Making clusterings fairer by post-processing: algorithms, complexity results and experiments

While existing fairness work typically focuses on fair-by-design algorithms, here we consider making a fairness-unaware algorithm’s output fairer. Specifically, we explore the area of fairness in clustering by modifying clusterings produced by existing algorithms to make them fairer whilst retaining...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 37; no. 4; pp. 1404 - 1440
Main Authors Davidson, Ian, Bai, Zilong, Tran, Cindy Mylinh, Ravi, S. S.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While existing fairness work typically focuses on fair-by-design algorithms, here we consider making a fairness-unaware algorithm’s output fairer. Specifically, we explore the area of fairness in clustering by modifying clusterings produced by existing algorithms to make them fairer whilst retaining their quality. We formulate the minimal cluster modification for fairness (MCMF) problem, where the input is a given partitional clustering and the goal is to minimally change it so that the clustering is still of good quality but fairer. We show that for a single binary protected status variable, the problem is efficiently solvable (i.e., in the class P ) by proving that the constraint matrix for an integer linear programming formulation is totally unimodular. Interestingly, we show that even for a single protected variable, the addition of simple pairwise guidance for clustering (to say ensure individual-level fairness) makes the MCMF problem computationally intractable (i.e., NP -hard). Experimental results using Twitter, Census and NYT data sets show that our methods can modify existing clusterings for data sets in excess of 100,000 instances within minutes on laptops and find clusterings that are as fair but are of higher quality than those produced by fair-by-design clustering algorithms. Finally, we explore a challenging practical problem of making a historical clustering (i.e., zipcodes clustered into California’s congressional districts) fairer using a new multi-faceted benchmark data set.
AbstractList While existing fairness work typically focuses on fair-by-design algorithms, here we consider making a fairness-unaware algorithm’s output fairer. Specifically, we explore the area of fairness in clustering by modifying clusterings produced by existing algorithms to make them fairer whilst retaining their quality. We formulate the minimal cluster modification for fairness (MCMF) problem, where the input is a given partitional clustering and the goal is to minimally change it so that the clustering is still of good quality but fairer. We show that for a single binary protected status variable, the problem is efficiently solvable (i.e., in the class P ) by proving that the constraint matrix for an integer linear programming formulation is totally unimodular. Interestingly, we show that even for a single protected variable, the addition of simple pairwise guidance for clustering (to say ensure individual-level fairness) makes the MCMF problem computationally intractable (i.e., NP -hard). Experimental results using Twitter, Census and NYT data sets show that our methods can modify existing clusterings for data sets in excess of 100,000 instances within minutes on laptops and find clusterings that are as fair but are of higher quality than those produced by fair-by-design clustering algorithms. Finally, we explore a challenging practical problem of making a historical clustering (i.e., zipcodes clustered into California’s congressional districts) fairer using a new multi-faceted benchmark data set.
While existing fairness work typically focuses on fair-by-design algorithms, here we consider making a fairness-unaware algorithm’s output fairer. Specifically, we explore the area of fairness in clustering by modifying clusterings produced by existing algorithms to make them fairer whilst retaining their quality. We formulate the minimal cluster modification for fairness (MCMF) problem, where the input is a given partitional clustering and the goal is to minimally change it so that the clustering is still of good quality but fairer. We show that for a single binary protected status variable, the problem is efficiently solvable (i.e., in the class P) by proving that the constraint matrix for an integer linear programming formulation is totally unimodular. Interestingly, we show that even for a single protected variable, the addition of simple pairwise guidance for clustering (to say ensure individual-level fairness) makes the MCMF problem computationally intractable (i.e., NP-hard). Experimental results using Twitter, Census and NYT data sets show that our methods can modify existing clusterings for data sets in excess of 100,000 instances within minutes on laptops and find clusterings that are as fair but are of higher quality than those produced by fair-by-design clustering algorithms. Finally, we explore a challenging practical problem of making a historical clustering (i.e., zipcodes clustered into California’s congressional districts) fairer using a new multi-faceted benchmark data set.
Author Davidson, Ian
Bai, Zilong
Ravi, S. S.
