Equivalent analytical formulation-based multibody elastic system analysis using one-dimensional finite elements
For the particular case of an elastic multibody system (MBS) that can be modeled using one-dimensional finite elements, the main methods offered by analytical mechanics in its classical form for analysis are presented in a unitary description. The aim of the work is to present in a unitary form the...
Saved in:
Published in | Continuum mechanics and thermodynamics Vol. 36; no. 1; pp. 197 - 215 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | For the particular case of an elastic multibody system (MBS) that can be modeled using one-dimensional finite elements, the main methods offered by analytical mechanics in its classical form for analysis are presented in a unitary description. The aim of the work is to present in a unitary form the main methods offered by classical mechanics for the analysis of solid systems. There is also a review of the literature that uses and highlights these methods, which need to be reconsidered considering the progress of the industry and the complexity of the studied systems. Thus, the kinematics of a finite element is described for the calculation of the main quantities used in the modeling of multibody systems and in analytical mechanics. The main methods used in the research of MBS systems are presented and analyzed. Thus, Lagrange’s equations, Gibbs–Appell equations, Maggi’s formalism, Kane’s equations and Hamilton’s equations are studied in turn. This presentation is determined by the advantages that alternatives to Lagrange’s equations can offer, which currently represent the method most used by researchers. |
---|---|
ISSN: | 0935-1175 1432-0959 |
DOI: | 10.1007/s00161-023-01270-4 |