Making clusterings fairer by post-processing: algorithms, complexity results and experiments
While existing fairness work typically focuses on fair-by-design algorithms, here we consider making a fairness-unaware algorithm’s output fairer. Specifically, we explore the area of fairness in clustering by modifying clusterings produced by existing algorithms to make them fairer whilst retaining...
Saved in:
Published in | Data mining and knowledge discovery Vol. 37; no. 4; pp. 1404 - 1440 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While existing fairness work typically focuses on fair-by-design algorithms, here we consider making a fairness-unaware algorithm’s output fairer. Specifically, we explore the area of fairness in clustering by modifying clusterings produced by existing algorithms to make them fairer whilst retaining their quality. We formulate the minimal cluster modification for fairness (MCMF) problem, where the input is a given partitional clustering and the goal is to minimally change it so that the clustering is still of good quality but fairer. We show that for a single binary protected status variable, the problem is efficiently solvable (i.e., in the class
P
) by proving that the constraint matrix for an integer linear programming formulation is totally unimodular. Interestingly, we show that even for a single protected variable, the addition of simple pairwise guidance for clustering (to say ensure individual-level fairness) makes the MCMF problem computationally intractable (i.e.,
NP
-hard). Experimental results using Twitter, Census and NYT data sets show that our methods can modify existing clusterings for data sets in excess of 100,000 instances within minutes on laptops and find clusterings that are as fair but are of higher quality than those produced by fair-by-design clustering algorithms. Finally, we explore a challenging practical problem of making a historical clustering (i.e., zipcodes clustered into California’s congressional districts) fairer using a new multi-faceted benchmark data set. |
---|---|
AbstractList | While existing fairness work typically focuses on fair-by-design algorithms, here we consider making a fairness-unaware algorithm’s output fairer. Specifically, we explore the area of fairness in clustering by modifying clusterings produced by existing algorithms to make them fairer whilst retaining their quality. We formulate the minimal cluster modification for fairness (MCMF) problem, where the input is a given partitional clustering and the goal is to minimally change it so that the clustering is still of good quality but fairer. We show that for a single binary protected status variable, the problem is efficiently solvable (i.e., in the class
P
) by proving that the constraint matrix for an integer linear programming formulation is totally unimodular. Interestingly, we show that even for a single protected variable, the addition of simple pairwise guidance for clustering (to say ensure individual-level fairness) makes the MCMF problem computationally intractable (i.e.,
NP
-hard). Experimental results using Twitter, Census and NYT data sets show that our methods can modify existing clusterings for data sets in excess of 100,000 instances within minutes on laptops and find clusterings that are as fair but are of higher quality than those produced by fair-by-design clustering algorithms. Finally, we explore a challenging practical problem of making a historical clustering (i.e., zipcodes clustered into California’s congressional districts) fairer using a new multi-faceted benchmark data set. While existing fairness