Tran, Cindy Mylinh
Author_xml – sequence: 1
  givenname: Ian
  surname: Davidson
  fullname: Davidson, Ian
  email: indavidson@ucdavis.edu
  organization: Computer Science Department, University of California Davis
– sequence: 2
  givenname: Zilong
  surname: Bai
  fullname: Bai, Zilong
  organization: Computer Science Department, University of California Davis
– sequence: 3
  givenname: Cindy Mylinh
  surname: Tran
  fullname: Tran, Cindy Mylinh
  organization: Computer Science Department, University of California Davis
– sequence: 4
  givenname: S. S.
  surname: Ravi
  fullname: Ravi, S. S.
  organization: Biocomplexity Institute and Initiative, University of Virginia, Department of Computer Science, University at Albany – SUNY
BookMark eNp9kM1Lw0AQxRepYFv9BzwteHV19jOJNyl-geJFwYOwJJtNTU2TuJNA-9-7tYI3T29g5r15_GZk0natJ-SUwwUHSC6Rg-EpAyEYQJpJZg7IlOtEskSbt0mcZaqYTjkckRniCgC0kDAl70_5Z90uqWtGHHyII9Iqr4MPtNjSvsOB9aFzHjGurmjeLLtQDx9rPKeuW_eN39TDlgaPYzMgzduS-k0fc9a-HfCYHFZ5g_7kV-fk9fbmZXHPHp_vHhbXj8yJBAaWpVlSghImFVAkpS5yEyUzuigyVYBTFZSJMk6JgjtjlDQuqyDjWmqpjCrknJztc2PVr9HjYFfdGNr40opUyhSEkSJeif2VCx1i8JXtY888bC0Hu6No9xRtpGh_KFoTTXJvwn4Hx4e_6H9c3y-dd4M
Cites_doi 10.1145/2783258.2783311
10.1145/3442188.3445913
10.1109/4235.585893
10.1007/BF01584535
10.1007/s10618-006-0053-7
10.1109/SFCS.1989.63499
10.1609/aaai.v35i12.17336
10.1609/aaai.v34i04.5783
10.1609/aaai.v31i1.10765
10.1016/B978-1-55860-335-6.50039-8
10.1109/TNN.2005.845141
10.1201/9781584889977
10.1109/ACCESS.2021.3114099
10.1145/2090236.2090255
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10618-022-00893-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 1440
ExternalDocumentID 10_1007_s10618_022_00893_6
GrantInformation_xml – fundername: Directorate for Computer and Information Science and Engineering
  grantid: IIS-1908530; IIS-1910306
  funderid: http://dx.doi.org/10.13039/100000083
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
AACDK
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ABQSL
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
PQBZA
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c270t-9897d0426820b7d5ba6b7d965bb94b0c4f0d746c42b1c66436c9f0915353464b3
IEDL.DBID AGYKE
ISSN 1384-5810
IngestDate Thu Oct 10 22:11:08 EDT 2024
Fri Dec 06 05:54:26 EST 2024
Sat Dec 16 12:06:56 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Protected status
Algorithms
Clustering
Fairness
Complexity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-9897d0426820b7d5ba6b7d965bb94b0c4f0d746c42b1c66436c9f0915353464b3
PQID 2833802632
PQPubID 43030
PageCount 37
ParticipantIDs proquest_journals_2833802632
crossref_primary_10_1007_s10618_022_00893_6
springer_journals_10_1007_s10618_022_00893_6
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Friedler SA, Scheidegger C, Venkatasubramanian S (2016) On the (im)possibility of fairness. CoRR http://arxiv.org/abs/1609.07236
Flores NJ (2019) Fair algorithms for clustering. Dartmouth Computer Science Technical Report TR2019-867
Kleindessner M, Awasthi P, Morgenstern J (2019) Fair k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-center clustering for data summarization. In: Proceedings of ICML, pp 3448–3457
BasuSDavidsonIWagstaffKConstrained clustering: advances in algorithms, theory and applications2008CambridgeCRC Press10.1201/97815848899771142.68005
XuRWunschDCSurvey of clustering algorithmsIEEE Trans Neural Netw200516364567810.1109/TNN.2005.845141
ChhabraAMasalkovaiteKMohapatraPAn overview of fairness in clusteringIEEE Access2021913069813072010.1109/ACCESS.2021.3114099
Barocas S, Hardt M, Narayanan A (2017) Fairness in machine learning. NeurIPS tutorial
CormenTHLeisersonCERivestRLSteinCIntroduction to algorithms20092CambridgeMIT Press and McGraw-Hill1187.68679
Davidson I, Ravi SS (2020) Making existing clusterings fairer: algorithms, complexity results and insights. In: The thirty-fourth AAAI conference on artificial intelligence. AAAI New York, NY, USA. AAAI Press, pp 3733–3740
Feldman M, Friedler SA, Moeller J, Scheidegger C, Venkatasubramanian S (2015) Certifying and removing disparate impact. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, Sydney, NSW, Australia, August 10–13, 2015, pp 259–268
Gurobi optimizer reference manual. Available from https://www.gurobi.com/documentation/9.1/refman/index.html (2020)
Backurs A, Indyk P, Onak K, Schieber B, Vakilian A, Wagner, T (2019) Scalable fair clustering. In: Proceedings of 36th ICML, pp 405–413
Dwork C, Hardt M, Pitassi T, Reingold O, Zemel RS (2012) Fairness through awareness. In: Innovations in theoretical computer science 2012, Cambridge, MA, USA, January 8–10, 2012, pp 214–226
GareyMRJohnsonDSComputers and intractability: a guide to the theory of NP-completeness1979San FranciscoW. H. Freeman & Co.0411.68039
Ahmadi S, Galhotra S, Saha B, Schwartz R (2020) Fair correlation clustering. CoRR https://arxiv.org/abs/2002.03508
BarocasSSelbstADBig data’s disparate impactCalifornia Law Rev2016671671732
Mahabadi S, Vakilian A (2020) Individual fairness for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-clustering. In: Proceedings of the 37th international conference on machine learning, ICML 2020, 13–18 July 2020, Virtual Event, pp 6586–6596
Commission UEEO (2007) Employment tests and selection procedures. Retrieved 2 September 2020, from. https://www.ncsl.org/research/redistricting/election-dates-for-legislators-governors-who-will-do-redistricting.aspx
NCSL: NCSL (2019) Election Dates for Legislators and Governors Who Will Do Redistricting. Retrieved 2 September 2020, from (2019). https://www.ncsl.org/research/redistricting/election-dates-for-legislators-governors-who-will-do-redistricting.aspx
Bureau C (2020a) Bureau, Census. American Community Survey (ACS). Retrieved 2 September 2020, from (2020). https://www.census.gov/programs-surveys/acs
DavidsonIRaviSSThe complexity of non-hierarchical clustering with instance and cluster level constraintsData Min Knowl Discov20071412561235917210.1007/s10618-006-0053-7
Abbasi M, Bhaskara A, Venkatasubramanian S (2021) Fair clustering via equitable group representations. In: Proceedings of FAccT, p 11
CNMP: Center for New Media & Promotion (CNMP), U (2020) My Congressional District. Retrieved 2 September 2020, from (2020). https://www.census.gov/mycd/?st=06
Rösner C, Schmidt M (2018) Privacy preserving clustering with constraints. ArXiv preprint arXiv:1802.02497
VaziraniVVApproximation algorithms2001New YorkSpringer0999.68546
BergeCBalanced matricesMath Program19722193132177510.1007/BF015845350247.05126
Chierichetti F, Kumar R, Lattanzi S, Vassilvitskii S (2017) Fair clustering through fairlets. In: Proceedings of NeurIPS, pp 5036–5044
Ahmadian S, Epasto A, Kumar R, Mahdian M (2020) Fair correlation clustering. In: The 23rd international conference on artificial intelligence and statistics, AISTATS 2020, 26–28 August 2020, Online [Palermo, Sicily, Italy], pp 4195–4205
Wagstaff K, Cardie C (2000) Clustering with instance-level constraints. In: Proceedings of the seventeenth national conference on artificial intelligence and twelfth conference on on innovative applications of artificial intelligence, July 30–August 3, 2000, Austin, Texas, USA, pp 1097–1192
Bera SK, Chakrabarty D, Negahbani M (2019) Fair algorithms for clustering. ArXiv preprint arXiv:1901.02393
Kleindessner M, Samadi S, Awasthi P, Morgenstern J (2019) Guarantees for spectral clustering with fairness constraints. In: Proceedings of ICML, pp 3458–3467
von Luxburg U (2006) A Tutorial on spectral clustering. Tech. Rep. TR-149, Max Planck Institute for Biological Cybernetics, Germany
WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evolut Comput199711678210.1109/4235.585893
Ziko IM, Yuan J, Granger E, Ayed IB (2021) Variational fair clustering. In: Proceedings of thirty-fifth conference on artificial intelligence (AAAI). AAAI Press, pp 11202–11209
Chhabra A, Mohapatra P (2020) Fair algorithms for hierarchical agglomerative clustering. CoRR https://arxiv.org/abs/2005.03197
Schaffer C (1994) A conservation law for generalization performance. In: Proceedings of ICML, pp 259–265. Elsevier, New York
Ballotpedia: Ballotpedia. (2020). Retrieved 2 September 2020, from (2020). https://ballotpedia.org/Redistricting_in_California
Dua D, Graff C (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml
Kuo CT, Ravi SS, Dao TBH, Vrain C, Davidson I (2017) A framework for minimal clustering modification via constraint programming. In: AAAI, pp 1389–1395
Thanh BL, Ruggieri S, Turini F (2011) k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-NN as an implementation of situation testing for discrimination discovery and prevention. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, San Diego, CA, USA, August 21–24, 2011, pp 502–510
Vaidya PM (1989) Speeding-up linear programming using fast matrix multiplication (extended abstract). In: 30th annual symposium on foundations of computer science, Research Triangle Park, North Carolina, USA, 30 October–1 November 1989, pp 332–337
Bureau C (2020b) Bureau, Census. ZIP Code Tabulation Areas (ZCTAs). Retrieved 2 September 2020, from (2020). https://www.census.gov/programs-surveys/geography/guidance/geo-areas/zctas.html
Chen X, Fain B, Lyu L, Munagala K (2019) Proportionally fair clustering. In: Proceedings of the 36th international conference on machine learning, ICML 2019, 9–15 June 2019, Long Beach, California, USA, Proceedings of Machine Learning Research, pp 1032–1041
SchrijverATheory of linear and integer programming1998New YorkWiley0970.90052
R Xu (893_CR43) 2005; 16
893_CR17
A Schrijver (893_CR36) 1998
893_CR39
893_CR18
893_CR37
893_CR16
893_CR38
I Davidson (893_CR20) 2007; 14
S Barocas (893_CR6) 2016; 671
893_CR24
893_CR25
893_CR22
893_CR44
893_CR23
893_CR21
C Berge (893_CR10) 1972; 2
893_CR41
893_CR9
893_CR4
893_CR28
893_CR5
A Chhabra (893_CR15) 2021; 9
893_CR29
TH Cormen (893_CR19) 2009
893_CR26
893_CR7
893_CR1
893_CR2
893_CR3
S Basu (893_CR8) 2008
DH Wolpert (893_CR42) 1997; 1
893_CR13
893_CR35
893_CR14
893_CR11
893_CR33
VV Vazirani (893_CR40) 2001
893_CR12
893_CR34
893_CR31
893_CR32
MR Garey (893_CR27) 1979
893_CR30
References_xml – ident: 893_CR32
– ident: 893_CR24
  doi: 10.1145/2783258.2783311
– ident: 893_CR34
– ident: 893_CR11
– ident: 893_CR30
– ident: 893_CR1
  doi: 10.1145/3442188.3445913
– volume-title: Theory of linear and integer programming
  year: 1998
  ident: 893_CR36
  contributor:
    fullname: A Schrijver
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 893_CR42
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/4235.585893
  contributor:
    fullname: DH Wolpert
– ident: 893_CR26
– volume: 2
  start-page: 19
  year: 1972
  ident: 893_CR10
  publication-title: Math Program
  doi: 10.1007/BF01584535
  contributor:
    fullname: C Berge
– ident: 893_CR28
– volume: 14
  start-page: 25
  issue: 1
  year: 2007
  ident: 893_CR20
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-006-0053-7
  contributor:
    fullname: I Davidson
– ident: 893_CR38
  doi: 10.1109/SFCS.1989.63499
– ident: 893_CR44
  doi: 10.1609/aaai.v35i12.17336
– ident: 893_CR21
  doi: 10.1609/aaai.v34i04.5783
– ident: 893_CR2
– ident: 893_CR4
– ident: 893_CR17
– ident: 893_CR41
– ident: 893_CR22
– ident: 893_CR13
– volume-title: Introduction to algorithms
  year: 2009
  ident: 893_CR19
  contributor:
    fullname: TH Cormen
– ident: 893_CR31
  doi: 10.1609/aaai.v31i1.10765
– ident: 893_CR33
– ident: 893_CR12
– ident: 893_CR9
– ident: 893_CR7
– volume-title: Approximation algorithms
  year: 2001
  ident: 893_CR40
  contributor:
    fullname: VV Vazirani
– ident: 893_CR25
– ident: 893_CR35
  doi: 10.1016/B978-1-55860-335-6.50039-8
– ident: 893_CR29
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 893_CR43
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2005.845141
  contributor:
    fullname: R Xu
– ident: 893_CR3
– volume: 671
  start-page: 671
  year: 2016
  ident: 893_CR6
  publication-title: California Law Rev
  contributor:
    fullname: S Barocas
– ident: 893_CR18
– ident: 893_CR5
– ident: 893_CR16
– volume-title: Constrained clustering: advances in algorithms, theory and applications
  year: 2008
  ident: 893_CR8
  doi: 10.1201/9781584889977
  contributor:
    fullname: S Basu
– ident: 893_CR14
– volume: 9
  start-page: 130698
  year: 2021
  ident: 893_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3114099
  contributor:
    fullname: A Chhabra
– ident: 893_CR37
– ident: 893_CR23
  doi: 10.1145/2090236.2090255
– volume-title: Computers and intractability: a guide to the theory of NP-completeness
  year: 1979
  ident: 893_CR27
  contributor:
    fullname: MR Garey
– ident: 893_CR39
SSID ssj0005230
Score 2.418923
Snippet While existing fairness work typically focuses on fair-by-design algorithms, here we consider making a fairness-unaware algorithm’s output fairer....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1404
SubjectTerms Algorithms
Artificial Intelligence
Chemistry and Earth Sciences
Clustering
Computer Science
Data Mining and Knowledge Discovery
Datasets
Information Storage and Retrieval
Integer programming
Linear programming
Mathematical analysis
Physics
Special Issue on Bias and Fairness
Statistics for Engineering
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8QwEA26Xrz4La6ukoM3DbZNMmm9iIjrIqwnF_YglKbp6mHtVtsF_fdO2pSqoKceEgKdSTJvJm9mCDkNjBImsMkx3AcmAi2Y9qViwI2KNPgmAps7PH6A0UTcT-XUBdxKR6ts78T6ojaL1MbIL9AM8tCz1cWvijdmu0bZ11XXQmOVrPmBAkvpC4d33ygevMkSDgWToe-5pBmXOgd-yCyXHa1gxBn8NEwd2vz1QFrbneEW2XCAkV43Gt4mK1m-QzbbZgzUnc1d8jSu-0rRdL60tQ9sAJzaxxqcoz9psSgrVjRJATh0SZP5M_5d9fJantOaVp59IB6n6Hwv51VJk9zQrvh_uUcmw9vHmxFzrRNYGiivYlEYKWPdIzTwWhmpE8BPBFLrSGgvFTMPlQQpKsdPAVEJpNEMoYPkkgsQmu-TXr7IswNCZYITEuA8VYkAPUts0SkjDPqFWiqt-uSslVtcNBUy4q4WspVyjFKOaynH0CeDVrSxOy1l3Om2T85bcXfDf692-P9qR2Tddodv2LUD0qvel9kxYohKn9Qb5Qui88G_
  priority: 102
  providerName: ProQuest
Title Making clusterings fairer by post-processing: algorithms, complexity results and experiments
URI https://link.springer.com/article/10.1007/s10618-022-00893-6
https://www.proquest.com/docview/2833802632
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB48EHzxFteLPPimkba5Wt9W2VUURcQFBaE0ya6K6-5iu6D-eic9qOeDT4EmBJpJOl863zcDsBNYxW3gxDHMl5QHmlPtC0UlsyrS0reRdNrh8wt50uGnN-Km1nHnZPcqIpl_qD9p3aQfUkc-R7cVMSonYRp9jzuN083j27PWJ2YHK8TBIaci9L1SK_P7LF_9UQ0yv8VFc3fTnofrSrRTsEye9seZ3jfvP3M4_udNFmCuhJ-kWeyXRZjoDpZgvirtQMqTvgQzOTPUpMtwd57XqyKmP3Y5FdyPdeKCQDhav5HRMM3oqBAbYNcBSfr3w5fH7OE53SM5Xb37ijif4KV-3M9SkgwsqYsKpCvQabeuj05oWZKBmkB5GY3CSFl37ULgoJUVOpHYRFJoHXHtGd7z0PjSoNF9IxHtSBP1EJIIJhiXXLNVmBoMB901ICLBAYlkzKiES91LXDIryy3eN7VQWjVgtzJMPCoyb8R1jmW3hDEuYZwvYSwbsFnZLi5PYRojdGKh5zLSN2CvskXd_fds6_8bvgGzrgp9weLdhKnsZdzdQqyS6W2YDNvH2-UOxfawdXF5hU87QfMDZoLhJg
link.rule.ids 314,780,784,12765,21388,27924,27925,33373,33744,41081,41523,42150,42592,43600,43805,52111,52234,74035,74302
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagDLDwRhQKeGCjFkn8SlgQQpQCbadWYkCK4jiFoaSBpBL8e86JowASTBlsWcqd7Xv4vvsQOvW0ZNoz4BjqCsI8xYhyuSSCahko4epAGOzwcCT6E3b_yB9twi23ZZX1nVhe1Hoemxz5OZhB6jumu_hl9kYMa5R5XbUUGstohVEw3QYp3rv9VuJBK5Swzwj3XceCZix0Trg-MbXsYAUDSsRPw9R4m78eSEu709tE69ZhxFeVhrfQUpJuo42ajAHbs7mDnoYlrxSOZwvT-8AkwLF5rIE56hNn87wgWQUKgKELHM2e4e-Kl9e8i8uy8uQD_HEMwfdiVuQ4SjVumv_nu2jSuxlf94mlTiCxJ52CBH4gtQmPwMArqbmKBHwCwZUKmHJiNnVASSIG5bixAK9ExMEUXAdOOWWCKbqHWuk8TfYR5hFMiASlsYyYUNPINJ3STENcqLhUso3OarmFWdUhI2x6IRsphyDlsJRyKNqoU4s2tKclDxvdtlG3Fncz_PdqB_-vdoJW--PhIBzcjR4O0Zphiq8qbTuoVbwvkiPwJwp1XG6aL8iHxKE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50BfHiW1yfOXjTYNu8Wi_ia1kfu4goeBBK0-zqYd1dbRf03ztpU6qCnnpICHQmycxkvpkPYC8wipvAFscwX1IeaE61LxSVzKhIS99E0tYOd7qy_cCvHsWjwz9lDlZZ3YnFRW1GqX0jP0QzyELPdhc_7DtYxO1563j8Ri2DlM20OjqNaZhBq-gFDZg5veje3n0DfLCyZjjkVIS-50poXCGd9ENqke1oEyNG5U8zVfuev9KlhRVqLcK8cx_JSanvJZjqDZdhoaJmIO6krsBTp2CZIulgYjsh2OdwYlM3OEd_kvEoy-m4LBHAoSOSDJ7x__KX1-yAFCDz3gd65wRD8ckgz0gyNKSmAshW4aF1cX_Wpo5IgaaB8nIahZEyNlhCc6-VETqR-Imk0Dri2kt530OVyRRV5acSfRSZRn10JAQTjEuu2Ro0hqNhbx2ISHBCIhlLVcKl7ie2BZXhBqNELZRWTdiv5BaPy34Zcd0Z2Uo5RinHhZRj2YStSrSxOztZXGu6CQeVuOvhv1fb-H-1XZjFHRPfXHavN2HO0saXsNstaOTvk942Ohe53nG75gt1aco9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Making+clusterings+fairer+by+post-processing%3A+algorithms%2C+complexity+results+and+experiments&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Davidson%2C+Ian&rft.au=Bai%2C+Zilong&rft.au=Tran%2C+Cindy+Mylinh&rft.au=Ravi%2C+S.+S.&rft.date=2023-07-01&rft.pub=Springer+US&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=37&rft.issue=4&rft.spage=1404&rft.epage=1440&rft_id=info:doi/10.1007%2Fs10618-022-00893-6&rft.externalDocID=10_1007_s10618_022_00893_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon