.384.192
10.1215/00127094-2009-002
10.1093/qmath/os-9.1.199
10.1007/BF01451932
10.1007/s11139-020-00332-4
10.1155/S1073792804142505
10.1215/00127094-2008-038
10.1007/BF02684373
10.1353/ajm.2006.0027
10.1090/pspum/008/0182610
10.1134/S0371968517010034
10.1090/gsm/053
10.24033/ast
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11139-022-00677-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1572-9303
EndPage 316
ExternalDocumentID 10_1007_s11139_022_00677_y
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29P
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
6TJ
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9R
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AIGIU
CITATION
H13
AAYZH
ID FETCH-LOGICAL-c270t-9eb7b5e643e0806a3c905dc4d3c6056af079eb623ce99643168f2e1605d8cb7f3
IEDL.DBID AGYKE
ISSN 1382-4090
IngestDate Mon Nov 04 11:56:22 EST 2024
Thu Sep 12 19:18:44 EDT 2024
Sat Dec 16 12:07:22 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Cusp forms
Shifted convolution sums
Circle method
11P55
11F30
Voronoi formula
11P05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-9eb7b5e643e0806a3c905dc4d3c6056af079eb623ce99643168f2e1605d8cb7f3
ORCID 0000-0001-7541-3350
PQID 2770321878
PQPubID 2043831
PageCount 22
ParticipantIDs proquest_journals_2770321878
crossref_primary_10_1007_s11139_022_00677_y
springer_journals_10_1007_s11139_022_00677_y
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan
PublicationTitle The Ramanujan journal
PublicationTitleAbbrev Ramanujan J
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Good (CR23) 1981; 255
Bourgain, Demeter, Guth (CR19) 2016; 184
Iwaniec (CR22) 2002
Ingham (CR1) 1927; 2
CR15
Meurman (CR24) 1988; 384
Wooley (CR18) 2016; 294
Hua (CR16) 1938; 9
Wooley (CR17) 2012; 7
Luo (CR10) 2011; 81
Vaughan (CR14) 1997
Luo (CR13) 2021; 55
Pitt (CR7) 1995; 77
Deshouillers, Iwaniec (CR2) 1982; 26
Blomer, Harcos (CR5) 2008; 144
CR3
Ren, Ye (CR25) 2016; 20
Miller (CR26) 2006; 128
Munshi (CR8) 2013; 162
Sun (CR11) 2017; 6
CR20
Iwaniec (CR21) 1997
Deligne (CR9) 1974; 43
Jiang, Lü (CR12) 2019; 31
Holowinsky (CR6) 2009; 146
Blomer (CR4) 2004; 73
W Luo (677_CR10) 2011; 81
TD Wooley (677_CR17) 2012; 7
J-M Deshouillers (677_CR2) 1982; 26
TD Wooley (677_CR18) 2016; 294
H Iwaniec (677_CR21) 1997
T Meurman (677_CR24) 1988; 384
R Munshi (677_CR8) 2013; 162
AE Ingham (677_CR1) 1927; 2
P Deligne (677_CR9) 1974; 43
Q Sun (677_CR11) 2017; 6
NJE Pitt (677_CR7) 1995; 77
677_CR20
V Blomer (677_CR4) 2004; 73
A Good (677_CR23) 1981; 255
677_CR3
SD Miller (677_CR26) 2006; 128
R Holowinsky (677_CR6) 2009; 146
L-K Hua (677_CR16) 1938; 9
W Luo (677_CR13) 2021; 55
V Blomer (677_CR5) 2008; 144
J Bourgain (677_CR19) 2016; 184
H Iwaniec (677_CR22) 2002
Y Jiang (677_CR12) 2019; 31
677_CR15
X Ren (677_CR25) 2016; 20
RC Vaughan (677_CR14) 1997
References_xml – volume: 162
  start-page: 2345
  issue: 13
  year: 2013
  end-page: 2362
  ident: CR8
  article-title: Shifted convolution sums for
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-2371416
  contributor:
    fullname: Munshi
– volume: 2
  start-page: 202
  issue: 3
  year: 1927
  end-page: 208
  ident: CR1
  article-title: Some asymptotic formulae in the theory of numbers
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/s1-2.3.202
  contributor:
    fullname: Ingham
– start-page: 220
  year: 2002
  ident: CR22
  publication-title: Spectral Methods of Automorphic Forms
  contributor:
    fullname: Iwaniec
– volume: 20
  start-page: 1251
  issue: 6
  year: 2016
  end-page: 1274
  ident: CR25
  article-title: Hyper-Kloosterman sums of different moduli and their applications to automorphic forms for
  publication-title: Taiwan. J. Math.
  doi: 10.11650/tjm.20.2016.7389
  contributor:
    fullname: Ye
– volume: 6
  start-page: 1805
  year: 2017
  end-page: 1829
  ident: CR11
  article-title: Shifted convolution sums of cusp forms with -series
  publication-title: Int. Math. Res. Not. IMRN
  doi: 10.1093/imrn/rnw083
  contributor:
    fullname: Sun
– volume: 294
  start-page: 532
  year: 2016
  end-page: 561
  ident: CR18
  article-title: The cubic case of the main conjecture in Vinogradov’s mean value theorem
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2016.02.033
  contributor:
    fullname: Wooley
– start-page: 232
  year: 1997
  ident: CR14
  publication-title: The Hardy-Littlewood Method
  doi: 10.1017/CBO9780511470929
  contributor:
    fullname: Vaughan
– volume: 7
  start-page: 1485
  year: 2012
  end-page: 1504
  ident: CR17
  article-title: The asymptotic formula in Waring’s problem
  publication-title: Int. Math. Res. Not. IMRN
  doi: 10.1017/S030500410200628X
  contributor:
    fullname: Wooley
– volume: 77
  start-page: 383
  issue: 2
  year: 1995
  end-page: 406
  ident: CR7
  article-title: On shifted convolutions of with automorphic -functions
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-95-07711-4
  contributor:
    fullname: Pitt
– volume: 81
  start-page: 45
  issue: 1
  year: 2011
  end-page: 53
  ident: CR10
  article-title: Shifted convolution of cusp-forms with -series
  publication-title: Abh. Math. Semin. Univ. Hambg.
  doi: 10.1007/s12188-010-0046-8
  contributor:
    fullname: Luo
– volume: 184
  start-page: 633
  issue: 2
  year: 2016
  end-page: 682
  ident: CR19
  article-title: Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three
  publication-title: Ann. Math. (2)
  doi: 10.4007/annals.2016.184.2.7
  contributor:
    fullname: Guth
– volume: 26
  start-page: 1
  issue: 1
  year: 1982
  end-page: 14
  ident: CR2
  article-title: An additive divisor problem
  publication-title: J. Lond. Math. Soc. (2)
  doi: 10.1112/jlms/s2-26.1.1
  contributor:
    fullname: Iwaniec
– start-page: 259
  year: 1997
  ident: CR21
  publication-title: Topics in Classical Automorphic Forms. Graduate Studies in Mathematics
  contributor:
    fullname: Iwaniec
– ident: CR3
– ident: CR15
– volume: 31
  start-page: 361
  issue: 2
  year: 2019
  end-page: 383
  ident: CR12
  article-title: Shifted convolution sums for higher rank groups
  publication-title: Forum Math.
  doi: 10.1515/forum-2017-0269
  contributor:
    fullname:
– volume: 384
  start-page: 192
  year: 1988
  end-page: 207
  ident: CR24
  article-title: On exponential sums involving the Fourier coefficients of Maass wave forms
  publication-title: J. Reine Angew. Math.
  doi: 10.1515/crll.1988.384.192
  contributor:
    fullname: Meurman
– volume: 146
  start-page: 401
  issue: 3
  year: 2009
  end-page: 448
  ident: CR6
  article-title: A sieve method for shifted convolution sums
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-2009-002
  contributor:
    fullname: Holowinsky
– volume: 9
  start-page: 199
  year: 1938
  end-page: 202
  ident: CR16
  article-title: On Waring’s problem
  publication-title: Quart. J. Math. Oxf.
  doi: 10.1093/qmath/os-9.1.199
  contributor:
    fullname: Hua
– volume: 255
  start-page: 523
  issue: 4
  year: 1981
  end-page: 548
  ident: CR23
  article-title: Cusp forms and eigenfunctions of the Laplacian
  publication-title: Math. Ann.
  doi: 10.1007/BF01451932
  contributor:
    fullname: Good
– volume: 55
  start-page: 1165
  issue: 3
  year: 2021
  end-page: 1175
  ident: CR13
  article-title: Sums of -th powers and the Whittaker-Fourier coefficients of automorphic forms
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-020-00332-4
  contributor:
    fullname: Luo
– volume: 73
  start-page: 3905
  year: 2004
  end-page: 3926
  ident: CR4
  article-title: Shifted convolution sums and subconvexity bounds for automorphic -functions
  publication-title: Int. Math. Res. Not.
  doi: 10.1155/S1073792804142505
  contributor:
    fullname: Blomer
– volume: 144
  start-page: 321
  issue: 2
  year: 2008
  end-page: 339
  ident: CR5
  article-title: The spectral decomposition of shifted convolution sums
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-2008-038
  contributor:
    fullname: Harcos
– volume: 43
  start-page: 273
  year: 1974
  end-page: 307
  ident: CR9
  article-title: La conjecture de Weil I
  publication-title: Inst. Hautes Études Sci. Publ. Math.
  doi: 10.1007/BF02684373
  contributor:
    fullname: Deligne
– volume: 128
  start-page: 699
  issue: 3
  year: 2006
  end-page: 729
  ident: CR26
  article-title: Cancellation in additively twisted sums on
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.2006.0027
  contributor:
    fullname: Miller
– ident: CR20
– volume: 43
  start-page: 273
  year: 1974
  ident: 677_CR9
  publication-title: Inst. Hautes Études Sci. Publ. Math.
  doi: 10.1007/BF02684373
  contributor:
    fullname: P Deligne
– volume: 81
  start-page: 45
  issue: 1
  year: 2011
  ident: 677_CR10
  publication-title: Abh. Math. Semin. Univ. Hambg.
  doi: 10.1007/s12188-010-0046-8
  contributor:
    fullname: W Luo
– volume: 146
  start-page: 401
  issue: 3
  year: 2009
  ident: 677_CR6
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-2009-002
  contributor:
    fullname: R Holowinsky
– volume: 20
  start-page: 1251
  issue: 6
  year: 2016
  ident: 677_CR25
  publication-title: Taiwan. J. Math.
  doi: 10.11650/tjm.20.2016.7389
  contributor:
    fullname: X Ren
– ident: 677_CR3
  doi: 10.1090/pspum/008/0182610
– volume: 31
  start-page: 361
  issue: 2
  year: 2019
  ident: 677_CR12
  publication-title: Forum Math.
  doi: 10.1515/forum-2017-0269
  contributor:
    fullname: Y Jiang
– volume: 294
  start-page: 532
  year: 2016
  ident: 677_CR18
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2016.02.033
  contributor:
    fullname: TD Wooley
– volume: 7
  start-page: 1485
  year: 2012
  ident: 677_CR17
  publication-title: Int. Math. Res. Not. IMRN
  doi: 10.1017/S030500410200628X
  contributor:
    fullname: TD Wooley
– ident: 677_CR15
  doi: 10.1134/S0371968517010034
– start-page: 220
  volume-title: Spectral Methods of Automorphic Forms
  year: 2002
  ident: 677_CR22
  doi: 10.1090/gsm/053
  contributor:
    fullname: H Iwaniec
– volume: 26
  start-page: 1
  issue: 1
  year: 1982
  ident: 677_CR2
  publication-title: J. Lond. Math. Soc. (2)
  doi: 10.1112/jlms/s2-26.1.1
  contributor:
    fullname: J-M Deshouillers
– volume: 73
  start-page: 3905
  year: 2004
  ident: 677_CR4
  publication-title: Int. Math. Res. Not.
  doi: 10.1155/S1073792804142505
  contributor:
    fullname: V Blomer
– volume: 6
  start-page: 1805
  year: 2017
  ident: 677_CR11
  publication-title: Int. Math. Res. Not. IMRN
  doi: 10.1093/imrn/rnw083
  contributor:
    fullname: Q Sun
– volume: 2
  start-page: 202
  issue: 3
  year: 1927
  ident: 677_CR1
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/s1-2.3.202
  contributor:
    fullname: AE Ingham
– volume: 255
  start-page: 523
  issue: 4
  year: 1981
  ident: 677_CR23
  publication-title: Math. Ann.
  doi: 10.1007/BF01451932
  contributor:
    fullname: A Good
– volume: 55
  start-page: 1165
  issue: 3
  year: 2021
  ident: 677_CR13
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-020-00332-4
  contributor:
    fullname: W Luo
– volume: 77
  start-page: 383
  issue: 2
  year: 1995
  ident: 677_CR7
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-95-07711-4
  contributor:
    fullname: NJE Pitt
– volume: 144
  start-page: 321
  issue: 2
  year: 2008
  ident: 677_CR5
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-2008-038
  contributor:
    fullname: V Blomer
– volume: 9
  start-page: 199
  year: 1938
  ident: 677_CR16
  publication-title: Quart. J. Math. Oxf.
  doi: 10.1093/qmath/os-9.1.199
  contributor:
    fullname: L-K Hua
– ident: 677_CR20
  doi: 10.24033/ast
– start-page: 232
  volume-title: The Hardy-Littlewood Method
  year: 1997
  ident: 677_CR14
  doi: 10.1017/CBO9780511470929
  contributor:
    fullname: RC Vaughan
– volume: 384
  start-page: 192
  year: 1988
  ident: 677_CR24
  publication-title: J. Reine Angew. Math.
  doi: 10.1515/crll.1988.384.192
  contributor:
    fullname: T Meurman
– volume: 162
  start-page: 2345
  issue: 13
  year: 2013
  ident: 677_CR8
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-2371416
  contributor:
    fullname: R Munshi
– volume: 184
  start-page: 633
  issue: 2
  year: 2016
  ident: 677_CR19
  publication-title: Ann. Math. (2)
  doi: 10.4007/annals.2016.184.2.7
  contributor:
    fullname: J Bourgain
– start-page: 259
  volume-title: Topics in Classical Automorphic Forms. Graduate Studies in Mathematics
  year: 1997
  ident: 677_CR21
  contributor:
    fullname: H Iwaniec
– volume: 128
  start-page: 699
  issue: 3
  year: 2006
  ident: 677_CR26
  publication-title: Am. J. Math.
  doi: 10.1353/ajm.2006.0027
  contributor:
    fullname: SD Miller
SSID ssj0004037
Score 2.3181198
Snippet In this paper, we will first establish a power saving result for the shifted convolution sums of k -th powers and the normalized Fourier coefficients of SL 2 (...
In this paper, we will first establish a power saving result for the shifted convolution sums of k-th powers and the normalized Fourier coefficients of SL2(Z)...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 295
SubjectTerms Combinatorics
Cusps
Field Theory and Polynomials
Fourier Analysis
Functions of a Complex Variable
Mathematics
Mathematics and Statistics
Number Theory
Sums
Title Sums of k-th powers and Fourier coefficients of cusp forms
URI https://link.springer.com/article/10.1007/s11139-022-00677-y
https://www.proquest.com/docview/2770321878
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAG1EolQc2cOU8nbBVqKUClYVWKlMUO46QKtKKJEP59ZzzIOI1dPbJUi723Xfyfd8BXIXKjoTpWNTF5EZtBwtWIbhLJbckBsQ4DIXmO0-e3PHMfpg784bHXTS71y-SRaBuuG4GghWqm891hOV0vQ3tinjaHty_PA4bOiQrpDK1uh6WRz6ruDJ_7_I9HzUg88e7aJFuRvswrUk7ZZfJop9noi8_fms4bvIlB7BXwU8yKM_LIWyp5Ah2J1_arekx3D7nbylZxmRBs1eyKqaokTCJyKgcb0fkUhW6E7oFQ9vJPF0RjX3TE5iNhtO7Ma0mLFBpcpZRXwkuHIWoRCFydENL-syJpB1ZEsscN4wZRxNESFL5WrjLcL3YVAauRZ4UPLZOoZUsE3UGxNFPy1FsS0MyW9lYxjFPebFjuGbMIsY6cF37OViVQhpBI5msPRKgR4LCI8G6A936VwTVpUoDk2N4QkjCvQ7c1K5tlv_f7Xwz8wvY0UPly97sLrSy91xdIvTIRK86aj3YnpmDT6p5zj4
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYAB8RSFAh7YwJLzdMJWIaoCbRdaqZsVO7aQEGlF0qH_nnMeRCAYmH3y8Nm6-0539x3AdaL9VLqBR0MMbtQPMGGVkodUcU-hQzRJIu2883gSDmf-0zyY10NhedPt3pQkS0_dDrs5yFao7T63LpbT9SZsWX11q5g_c_vtNCQrlTKtuB5mRzGrR2V-v-N7OGo55o-yaBltBvuwV9NE0q_e9QA2dHYIu-MvjdX8CO5eVu85WRjyRotXsiy3nZEkS8mgWkNH1EKX-hC2VcLaqVW-JJaj5scwGzxM74e03oRAlctZQWMtuQw0sgeNDC9MPBWzIFV-6ilMR8LEMI4myGSUjq3AlhNGxtUOnqWRktx4J9DJFpk-BRLYEnBqfOUo5msf0y0W6cgETugaljLWhZsGELGsBC9EK21s4RMInyjhE-su9BrMRP35c-FydCNIHXjUhdsGx_b479vO_md-BdvD6XgkRo-T53PYsYvgq37qHnSKj5W-QLpQyMvyd3wCUfOz8Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGK16h686eLmuYm3opb6aBG00NuSfSGIaTDpof_e2TyMih4877CH2WTmG2a-bxA6TbSvhBt4JITkRvwAClYhWEgk8yQERJMkwvKdR-NwOPHvpsH0C4u_nHZvWpIVp8GqNKXFRabMRUt8cwC5EDuJbsMtI4tltAKpyLNDfRO33zIjaamaaYX2oFKKaU2b-f2O76mpxZs_WqRl5hlsoo0aMuJ-9cZbaEmn22h99Km3mu-gy6f5W45nBr-S4gVn5eYznKQKD6qVdFjOdKkVYccmrJ2c5xm2eDXfRZPBzfPVkNRbEYh0GS1IrAUTgQYkoQHthYknYxoo6StPQmkSJoYyMAFUI3VsxbacMDKuduBMRVIw4-2hTjpL9T7CgW0HK-NLR1Jf-1B60UhHJnBC11BFaRedNQ7hWSV-wVuZY-s-Du7jpfv4oot6jc94_SPk3GUQUgBGsKiLzhs_tsd_33bwP_MTtPp4PeAPt-P7Q7Rmd8JXo9U91Cne5_oIkEMhjsuP4wNJVLg2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sums+of+k-th+powers+and+Fourier+coefficients+of+cusp+forms&rft.jtitle=The+Ramanujan+journal&rft.au=Wei%2C+Zhining&rft.date=2023-02-01&rft.issn=1382-4090&rft.eissn=1572-9303&rft.volume=60&rft.issue=2&rft.spage=295&rft.epage=316&rft_id=info:doi/10.1007%2Fs11139-022-00677-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11139_022_00677_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-4090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-4090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-4090&client=summon