work typically focuses on fair-by-design algorithms, here we consider making a fairness-unaware algorithm’s output fairer. Specifically, we explore the area of fairness in clustering by modifying clusterings produced by existing algorithms to make them fairer whilst retaining their quality. We formulate the minimal cluster modification for fairness (MCMF) problem, where the input is a given partitional clustering and the goal is to minimally change it so that the clustering is still of good quality but fairer. We show that for a single binary protected status variable, the problem is efficiently solvable (i.e., in the class P) by proving that the constraint matrix for an integer linear programming formulation is totally unimodular. Interestingly, we show that even for a single protected variable, the addition of simple pairwise guidance for clustering (to say ensure individual-level fairness) makes the MCMF problem computationally intractable (i.e., NP-hard). Experimental results using Twitter, Census and NYT data sets show that our methods can modify existing clusterings for data sets in excess of 100,000 instances within minutes on laptops and find clusterings that are as fair but are of higher quality than those produced by fair-by-design clustering algorithms. Finally, we explore a challenging practical problem of making a historical clustering (i.e., zipcodes clustered into California’s congressional districts) fairer using a new multi-faceted benchmark data set. |
Author | Davidson, Ian Bai, Zilong Ravi, S. S. Tran, Cindy Mylinh |
Author_xml | – sequence: 1 givenname: Ian surname: Davidson fullname: Davidson, Ian email: indavidson@ucdavis.edu organization: Computer Science Department, University of California Davis – sequence: 2 givenname: Zilong surname: Bai fullname: Bai, Zilong organization: Computer Science Department, University of California Davis – sequence: 3 givenname: Cindy Mylinh surname: Tran fullname: Tran, Cindy Mylinh organization: Computer Science Department, University of California Davis – sequence: 4 givenname: S. S. surname: Ravi fullname: Ravi, S. S. organization: Biocomplexity Institute and Initiative, University of Virginia, Department of Computer Science, University at Albany – SUNY |
BookMark | eNp9kM1Lw0AQxRepYFv9BzwteHV19jOJNyl-geJFwYOwJJtNTU2TuJNA-9-7tYI3T29g5r15_GZk0natJ-SUwwUHSC6Rg-EpAyEYQJpJZg7IlOtEskSbt0mcZaqYTjkckRniCgC0kDAl70_5Z90uqWtGHHyII9Iqr4MPtNjSvsOB9aFzHjGurmjeLLtQDx9rPKeuW_eN39TDlgaPYzMgzduS-k0fc9a-HfCYHFZ5g_7kV-fk9fbmZXHPHp_vHhbXj8yJBAaWpVlSghImFVAkpS5yEyUzuigyVYBTFZSJMk6JgjtjlDQuqyDjWmqpjCrknJztc2PVr9HjYFfdGNr40opUyhSEkSJeif2VCx1i8JXtY888bC0Hu6No9xRtpGh_KFoTTXJvwn4Hx4e_6H9c3y-dd4M |
Cites_doi | 10.1145/2783258.2783311 10.1145/3442188.3445913 10.1109/4235.585893 10.1007/BF01584535 10.1007/s10618-006-0053-7 10.1109/SFCS.1989.63499 10.1609/aaai.v35i12.17336 10.1609/aaai.v34i04.5783 10.1609/aaai.v31i1.10765 10.1016/B978-1-55860-335-6.50039-8 10.1109/TNN.2005.845141 10.1201/9781584889977 10.1109/ACCESS.2021.3114099 10.1145/2090236.2090255 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PQBIZ PQBZA PQEST PQQKQ PQUKI Q9U |
DOI | 10.1007/s10618-022-00893-6 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 1440 |
ExternalDocumentID | 10_1007_s10618_022_00893_6 |
GrantInformation_xml | – fundername: Directorate for Computer and Information Science and Engineering grantid: IIS-1908530; IIS-1910306 funderid: http://dx.doi.org/10.13039/100000083 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR AACDK AAJBT AASML AAYXX AAYZH ABAKF ABQSL ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 PQBZA 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c270t-9897d0426820b7d5ba6b7d965bb94b0c4f0d746c42b1c66436c9f0915353464b3 |
