A spinal circuit model with an asymmetric cervical-lumbar layout for limb coordination and gait control in quadrupeds
In quadrupeds, the cervical and lumbar circuits work together to achieve the speed-dependent gait expression. While most studies have focused on how local lumbar circuits regulate limb coordination and gaits, relatively few studies are known about cervical circuits and even less about locomotor gait...
Saved in:
Published in | Applied mathematics and mechanics Vol. 46; no. 8; pp. 1433 - 1450 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2025
Springer Nature B.V |
Edition | English ed. |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In quadrupeds, the cervical and lumbar circuits work together to achieve the speed-dependent gait expression. While most studies have focused on how local lumbar circuits regulate limb coordination and gaits, relatively few studies are known about cervical circuits and even less about locomotor gaits. We use the previously published models by Danner et al. (DANNER, S. M., SHEVTSOVA, N. A., FRIGON, A., and RYBAK, I. A. Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds.
eLife
,
6
, e31050 (2017)) as a basis, and modify it by proposing an asymmetric organization of cervical and lumbar circuits. First, the model reproduces the typical speed-dependent gait expression in mice and more biologically appropriate locomotor parameters, including the gallop gait, locomotor frequencies, and limb coordination of the forelimbs. Then, the model replicates the locomotor features regulated by the M-current. The walk frequency increases with the M-current without affecting the interlimb coordination or gaits. Furthermore, the model reveals the interaction mechanism between the brainstem drive and ionic currents in regulating quadrupedal locomotion. Finally, the model demonstrates the dynamical properties of locomotor gaits. Trot and bound are identified as attractor gaits, walk as a semi-attractor gait, and gallop as a transitional gait, with predictable transitions between these gaits. The model suggests that cervical-lumbar circuits are asymmetrically recruited during quadrupedal locomotion, thereby providing new insights into the neural control of speed-dependent gait expression. |
---|---|
AbstractList | In quadrupeds, the cervical and lumbar circuits work together to achieve the speed-dependent gait expression. While most studies have focused on how local lumbar circuits regulate limb coordination and gaits, relatively few studies are known about cervical circuits and even less about locomotor gaits. We use the previously published models by Danner et al. (DANNER, S. M., SHEVTSOVA, N. A., FRIGON, A., and RYBAK, I. A. Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds. eLife, 6, e31050 (2017)) as a basis, and modify it by proposing an asymmetric organization of cervical and lumbar circuits. First, the model reproduces the typical speed-dependent gait expression in mice and more biologically appropriate locomotor parameters, including the gallop gait, locomotor frequencies, and limb coordination of the forelimbs. Then, the model replicates the locomotor features regulated by the M-current. The walk frequency increases with the M-current without affecting the interlimb coordination or gaits. Furthermore, the model reveals the interaction