The least non-split prime in a number field
Let K be an S n -field ( n ≤ 5 ) with discriminant d K . Let n K be the least prime which does not split completely in K . We prove unconditionally that n K = O ( log | d K | ) , except for O X exp - c log X log log X fields for some constant c > 0 . We also prove that the exceptional set is opti...
Saved in:
Published in | Archiv der Mathematik Vol. 117; no. 5; pp. 509 - 513 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.11.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let
K
be an
S
n
-field (
n
≤
5
) with discriminant
d
K
. Let
n
K
be the least prime which does not split completely in
K
. We prove unconditionally that
n
K
=
O
(
log
|
d
K
|
)
, except for
O
X
exp
-
c
log
X
log
log
X
fields for some constant
c
>
0
. We also prove that the exceptional set is optimal, and that for any
η
>
0
, the
S
n
-fields such that
n
K
≫
(
log
|
d
K
|
)
1
+
η
are very rare. |
---|---|
AbstractList | Let
K
be an
S
n
-field (
n
≤
5
) with discriminant
d
K
. Let
n
K
be the least prime which does not split completely in
K
. We prove unconditionally that
n
K
=
O
(
log
|
d
K
|
)
, except for
O
X
exp
-
c
log
X
log
log
X
fields for some constant
c
>
0
. We also prove that the exceptional set is optimal, and that for any
η
>
0
, the
S
n
-fields such that
n
K
≫
(
log
|
d
K
|
)
1
+
η
are very rare. Let K be an Sn-field (n≤5) with discriminant dK. Let nK be the least prime which does not split completely in K. We prove unconditionally that nK=O(log|dK|), except for OXexp-clogXloglogX fields for some constant c>0. We also prove that the exceptional set is optimal, and that for any η>0, the Sn-fields such that nK≫(log|dK|)1+η are very rare. |
Author | Kim, Henry H. |
Author_xml | – sequence: 1 givenname: Henry H. surname: Kim fullname: Kim, Henry H. email: henrykim@math.toronto.edu organization: Department of Mathematics, University of Toronto, Korea Institute for Advanced Study |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8BjxLNR5NMjlL8goKXCt5Cspvolu1uTXYP_ntTV_DmaQ7zvO8MzwLNur4LCF0yesMo1beZUsoEoZwRypSkxJygOVtxSsAImKF52QsCYN7O0CLnXaE5aDNH19uPgNvg8oBLJcmHthnwITX7gJsOO9yNex8Sjk1o63N0Gl2bw8XvXKLXh_vt-olsXh6f13cbUnFNB2Jq770xEmJQTkYDytdeeud8ZYQy5SvpwMcgoq9rAc5TkIpVUYBWWq6kWKKrqfeQ-s8x5MHu-jF15aTlUgPTSgIvFJ-oKvU5pxDt8W2Xviyj9ijFTlJskWJ_pFhTQmIK5QJ37yH9Vf-T-gYNp2UJ |
Cites_doi | 10.1142/S1793042108001432 10.1016/j.jnt.2013.06.009 10.1007/BF02698692 10.1017/S0305004117000019 10.1093/imrn/rny074 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2021 Springer Nature Switzerland AG 2021. |
Copyright_xml | – notice: Springer Nature Switzerland AG 2021 – notice: Springer Nature Switzerland AG 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00013-021-01650-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1420-8938 |
EndPage | 513 |
ExternalDocumentID | 10_1007_s00013_021_01650_9 |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada grantid: 482564 funderid: http://dx.doi.org/10.13039/501100000038 |
GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABEFU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFDYV AFEXP AFGCZ AFLOW AFMKY AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MBV N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7U Z7X Z83 Z87 Z88 Z8O Z8R Z8W Z91 ZCG ZMTXR ZWQNP ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEARS AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c270t-9dbbb9958fe6a5f986bdb5baabc93691425a8bfe3fbdd38ab08561cf387675453 |
IEDL.DBID | U2A |
ISSN | 0003-889X |
IngestDate | Thu Oct 10 18:08:04 EDT 2024 Fri Sep 13 01:23:45 EDT 2024 Sat Dec 16 12:09:01 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Secondary 11M41 Artin Primary 11R42 Least prime in a conjugacy class Chebotarev density theorem functions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-9dbbb9958fe6a5f986bdb5baabc93691425a8bfe3fbdd38ab08561cf387675453 |
PQID | 2578176582 |
PQPubID | 2043594 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2578176582 crossref_primary_10_1007_s00013_021_01650_9 springer_journals_10_1007_s00013_021_01650_9 |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Archiv der Mathematik |
PublicationTitleAbbrev | Arch. Math |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | CR2 Cho, Kim (CR1) 2013; 133 CR3 Lau, Wu (CR4) 2008; 4 CR5 PJ Cho (1650_CR1) 2013; 133 YK Lau (1650_CR4) 2008; 4 1650_CR5 1650_CR3 1650_CR2 |
References_xml | – volume: 4 start-page: 423 issue: 3 year: 2008 end-page: 435 ident: CR4 article-title: On the least quadratic non-residue publication-title: Int. J. Number Theory doi: 10.1142/S1793042108001432 contributor: fullname: Wu – ident: CR3 – ident: CR2 – volume: 133 start-page: 4175 year: 2013 end-page: 4187 ident: CR1 article-title: Probabilistic properties of number fields publication-title: J. Number Theory doi: 10.1016/j.jnt.2013.06.009 contributor: fullname: Kim – ident: CR5 – ident: 1650_CR5 doi: 10.1007/BF02698692 – volume: 4 start-page: 423 issue: 3 year: 2008 ident: 1650_CR4 publication-title: Int. J. Number Theory doi: 10.1142/S1793042108001432 contributor: fullname: YK Lau – ident: 1650_CR2 doi: 10.1017/S0305004117000019 – volume: 133 start-page: 4175 year: 2013 ident: 1650_CR1 publication-title: J. Number Theory doi: 10.1016/j.jnt.2013.06.009 contributor: fullname: PJ Cho – ident: 1650_CR3 doi: 10.1093/imrn/rny074 |
SSID | ssj0012879 |
Score | 2.2911735 |
Snippet | Let
K
be an
S
n
-field (
n
≤
5
) with discriminant
d
K
. Let
n
K
be the least prime which does not split completely in
K
. We prove unconditionally that
n
K
=... Let K be an Sn-field (n≤5) with discriminant dK. Let nK be the least prime which does not split completely in K. We prove unconditionally that nK=O(log|dK|),... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 509 |
SubjectTerms | Mathematics Mathematics and Statistics Number theory |
Title | The least non-split prime in a number field |
URI | https://link.springer.com/article/10.1007/s00013-021-01650-9 https://www.proquest.com/docview/2578176582 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20vehB_MRqLTl400CbTbLJsUhrUerJQj2FfC0IUord_n-T7EdR9OB5lyy8STZvmHnzAG7zKGD0LseU5ARTygosNNdY6lxaTgVxIgqF5y98tqBPS7bc6bhTs3tTkUw_6lbrNqyMCEjMfgOtwHIfuoE80NjHtSDjtnQQUgDZ2OQJIZe1Uub3Nb7fRjuK-aMqmi6b6TEc1SwRjauwnsCeX53C4bwdsbo5g9grgT6i8w4KGTzeBDJZonUc1o_eV0ijyuoDpQ61c1hMJ68PM1w7H2BL8mGJpTPGSMlE4blmhRTcOMOM1sZGA75ROGhamMJnhXEuE9oE4sRHtshEnM1CWXYBnfBtfwnIZtIPqdcmVty41iEQhSUu0Ahmic5MD-4aBNS6GnCh2lHGCS8V8FIJLyV70G9AUvVm36h46kd5oDKkB_cNcLvHf6929b_Xr-GAxNglJWAfOuXn1t8ESlCaAXTHj2_Pk0HaCl9Kiaxo |
link.rule.ids | 315,783,787,27938,27939,41095,41537,42164,42606,52125,52248 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20HtSD-InVqjl400Cb3c0mxyKWqm1PLfQW8gmClNJd_79J9qMoevC8SxZmJps3TN57APd5IDBak-OU5ASnaeYwk1RiLnOuacqIYYEoPJ3R8SJ9XWbLmhRWNLfdm5Fk_FO3ZLd-5URAQvvrcQXmu7AX9NVDXS_IsJ0d-B6ANz55jPFlTZX5fY3vx9EWY_4Yi8bTZnQMRzVMRMMqryewY1encDhtNVaLMwiXJdBHsN5BvoXHhUeTJVoHtX70vkISVV4fKF5RO4fF6Hn-NMa19QHWJO-XmBulFOcZc5bKzHFGlVGZklLp4MA38DtNMuVs4pQxCZPKIyc60C5hQZwlzZIL6Phv20tAOuG2n1qpwsiNSukz4TQxHkdkmshEdeGhiYBYVwoXotUyjvESPl4ixkvwLvSaIIm62gsRtv0g91iGdOGxCdz28d-rXf3v9TvYH8-nEzF5mb1dwwEJeYy0wB50ys2nvfH4oFS3sRy-ACNPri8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BKyEY-EYUCnhgA7eN82WPFbQUSisGKpXJsmNHQqBQ0XTh12Pno4UKBsScyEnu7PhZd-89gPPQEhi1CrFHQoI9z48xFYHATIQsCjxKFLVE4cEw6I28u7E__sLiz7rdy5JkzmmwKk1J2pyouDknvrVyVwJij8IGY2C2ClXPMXChAtX2zVO_M68kmBMBK13zKGXjgjjz8yjfN6cF4lwqkmZ7T3cLRPnWecvJS2OWykb0sSTo-J_P2obNApiidj6TdmBFJ7uwMZiruk73wLZnoFdr9oOStwRPDX5N0cT6A6DnBAmUu4ugrCluH0bdzuNVDxdmCzgiYSvFTEkpGfNprAPhx4wGUklfCiEj6_nnmLUtqIy1G0ulXCqkwWqBE8UutXIwnu8eQMU8Wx8CilymW54W0hb5AiFM7uOIKINc_IgIV9bgoowyn-SaGnyunpyFgJsQ8CwEnNWgXiaCF-tryu2PxgkNeiI1uCzjurj8-2hHf7v9DNYerrv8_nbYP4Z1YjOT8RDrUEnfZ_rEAJJUnhZz7hN48tP3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+least+non-split+prime+in+a+number+field&rft.jtitle=Archiv+der+Mathematik&rft.au=Kim%2C+Henry+H.&rft.date=2021-11-01&rft.issn=0003-889X&rft.eissn=1420-8938&rft.volume=117&rft.issue=5&rft.spage=509&rft.epage=513&rft_id=info:doi/10.1007%2Fs00013-021-01650-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00013_021_01650_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-889X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-889X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-889X&client=summon |