IEDL.DBID | AGYKE |
ISSN | 1384-5810 |
IngestDate | Thu Oct 10 22:11:08 EDT 2024 Fri Dec 06 05:54:26 EST 2024 Sat Dec 16 12:06:56 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Protected status Algorithms Clustering Fairness Complexity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-9897d0426820b7d5ba6b7d965bb94b0c4f0d746c42b1c66436c9f0915353464b3 |
PQID | 2833802632 |
PQPubID | 43030 |
PageCount | 37 |
ParticipantIDs | proquest_journals_2833802632 crossref_primary_10_1007_s10618_022_00893_6 springer_journals_10_1007_s10618_022_00893_6 |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Friedler SA, Scheidegger C, Venkatasubramanian S (2016) On the (im)possibility of fairness. CoRR http://arxiv.org/abs/1609.07236 Flores NJ (2019) Fair algorithms for clustering. Dartmouth Computer Science Technical Report TR2019-867 Kleindessner M, Awasthi P, Morgenstern J (2019) Fair k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-center clustering for data summarization. In: Proceedings of ICML, pp 3448–3457 BasuSDavidsonIWagstaffKConstrained clustering: advances in algorithms, theory and applications2008CambridgeCRC Press10.1201/97815848899771142.68005 XuRWunschDCSurvey of clustering algorithmsIEEE Trans Neural Netw200516364567810.1109/TNN.2005.845141 ChhabraAMasalkovaiteKMohapatraPAn overview of fairness in clusteringIEEE Access2021913069813072010.1109/ACCESS.2021.3114099 Barocas S, Hardt M, Narayanan A (2017) Fairness in machine learning. NeurIPS tutorial CormenTHLeisersonCERivestRLSteinCIntroduction to algorithms20092CambridgeMIT Press and McGraw-Hill1187.68679 Davidson I, Ravi SS (2020) Making existing clusterings fairer: algorithms, complexity results and insights. In: The thirty-fourth AAAI conference on artificial intelligence. AAAI New York, NY, USA. AAAI Press, pp 3733–3740 Feldman M, Friedler SA, Moeller J, Scheidegger C, Venkatasubramanian S (2015) Certifying and removing disparate impact. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, Sydney, NSW, Australia, August 10–13, 2015, pp 259–268 Gurobi optimizer reference manual. Available from https://www.gurobi.com/documentation/9.1/refman/index.html (2020) Backurs A, Indyk P, Onak K, Schieber B, Vakilian A, Wagner, T (2019) Scalable fair clustering. In: Proceedings of 36th ICML, pp 405–413 Dwork C, Hardt M, Pitassi T, Reingold O, Zemel RS (2012) Fairness through awareness. In: Innovations in theoretical computer science 2012, Cambridge, MA, USA, January 8–10, 2012, pp 214–226 GareyMRJohnsonDSComputers and intractability: a guide to the theory of NP-completeness1979San FranciscoW. H. Freeman & Co.0411.68039 Ahmadi S, Galhotra S, Saha B, Schwartz R (2020) Fair correlation clustering. CoRR https://arxiv.org/abs/2002.03508 BarocasSSelbstADBig data’s disparate impactCalifornia Law Rev2016671671732 Mahabadi S, Vakilian A (2020) Individual fairness for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-clustering. In: Proceedings of the 37th international conference on machine learning, ICML 2020, 13–18 July 2020, Virtual Event, pp 6586–6596 Commission UEEO (2007) Employment tests and selection procedures. Retrieved 2 September 2020, from. https://www.ncsl.org/research/redistricting/election-dates-for-legislators-governors-who-will-do-redistricting.aspx NCSL: NCSL (2019) Election Dates for Legislators and Governors Who Will Do Redistricting. Retrieved 2 September 2020, from (2019). https://www.ncsl.org/research/redistricting/election-dates-for-legislators-governors-who-will-do-redistricting.aspx Bureau C (2020a) Bureau, Census. American Community Survey (ACS). Retrieved 2 September 2020, from (2020). https://www.census.gov/programs-surveys/acs DavidsonIRaviSSThe complexity of non-hierarchical clustering with instance and cluster level constraintsData Min Knowl Discov20071412561235917210.1007/s10618-006-0053-7 Abbasi M, Bhaskara A, Venkatasubramanian S (2021) Fair clustering via equitable group representations. In: Proceedings of FAccT, p 11 CNMP: Center for New Media & Promotion (CNMP), U (2020) My Congressional District. Retrieved 2 September 2020, from (2020). https://www.census.gov/mycd/?st=06 Rösner C, Schmidt M (2018) Privacy preserving clustering with constraints. ArXiv preprint arXiv:1802.02497 VaziraniVVApproximation algorithms2001New YorkSpringer0999.68546 BergeCBalanced matricesMath Program19722193132177510.1007/BF015845350247.05126 Chierichetti F, Kumar R, Lattanzi S, Vassilvitskii S (2017) Fair clustering through fairlets. In: Proceedings of NeurIPS, pp 5036–5044 Ahmadian S, Epasto A, Kumar R, Mahdian M (2020) Fair correlation clustering. In: The 23rd international conference on artificial intelligence and statistics, AISTATS 2020, 26–28 August 2020, Online [Palermo, Sicily, Italy], pp 4195–4205 Wagstaff K, Cardie C (2000) Clustering with instance-level constraints. In: Proceedings of the seventeenth national conference on artificial intelligence and twelfth conference on on innovative applications of artificial intelligence, July 30–August 3, 2000, Austin, Texas, USA, pp 1097–1192 Bera SK, Chakrabarty D, Negahbani M (2019) Fair algorithms for clustering. ArXiv preprint arXiv:1901.02393 Kleindessner M, Samadi S, Awasthi P, Morgenstern J (2019) Guarantees for spectral clustering with fairness constraints. In: Proceedings of ICML, pp 3458–3467 von Luxburg U (2006) A Tutorial on spectral clustering. Tech. Rep. TR-149, Max Planck Institute for Biological Cybernetics, Germany WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evolut Comput199711678210.1109/4235.585893 Ziko IM, Yuan J, Granger E, Ayed IB (2021) Variational fair clustering. In: Proceedings of thirty-fifth conference on artificial intelligence (AAAI). AAAI Press, pp 11202–11209 Chhabra A, Mohapatra P (2020) Fair algorithms for hierarchical agglomerative clustering. CoRR https://arxiv.org/abs/2005.03197 Schaffer C (1994) A conservation law for generalization performance. In: Proceedings of ICML, pp 259–265. Elsevier, New York Ballotpedia: Ballotpedia. (2020). Retrieved 2 September 2020, from (2020). https://ballotpedia.org/Redistricting_in_California Dua D, Graff C (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml Kuo CT, Ravi SS, Dao TBH, Vrain C, Davidson I (2017) A framework for minimal clustering modification via constraint programming. In: AAAI, pp 1389–1395 Thanh BL, Ruggieri S, Turini F (2011) k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-NN as an implementation of situation testing for discrimination discovery and prevention. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, San Diego, CA, USA, August 21–24, 2011, pp 502–510 Vaidya PM (1989) Speeding-up linear programming using fast matrix multiplication (extended abstract). In: 30th annual symposium on foundations of computer science, Research Triangle Park, North Carolina, USA, 30 October–1 November 1989, pp 332–337 Bureau C (2020b) Bureau, Census. ZIP Code Tabulation Areas (ZCTAs). Retrieved 2 September 2020, from (2020). https://www.census.gov/programs-surveys/geography/guidance/geo-areas/zctas.html Chen X, Fain B, Lyu L, Munagala K (2019) Proportionally fair clustering. In: Proceedings of the 36th international conference on machine learning, ICML 2019, 9–15 June 2019, Long Beach, California, USA, Proceedings of Machine Learning Research, pp 1032–1041 SchrijverATheory of linear and integer programming1998New YorkWiley0970.90052 R Xu (893_CR43) 2005; 16 893_CR17 A Schrijver (893_CR36) 1998 893_CR39 893_CR18 893_CR37 893_CR16 893_CR38 I Davidson (893_CR20) 2007; 14 S Barocas (893_CR6) 2016; 671 893_CR24 893_CR25 893_CR22 893_CR44 893_CR23 893_CR21 C Berge (893_CR10) 1972; 2 893_CR41 893_CR9 893_CR4 893_CR28 893_CR5 A Chhabra (893_CR15) 2021; 9 893_CR29 TH Cormen (893_CR19) 2009 893_CR26 893_CR7 893_CR1 893_CR2 893_CR3 S Basu (893_CR8) 2008 DH Wolpert (893_CR42) 1997; 1 893_CR13 893_CR35 893_CR14 893_CR11 893_CR33 VV Vazirani (893_CR40) 2001 893_CR12 893_CR34 893_CR31 893_CR32 MR Garey (893_CR27) 1979 893_CR30 |
References_xml | – ident: 893_CR32 – ident: 893_CR24 doi: 10.1145/2783258.2783311 – ident: 893_CR34 – ident: 893_CR11 – ident: 893_CR30 – ident: 893_CR1 doi: 10.1145/3442188.3445913 – volume-title: Theory of linear and integer programming year: 1998 ident: 893_CR36 contributor: fullname: A Schrijver – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 893_CR42 publication-title: IEEE Trans Evolut Comput doi: 10.1109/4235.585893 contributor: fullname: DH Wolpert – ident: 893_CR26 – volume: 2 start-page: 19 year: 1972 ident: 893_CR10 publication-title: Math Program doi: 10.1007/BF01584535 contributor: fullname: C Berge – ident: 893_CR28 – volume: 14 start-page: 25 issue: 1 year: 2007 ident: 893_CR20 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-006-0053-7 contributor: fullname: I Davidson – ident: 893_CR38 doi: 10.1109/SFCS.1989.63499 – ident: 893_CR44 doi: 10.1609/aaai.v35i12.17336 – ident: 893_CR21 doi: 10.1609/aaai.v34i04.5783 – ident: 893_CR2 – ident: 893_CR4 – ident: 893_CR17 – ident: 893_CR41 – ident: 893_CR22 – ident: 893_CR13 – volume-title: Introduction to algorithms year: 2009 ident: 893_CR19 contributor: fullname: TH Cormen – ident: 893_CR31 doi: 10.1609/aaai.v31i1.10765 – ident: 893_CR33 – ident: 893_CR12 – ident: 893_CR9 – ident: 893_CR7 – volume-title: Approximation algorithms year: 2001 ident: 893_CR40 contributor: fullname: VV Vazirani – ident: 893_CR25 – ident: 893_CR35 doi: 10.1016/B978-1-55860-335-6.50039-8 – ident: 893_CR29 – volume: 16 start-page: 645 issue: 3 year: 2005 ident: 893_CR43 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2005.845141 contributor: fullname: R Xu – ident: 893_CR3 – volume: 671 start-page: 671 year: 2016 ident: 893_CR6 publication-title: California Law Rev contributor: fullname: S Barocas – ident: 893_CR18 – ident: 893_CR5 – ident: 893_CR16 – volume-title: Constrained clustering: advances in algorithms, theory and applications year: 2008 ident: 893_CR8 doi: 10.1201/9781584889977 contributor: fullname: S Basu – ident: 893_CR14 – volume: 9 start-page: 130698 year: 2021 ident: 893_CR15 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3114099 contributor: fullname: A Chhabra – ident: 893_CR37 – ident: 893_CR23 doi: 10.1145/2090236.2090255 – volume-title: Computers and intractability: a guide to the theory of NP-completeness year: 1979 ident: 893_CR27 contributor: fullname: MR Garey – ident: 893_CR39 |
SSID | ssj0005230 |
Score | 2.418923 |
Snippet | While existing fairness work typically focuses on fair-by-design algorithms, here we consider making a fairness-unaware algorithm’s output fairer.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1404 |