mechanism between the brainstem drive and ionic currents in regulating quadrupedal locomotion. Finally, the model demonstrates the dynamical properties of locomotor gaits. Trot and bound are identified as attractor gaits, walk as a semi-attractor gait, and gallop as a transitional gait, with predictable transitions between these gaits. The model suggests that cervical-lumbar circuits are asymmetrically recruited during quadrupedal locomotion, thereby providing new insights into the neural control of speed-dependent gait expression. In quadrupeds, the cervical and lumbar circuits work together to achieve the speed-dependent gait expression. While most studies have focused on how local lumbar circuits regulate limb coordination and gaits, relatively few studies are known about cervical circuits and even less about locomotor gaits. We use the previously published models by Danner et al. (DANNER, S. M., SHEVTSOVA, N. A., FRIGON, A., and RYBAK, I. A. Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds. eLife , 6 , e31050 (2017)) as a basis, and modify it by proposing an asymmetric organization of cervical and lumbar circuits. First, the model reproduces the typical speed-dependent gait expression in mice and more biologically appropriate locomotor parameters, including the gallop gait, locomotor frequencies, and limb coordination of the forelimbs. Then, the model replicates the locomotor features regulated by the M-current. The walk frequency increases with the M-current without affecting the interlimb coordination or gaits. Furthermore, the model reveals the interaction mechanism between the brainstem drive and ionic currents in regulating quadrupedal locomotion. Finally, the model demonstrates the dynamical properties of locomotor gaits. Trot and bound are identified as attractor gaits, walk as a semi-attractor gait, and gallop as a transitional gait, with predictable transitions between these gaits. The model suggests that cervical-lumbar circuits are asymmetrically recruited during quadrupedal locomotion, thereby providing new insights into the neural control of speed-dependent gait expression. |
Author | Han, Fang Zhu, Qinghua Wang, Qingyun |
Author_xml | – sequence: 1 givenname: Qinghua surname: Zhu fullname: Zhu, Qinghua organization: School of Data Sciences, Zhejiang University of Finance and Economics – sequence: 2 givenname: Fang surname: Han fullname: Han, Fang email: yadiahan@dhu.edu.cn organization: School of Mathematics and Statistics, Ningxia University, College of Information Science and Technology, Donghua University – sequence: 3 givenname: Qingyun surname: Wang fullname: Wang, Qingyun organization: School of Mathematics and Statistics, Ningxia University, Department of Dynamics and Control, Beihang University |
BookMark | eNp1kF1LwzAUhoNMcJv-AO8CXkeTNG3ayzH8goE3eh3y1ZnRNl3SKPv3ZlTwyqtz4LzPA-ddgcXgBwvALcH3BGP-EAlmdYEwLVFBa4qaC7AkJS8Q5SVbgGU-FIjVlF-BVYwHjDHjjC1B2sA4ukF2ULugk5tg743t4LebPqEcoIynvrdTcBpqG76clh3qUq9kgJ08-TTB1ufV9Qpq74PJqsn5zA0G7mXWaT9MwXfQDfCYpAlptCZeg8tWdtHe_M41-Hh6fN--oN3b8-t2s0OacjyhpqmI1JI1hqvG6ooYWpeK6aZSra1Z0xKqCq7KylpDuCKKYEoIq21Vlwbn2xrczd4x-GOycRIHn0L-NoqCFqziRbbkFJlTOvgYg23FGFwvw0kQLM7tirldkUsU53bFmaEzE3N22NvwZ_4f-gHKZYBe |
Cites_doi | 10.1142/S0218127422501486 10.1016/j.tins.2018.04.007 10.7554/eLife.31050 10.3389/fphys.2018.00784 10.1016/j.cub.2018.02.007 10.3390/ijms22115882 10.1523/JNEUROSCI.1206-09.2009 10.1016/j.cell.2015.06.036 10.1016/j.cub.2015.04.005 10.3389/fncel.2019.00443 10.7554/eLife.43587 10.1371/journal.pbio.3000738 10.1016/j.cophys.2018.11.009 10.1152/physrev.00015.2019 10.1038/nrn.2016.9 10.1038/nature12286 10.1016/j.neuron.2016.10.032 10.3389/fncir.2023.1146449 10.7554/eLife.53565 10.1523/JNEUROSCI.1979-20.2021 10.1016/j.chaos.2024.115721 10.1007/s10483-021-2709-6 10.1038/nature25448 10.1016/j.neuron.2018.01.023 10.1113/JP272787 10.1142/S0218127423501432 10.3389/fnins.2016.00042 10.1007/s10483-020-2644-8 10.1146/annurev-neuro-082321-025137 10.3390/ijms23105541 10.1016/j.neuron.2014.02.013 10.1016/j.neunet.2024.106422 10.1016/j.celrep.2023.113085 10.1007/s11571-023-10046-0 10.1152/jn.00978.2016 10.1038/nature13021 10.1113/jphysiol.2012.240895 10.1002/ar.22955 10.1142/S0217979214502397 10.1063/5.0251352 10.7554/eLife.92821 |
ContentType | Journal Article |
Copyright | Shanghai University 2025 Shanghai University 2025. |
Copyright_xml | – notice: Shanghai University 2025 – notice: Shanghai University 2025. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10483-025-3282-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-2754 |
Edition | English ed. |
EndPage | 1450 |
ExternalDocumentID | 10_1007_s10483_025_3282_9 |
GroupedDBID | -01 -0A -SA -S~ -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 23M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 5XA 5XB 67Z 6NX 8RM 8TC 8UJ 92E 92I 92M 95- 95. 95~ 96X 9D9 9DA AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABDBE ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFDZB AFEXP AFGCZ AFLOW AFOHR AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG CAJEA CCEZO CCVFK CHBEP COF CS3 CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IWAJR IXD IZIGR I~X I~Z J-C JBSCW JUIAU JZLTJ KOV LAK LLZTM M4Y MA- N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P19 P9R PF0 PT4 PT5 Q-- Q-0 QOK QOS R89 R9I REI RHV RNI ROL RPX RSV RT1 RZC RZE RZK S.. S16 S1Z S26 S27 S28 S3B SAP SCL SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T8Q TCJ TEORI TGP TSG TSK TSV TUC TUS U1F U1G U2A U5A U5K UG4 UOJIU UTJUX UY8 UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ZWQNP ~8M ~A9 ~L9 ~LB AAYXX CITATION |
ID | FETCH-LOGICAL-c270t-9961aca49d7b9ec61d285b4c96bfe849f12b37b56eed17b1b1021148e685d02b3 |
IEDL.DBID | U2A |
ISSN | 0253-4827 |
IngestDate | Wed Jul 30 23:45:58 EDT 2025 Thu Jul 31 00:35:40 EDT 2025 Wed Jul 30 01:30:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | gait 37N25 O175.1 ionic current computational modeling cervical-lumbar asymmetrical spinal circuit locomotor control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-9961aca49d7b9ec61d285b4c96bfe849f12b37b56eed17b1b1021148e685d02b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3234673849 |
PQPubID | 2043692 |
PageCount | 18 |
ParticipantIDs | proquest_journals_3234673849 crossref_primary_10_1007_s10483_025_3282_9 springer_journals_10_1007_s10483_025_3282_9 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
PublicationSubtitle | English Edition |
PublicationTitle | Applied mathematics and mechanics |
PublicationTitleAbbrev | Appl. Math. Mech.-Engl. Ed |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | F Haque (3282_CR13) 2019; 13 E Azim (3282_CR24) 2014; 508 D Fan (3282_CR36) 2020; 41 F Brocard (3282_CR4) 2019; 8 J Ausborn (3282_CR28) 2019; 8 M P Côté (3282_CR12) 2018; 9 Q Zhu (3282_CR30) 2023; 33 B Drouillas (3282_CR10) 2023; 42 T A Machado (3282_CR34) 2015; 162 E Svensson (3282_CR11) 2018; 41 X Mao (3282_CR42) 2021; 42 L Yang (3282_CR35) 2023; 12 Q Zhu (3282_CR37) 2024; 18 N Josset (3282_CR8) 2018; 28 S A Crone (3282_CR23) 2009; 29 R J Batka (3282_CR1) 2014; 297 J Zhang (3282_CR20) 2014; 82 V Caggiano (3282_CR7) 2018; 553 A E Talpalar (3282_CR14) 2013; 500 A C Wilson (3282_CR6) 2023; 17 J M Cabelguen (3282_CR21) 1980; 1 S M Danner (3282_CR26) 2016; 594 X Mao (3282_CR38) 2022; 32 J Verneuil (3282_CR9) 2020; 18 C Bellardita (3282_CR2) 2015; 25 M Lemieux (3282_CR29) 2016; 10 S Grillner (3282_CR5) 2020; 100 S Grillner (3282_CR16) 2021; 22 L Ruder (3282_CR18) 2016; 92 N A Shevtsova (3282_CR32) 2022; 23 G Zhong (3282_CR33) 2012; 590 Q Zhu (3282_CR31) 2024; 178 A M Pocratsky (3282_CR19) 2020; 9 O Kiehn (3282_CR15) 2016; 17 Z Lei (3282_CR41) 2025; 35 R Leiras (3282_CR3) 2022; 45 A Frigon (3282_CR17) 2017; 117 J Ma (3282_CR39) 2015; 29 M Hayashi (3282_CR22) 2018; 97 P V Zelenin (3282_CR25) 2021; 41 Y Ji (3282_CR40) 2024; 189 S M Danner (3282_CR27) 2017; 6 |
References_xml | – volume: 32 start-page: 2250148 issue: 10 year: 2022 ident: 3282_CR38 publication-title: International Journal of Bifurcation and Chaos doi: 10.1142/S0218127422501486 – volume: 41 start-page: 540 issue: 8 year: 2018 ident: 3282_CR11 publication-title: Trends in Neurosciences doi: 10.1016/j.tins.2018.04.007 – volume: 6 start-page: e31050 year: 2017 ident: 3282_CR27 publication-title: eLife doi: 10.7554/eLife.31050 – volume: 9 start-page: 784 year: 2018 ident: 3282_CR12 publication-title: Frontiers in Physiology doi: 10.3389/fphys.2018.00784 – volume: 28 start-page: 884 issue: 6 year: 2018 ident: 3282_CR8 publication-title: Current Biology doi: 10.1016/j.cub.2018.02.007 – volume: 22 start-page: 5882 issue: 11 year: 2021 ident: 3282_CR16 publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms22115882 – volume: 29 start-page: 7098 issue: 21 year: 2009 ident: 3282_CR23 publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.1206-09.2009 – volume: 162 start-page: 338 issue: 2 year: 2015 ident: 3282_CR34 publication-title: Cell doi: 10.1016/j.cell.2015.06.036 – volume: 1 start-page: 199 year: 1980 ident: 3282_CR21 publication-title: Advances in Physiology Education – volume: 25 start-page: 1426 issue: 11 year: 2015 ident: 3282_CR2 publication-title: Current Biology doi: 10.1016/j.cub.2015.04.005 – volume: 13 start-page: 443 year: 2019 ident: 3282_CR13 publication-title: Frontiers in Cellular Neuroscience doi: 10.3389/fncel.2019.00443 – volume: 8 start-page: e43587 year: 2019 ident: 3282_CR28 publication-title: eLife doi: 10.7554/eLife.43587 – volume: 18 start-page: e3000738 issue: 1 year: 2020 ident: 3282_CR9 publication-title: PLoS Biology doi: 10.1371/journal.pbio.3000738 – volume: 8 start-page: 14 year: 2019 ident: 3282_CR4 publication-title: Current Opinion in Physiology doi: 10.1016/j.cophys.2018.11.009 – volume: 100 start-page: 271 year: 2020 ident: 3282_CR5 publication-title: Physiological Reviews doi: 10.1152/physrev.00015.2019 – volume: 17 start-page: 224 issue: 4 year: 2016 ident: 3282_CR15 publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn.2016.9 – volume: 500 start-page: 85 issue: 7460 year: 2013 ident: 3282_CR14 publication-title: nature doi: 10.1038/nature12286 – volume: 92 start-page: 1063 issue: 5 year: 2016 ident: 3282_CR18 publication-title: Neuron doi: 10.1016/j.neuron.2016.10.032 – volume: 17 start-page: 1146449 year: 2023 ident: 3282_CR6 publication-title: Frontiers in Neural Circuits doi: 10.3389/fncir.2023.1146449 – volume: 9 start-page: e53565 year: 2020 ident: 3282_CR19 publication-title: eLife doi: 10.7554/eLife.53565 – volume: 41 start-page: 3432 issue: 15 year: 2021 ident: 3282_CR25 publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.1979-20.2021 – volume: 189 start-page: 115721 year: 2024 ident: 3282_CR40 publication-title: Chaos Solitons & Fractals doi: 10.1016/j.chaos.2024.115721 – volume: 42 start-page: 441 issue: 3 year: 2021 ident: 3282_CR42 publication-title: Applied Mathematics and Mechanics (English Edition) doi: 10.1007/s10483-021-2709-6 – volume: 553 start-page: 455 issue: 7689 year: 2018 ident: 3282_CR7 publication-title: nature doi: 10.1038/nature25448 – volume: 97 start-page: 869 issue: 4 year: 2018 ident: 3282_CR22 publication-title: Neuron doi: 10.1016/j.neuron.2018.01.023 – volume: 594 start-page: 6947 issue: 23 year: 2016 ident: 3282_CR26 publication-title: Journal of Physiology doi: 10.1113/JP272787 – volume: 33 start-page: 2350143 issue: 12 year: 2023 ident: 3282_CR30 publication-title: International Journal of Bifurcation and Chaos doi: 10.1142/S0218127423501432 – volume: 10 start-page: 42 year: 2016 ident: 3282_CR29 publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2016.00042 – volume: 41 start-page: 1287 issue: 9 year: 2020 ident: 3282_CR36 publication-title: Applied Mathematics and Mechanics (English Edition) doi: 10.1007/s10483-020-2644-8 – volume: 45 start-page: 63 year: 2022 ident: 3282_CR3 publication-title: Annual Review of Neuroscience doi: 10.1146/annurev-neuro-082321-025137 – volume: 23 start-page: 5541 year: 2022 ident: 3282_CR32 publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms23105541 – volume: 82 start-page: 138 issue: 1 year: 2014 ident: 3282_CR20 publication-title: Neuron doi: 10.1016/j.neuron.2014.02.013 – volume: 178 start-page: 106422 year: 2024 ident: 3282_CR31 publication-title: Neural Networks doi: 10.1016/j.neunet.2024.106422 – volume: 42 start-page: 113085 year: 2023 ident: 3282_CR10 publication-title: Cell Reports doi: 10.1016/j.celrep.2023.113085 – volume: 18 start-page: 2127 year: 2024 ident: 3282_CR37 publication-title: Cognitive Neurodynamics doi: 10.1007/s11571-023-10046-0 – volume: 117 start-page: 2224 issue: 6 year: 2017 ident: 3282_CR17 publication-title: Journal of Neurophysiology doi: 10.1152/jn.00978.2016 – volume: 508 start-page: 357 issue: 7496 year: 2014 ident: 3282_CR24 publication-title: nature doi: 10.1038/nature13021 – volume: 590 start-page: 4735 issue: 19 year: 2012 ident: 3282_CR33 publication-title: The Journal of Physiology doi: 10.1113/jphysiol.2012.240895 – volume: 297 start-page: 1839 issue: 10 year: 2014 ident: 3282_CR1 publication-title: Anatomical Record doi: 10.1002/ar.22955 – volume: 29 start-page: 1450239 issue: 1 year: 2015 ident: 3282_CR39 publication-title: International Journal of Modern Physics B doi: 10.1142/S0217979214502397 – volume: 35 start-page: 023158 issue: 2 year: 2025 ident: 3282_CR41 publication-title: Chaos doi: 10.1063/5.0251352 – volume: 12 start-page: RP92821 year: 2023 ident: 3282_CR35 publication-title: eLife doi: 10.7554/eLife.92821 |
SSID | ssj0004744 |
Score | 2.3630657 |
Snippet | In quadrupeds, the cervical and lumbar circuits work together to achieve the speed-dependent gait expression. While most studies have focused on how local... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1433 |
SubjectTerms | Applications of Mathematics Asymmetry Circuits Classical Mechanics Coordination Fluid- and Aerodynamics Gait Locomotion Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Partial Differential Equations |
Title | A spinal circuit model with an asymmetric cervical-lumbar layout for limb coordination and gait control in quadrupeds |
URI | https://link.springer.com/article/10.1007/s10483-025-3282-9 https://www.proquest.com/docview/3234673849 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAPEWhVB6YQJbysBNnjFALApWJSmWKbMdBkdq05DH033NOEwIIBua73HB27uF7fAhdQ8jNLO0zwpnmhDKtCOeaEtcVlvF3VNaoJdNn72FGH-ds3sxxF223e1uSrC31l2E3yk3NkREX8gQS7KI-M6k7XOKZE3bDkH6N4Ap8LjE7LttS5m8ivjujLsL8URStfc3kEB00QSIOt6d6hHZ0doz2p58bVosTVIW4WBtEK6zSXFVpiWtMG2zeVbHIsCg2y6VBy1JY1eZALAjYISlyvBCbVVViiFbxIl1KrFaQgKbbV0H4NMZvAsQ1Pew4zfB7JeK8Wuu4OEWzyfjl7oE0EApEOb5VEshmbKEEDWJfBlp5duxwJqkKPJloToPEdqTrS-aBq7R9aUuD9A0ZkvY4iy2gnaFetsr0OcIxc3wQkwTAQ0XAIVHzOAQoKrFtV_n2AN20uozW200ZUbcT2Sg-AsVHRvFRMEDDVttR89MUQHKpASGlQL5tT6Aj_yns4l_cl2jPMTegbuIbol6ZV_oKAotSjlA_vH99Go_qC_UBBpDGbQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9MIEt52IkzVghUoO3USt0i23FQpDYteQz995zThACCgfmcG86O7zvf40PoFiA3s7TPCGeaE8q0IpxrSlxXWMbfUVmxlozG3mBKX2ZsVvdx5021e5OSrG7qL81ulJucIyMuxAkk2EY7gAW4qeOaOv22GdKvGFxhnUvMjMsmlfmbiu_OqEWYP5Kila95OkQHNUjE_c2uHqEtnR6j_dHnhNX8BJV9nK8MoxVWSabKpMAVpw0276pYpFjk68XCsGUprKrrQMwJ3ENSZHgu1suywIBW8TxZSKyWEIAmm1dB-DTCbwLU1TXsOEnxeymirFzpKD9F06fHycOA1BQKRDm-VRCIZmyhBA0iXwZaeXbkcCapCjwZa06D2Hak60vmgau0fWlLw_QNEZL2OIsskJ2hTrpM9TnCEXN8UBMHsIaKgEOg5nEAKCq2bVf5dhfdNbYMV5tJGWE7E9kYPgTDh8bwYdBFvcbaYf3T5CByqSEhpSC-b3agFf-p7OJfq2_Q7mAyGobD5_HrJdpzzGmoCvp6qFNkpb4CkFHI6-pQfQBJisfM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSAgGxFMUCnhgAlmtEztxxgqoeLVioFK3yHYcFKlNS5MM_fec04QCgoH5LjecnXv4Hh9ClxBy847xORHcCMK40UQIw4jryo71d0yVqCX9gXc_ZI8jPqpwTrO6270uSS5nGuyWpjRvz6K4_WXwjQlbf-TEhZyBBOtoA6wxtdd66HRXg5F-ieYKfC6x-y7rsuZvIr47plW0-aNAWvqd3i7aqQJG3F2e8B5aM-k-2u5_blvNDlDRxdnMolthncx1keS4xLfB9o0VyxTLbDGZWOQsjXVpGuSYgE1Sco7HcjEtcgyRKx4nE4X1FJLRZPlCCJ9G-E2CuKqfHScpfi9kNC9mJsoO0bB393pzTyo4BaIdv5MTyGyo1JIFka8Coz0aOYIrpgNPxUawIKaOcn3FPXCb1FdUWdRvyJaMJ3jUAdoRaqTT1BwjHHHHBzFxADxMBgKSNk9AsKJjSl3t0ya6qnUZzpZbM8LVfmSr-BAUH1rFh0ETtWpth9UPlAHJZRaQlAH5uj6BFflPYSf_4r5Amy-3vfD5YfB0irYcexnK3r4WauTzwpxBvJGr8_JOfQAGIMwI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+spinal+circuit+model+with+an+asymmetric+cervical-lumbar+layout+for+limb+coordination+and+gait+control+in+quadrupeds&rft.jtitle=Applied+mathematics+and+mechanics&rft.au=Zhu%2C+Qinghua&rft.au=Han%2C+Fang&rft.au=Wang%2C+Qingyun&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0253-4827&rft.eissn=1573-2754&rft.volume=46&rft.issue=8&rft.spage=1433&rft.epage=1450&rft_id=info:doi/10.1007%2Fs10483-025-3282-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0253-4827&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0253-4827&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0253-4827&client=summon |