SubjectTerms | Algorithms Artificial Intelligence Chemistry and Earth Sciences Clustering Computer Science Data Mining and Knowledge Discovery Datasets Information Storage and Retrieval Integer programming Linear programming Mathematical analysis Physics Special Issue on Bias and Fairness Statistics for Engineering |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8QwEA26Xrz4La6ukoM3DbZNMmm9iIjrIqwnF_YglKbp6mHtVtsF_fdO2pSqoKceEgKdSTJvJm9mCDkNjBImsMkx3AcmAi2Y9qViwI2KNPgmAps7PH6A0UTcT-XUBdxKR6ts78T6ojaL1MbIL9AM8tCz1cWvijdmu0bZ11XXQmOVrPmBAkvpC4d33ygevMkSDgWToe-5pBmXOgd-yCyXHa1gxBn8NEwd2vz1QFrbneEW2XCAkV43Gt4mK1m-QzbbZgzUnc1d8jSu-0rRdL60tQ9sAJzaxxqcoz9psSgrVjRJATh0SZP5M_5d9fJantOaVp59IB6n6Hwv51VJk9zQrvh_uUcmw9vHmxFzrRNYGiivYlEYKWPdIzTwWhmpE8BPBFLrSGgvFTMPlQQpKsdPAVEJpNEMoYPkkgsQmu-TXr7IswNCZYITEuA8VYkAPUts0SkjDPqFWiqt-uSslVtcNBUy4q4WspVyjFKOaynH0CeDVrSxOy1l3Om2T85bcXfDf692-P9qR2Tddodv2LUD0qvel9kxYohKn9Qb5Qui88G_ priority: 102 providerName: ProQuest |
Title | Making clusterings fairer by post-processing: algorithms, complexity results and experiments |
URI | https://link.springer.com/article/10.1007/s10618-022-00893-6 https://www.proquest.com/docview/2833802632 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB48EHzxFteLPPimkba5Wt9W2VUURcQFBaE0ya6K6-5iu6D-eic9qOeDT4EmBJpJOl863zcDsBNYxW3gxDHMl5QHmlPtC0UlsyrS0reRdNrh8wt50uGnN-Km1nHnZPcqIpl_qD9p3aQfUkc-R7cVMSonYRp9jzuN083j27PWJ2YHK8TBIaci9L1SK_P7LF_9UQ0yv8VFc3fTnofrSrRTsEye9seZ3jfvP3M4_udNFmCuhJ-kWeyXRZjoDpZgvirtQMqTvgQzOTPUpMtwd57XqyKmP3Y5FdyPdeKCQDhav5HRMM3oqBAbYNcBSfr3w5fH7OE53SM5Xb37ijif4KV-3M9SkgwsqYsKpCvQabeuj05oWZKBmkB5GY3CSFl37ULgoJUVOpHYRFJoHXHtGd7z0PjSoNF9IxHtSBP1EJIIJhiXXLNVmBoMB901ICLBAYlkzKiES91LXDIryy3eN7VQWjVgtzJMPCoyb8R1jmW3hDEuYZwvYSwbsFnZLi5PYRojdGKh5zLSN2CvskXd_fds6_8bvgGzrgp9weLdhKnsZdzdQqyS6W2YDNvH2-UOxfawdXF5hU87QfMDZoLhJg |
link.rule.ids | 314,780,784,12765,21388,27924,27925,33373,33744,41081,41523,42150,42592,43600,43805,52111,52234,74035,74302 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagDLDwRhQKeGCjFkn8SlgQQpQCbadWYkCK4jiFoaSBpBL8e86JowASTBlsWcqd7Xv4vvsQOvW0ZNoz4BjqCsI8xYhyuSSCahko4epAGOzwcCT6E3b_yB9twi23ZZX1nVhe1Hoemxz5OZhB6jumu_hl9kYMa5R5XbUUGstohVEw3QYp3rv9VuJBK5Swzwj3XceCZix0Trg-MbXsYAUDSsRPw9R4m78eSEu709tE69ZhxFeVhrfQUpJuo42ajAHbs7mDnoYlrxSOZwvT-8AkwLF5rIE56hNn87wgWQUKgKELHM2e4e-Kl9e8i8uy8uQD_HEMwfdiVuQ4SjVumv_nu2jSuxlf94mlTiCxJ52CBH4gtQmPwMArqbmKBHwCwZUKmHJiNnVASSIG5bixAK9ExMEUXAdOOWWCKbqHWuk8TfYR5hFMiASlsYyYUNPINJ3STENcqLhUso3OarmFWdUhI2x6IRsphyDlsJRyKNqoU4s2tKclDxvdtlG3Fncz_PdqB_-vdoJW--PhIBzcjR4O0Zphiq8qbTuoVbwvkiPwJwp1XG6aL8iHxKE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50BfHiW1yfOXjTYNu8Wi_ia1kfu4goeBBK0-zqYd1dbRf03ztpU6qCnnpICHQmycxkvpkPYC8wipvAFscwX1IeaE61LxSVzKhIS99E0tYOd7qy_cCvHsWjwz9lDlZZ3YnFRW1GqX0jP0QzyELPdhc_7DtYxO1563j8Ri2DlM20OjqNaZhBq-gFDZg5veje3n0DfLCyZjjkVIS-50poXCGd9ENqke1oEyNG5U8zVfuev9KlhRVqLcK8cx_JSanvJZjqDZdhoaJmIO6krsBTp2CZIulgYjsh2OdwYlM3OEd_kvEoy-m4LBHAoSOSDJ7x__KX1-yAFCDz3gd65wRD8ckgz0gyNKSmAshW4aF1cX_Wpo5IgaaB8nIahZEyNlhCc6-VETqR-Imk0Dri2kt530OVyRRV5acSfRSZRn10JAQTjEuu2Ro0hqNhbx2ISHBCIhlLVcKl7ie2BZXhBqNELZRWTdiv5BaPy34Zcd0Z2Uo5RinHhZRj2YStSrSxOztZXGu6CQeVuOvhv1fb-H-1XZjFHRPfXHavN2HO0saXsNstaOTvk942Ohe53nG75gt1aco9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Making+clusterings+fairer+by+post-processing%3A+algorithms%2C+complexity+results+and+experiments&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Davidson%2C+Ian&rft.au=Bai%2C+Zilong&rft.au=Tran%2C+Cindy+Mylinh&rft.au=Ravi%2C+S.+S.&rft.date=2023-07-01&rft.pub=Springer+US&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=37&rft.issue=4&rft.spage=1404&rft.epage=1440&rft_id=info:doi/10.1007%2Fs10618-022-00893-6&rft.externalDocID=10_1007_s10618_022_00893_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |