Quasi-interpolation for high-dimensional function approximation
The paper proposes a general quasi-interpolation scheme for high-dimensional function approximation. To facilitate error analysis, we view our quasi-interpolation as a two-step procedure. In the first step, we approximate a target function by a purpose-built convolution operator (with an error term...
Saved in:
Published in | Numerische Mathematik Vol. 156; no. 5; pp. 1855 - 1885 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0029-599X 0945-3245 |
DOI | 10.1007/s00211-024-01435-6 |
Cover
Abstract | The paper proposes a general quasi-interpolation scheme for high-dimensional function approximation. To facilitate error analysis, we view our quasi-interpolation as a two-step procedure. In the first step, we approximate a target function by a purpose-built convolution operator (with an error term referred to as convolution error). In the second step, we discretize the underlying convolution operator using certain quadrature rule at the given sampling data sites (with an error term called discretization error). The final approximation error is obtained as an optimally balanced sum of these two errors, which in turn views our quasi-interpolation as a regularization technique that balances convolution error and discretization error. As a concrete example, we construct a sparse grid quasi-interpolation scheme for high-dimensional function approximation. Both theoretical analysis and numerical implementations provide evidence that our quasi-interpolation scheme is robust and is capable of mitigating the curse of dimensionality for approximating high-dimensional functions. |
---|---|
AbstractList | The paper proposes a general quasi-interpolation scheme for high-dimensional function approximation. To facilitate error analysis, we view our quasi-interpolation as a two-step procedure. In the first step, we approximate a target function by a purpose-built convolution operator (with an error term referred to as convolution error). In the second step, we discretize the underlying convolution operator using certain quadrature rule at the given sampling data sites (with an error term called discretization error). The final approximation error is obtained as an optimally balanced sum of these two errors, which in turn views our quasi-interpolation as a regularization technique that balances convolution error and discretization error. As a concrete example, we construct a sparse grid quasi-interpolation scheme for high-dimensional function approximation. Both theoretical analysis and numerical implementations provide evidence that our quasi-interpolation scheme is robust and is capable of mitigating the curse of dimensionality for approximating high-dimensional functions. |
Author | Gao, Wenwu Sun, Zhengjie Fasshauer, Gregory E. Wang, Jiecheng |
Author_xml | – sequence: 1 givenname: Wenwu surname: Gao fullname: Gao, Wenwu organization: School of Big Data and Statistics, Anhui University – sequence: 2 givenname: Jiecheng surname: Wang fullname: Wang, Jiecheng organization: School of Economic, Management and Law, University of South China – sequence: 3 givenname: Zhengjie surname: Sun fullname: Sun, Zhengjie email: sunzhengjie1218@163.com organization: School of Mathematics and Statistics, Nanjing University of Science and Technology – sequence: 4 givenname: Gregory E. surname: Fasshauer fullname: Fasshauer, Gregory E. organization: Department of Applied Mathematics and Statistics, Colorado School of Mines |
BookMark | eNp9kE9LAzEQxYNUsFa_gKeC5-gkm2w2J5HiPyiIoOAtpLuTdkubrMku6Lc3dgVvnmaYeb-ZxzslEx88EnLB4IoBqOsEwBmjwAUFJgpJyyMyBS0kLbiQk9wD11Rq_X5CTlPaAjBVCjYlNy-DTS1tfY-xCzvbt8HPXYjzTbve0Kbdo095ZHdzN_j6sLVdF8Nnuz9oz8ixs7uE5791Rt7u714Xj3T5_PC0uF3SmivoqZZKOSWQyZqjQ9RKoa0s1E1peS3tqiqbCptaAkpdce0UF-XKrrCwTItKFjNyOd7Nvz8GTL3ZhiFmX8kUjGWiAsWyio-qOoaUIjrTxWw0fhkG5icoMwZlclDmEJQpM1SMUMpiv8b4d_of6hus6G4S |
Cites_doi | 10.1007/s00211-021-01242-3 10.1007/s00211-021-01177-9 10.1016/j.acha.2022.10.005 10.1093/imanum/drm002 10.1137/20M1354921 10.1016/j.jat.2014.11.005 10.1017/9781139680523 10.1016/j.camwa.2015.02.008 10.1137/19M1283483 10.1007/s00211-015-0711-z 10.1006/jath.1993.1009 10.1007/s11075-017-0340-y 10.1007/BF01279020 10.1515/9781400874668 10.1093/imanum/8.3.365 10.1007/s10444-004-1832-6 10.1080/00029890.1980.11995156 10.1016/j.acha.2022.04.004 10.1093/imanum/drac059 10.1007/s00041-023-09994-2 10.1093/oso/9780198534723.001.0001 10.1007/s10208-015-9274-8 10.1007/s002110050231 10.1007/s10915-022-01998-2 10.1016/j.acha.2020.01.003 10.1007/s00211-020-01147-7 10.1007/s11075-007-9145-8 10.1007/s00211-019-01051-9 10.1016/j.acha.2015.05.002 10.1016/j.cam.2014.03.012 10.1142/9335 10.1002/nme.6565 10.1007/978-3-0348-8619-2_2 10.1016/j.jco.2011.02.004 10.1016/j.acha.2020.11.002 10.1137/20M1318055 10.1070/RM2004v059n01ABEH000698 10.1017/S0962492913000044 10.1137/070693308 10.1017/S0962492904000182 10.1093/imanum/drs026 10.1007/BF03028369 10.1006/jcom.1995.1001 10.1016/j.neunet.2019.12.013 10.1016/j.jat.2019.105338 10.1016/j.jmaa.2020.124192 10.1137/19M1249138 10.1137/19M1266496 10.1007/BF02016334 10.1016/0898-1221(90)90272-L 10.1016/j.jat.2021.105631 10.1137/110845537 10.1111/j.1365-246X.1968.tb00216.x 10.1137/040604959 10.1023/A:1019129717644 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s00211-024-01435-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 0945-3245 |
EndPage | 1885 |
ExternalDocumentID | 10_1007_s00211_024_01435_6 |
GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 41~ 5QI 5VS 67Z 692 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM LO0 M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF0 PKN PT4 PT5 QOK QOS R4E R89 R9I REI RHV RIG RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XJT YLTOR YNT YQT Z45 Z5O Z7R Z7X Z83 Z86 Z88 Z8M Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c270t-9577f74e15c2efee977ea8a0cd6a2c5ab86d8edc50e59829f7246babe3a194853 |
IEDL.DBID | AGYKE |
ISSN | 0029-599X |
IngestDate | Fri Jul 25 11:08:00 EDT 2025 Tue Jul 01 00:36:52 EDT 2025 Fri Feb 21 02:36:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | 41A25 65D40 41A30 41A63 65D15 41A05 42B05 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-9577f74e15c2efee977ea8a0cd6a2c5ab86d8edc50e59829f7246babe3a194853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3118298071 |
PQPubID | 2043616 |
PageCount | 31 |
ParticipantIDs | proquest_journals_3118298071 crossref_primary_10_1007_s00211_024_01435_6 springer_journals_10_1007_s00211_024_01435_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Numerische Mathematik |
PublicationTitleAbbrev | Numer. Math |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | BuhmannMConvergence of univariate quasi-interpolation using multiquadricsIMA J. Numer. Anal.19888365383968100 AdcockBBaoAYBrugiapagliaSCorrecting for unknown errors in sparse high-dimensional function approximationNumer. Math.20191426677113962896 KolomoitsevYSkopinaMQuasi-projection operators in weighted Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document} spacesAppl. Comput. Harmon. Anal.2021521651974218420 BackusGGilbertFThe resolving power of gross earth dataGeophys. J. R. Astr. Soc.196816169205 GaoWWFasshauerGESunXPZhouXOptimality and regularization properties of quasi-interpolation: deterministic and stochastic approachesSIAM J. Numer. Anal.202058205920784119331 PottsDSchmischkeMApproximation of high-dimensional periodic functions with Fourier-based methodsSIAM J. Numer. Anal.202159239324294313847 KolomoitsevYPrestinJApproximation properties of periodic multivariate quasi-interpolation operatorsJ. Approx. Theory20212704293702 NovakERitterKHigh dimensional integration of smooth functions over cubesNumer. Math.19967579971417864 HennigPOsborneMAGirolamiMProbabilistic numerics and uncertainty in computationsProc. Roy. Soc.2015472179 BeatsonRLightWBraessDSchumakerLLQuasi-interpolation in the absence of polynomial reproductionNumerical Methods of Approximation Theory1992BaselBirkhauser2139 KritzerPPillichshammerFPlaskotaLWasilkowskiGWOn efficient weighted integration via a change of variablesNumer. Math.20201465455704169483 Garcke, J.: Sparse grid tutorial, pp. 1–26 (2006). https://www.researchgate.net/publication/228357801 MorrowZStoyanovMA method for dimensionally adaptive sparse trigonometric interpolation of periodic functionsSIAM J. Sci. Comput.202042A2346A24604138211 LemieuxCMonte Carlo and Quasi-Monte Carlo sampling2009New YorkSpringer GerstnerTGriebelMNumerical integration using sparse gridsNumer. Algorithms1998182092321669959 DũngDB-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothnessJ. Complexity2011275415672846705 VitushkinAOn Hilbert’s thirteenth problem and related questionsRuss. Math. Surv.200451111252068840 MontanelliHYangHZError bounds for deep ReLU networks using the Kolmogorov–Arnold superposition theoremNeur. Net.202012916 VainikkoEVainikkoGA spline product quasi-interpolation method for weakly singular Fredholm integral equationsSIAM J. Numer. Anal.200846179918202399396 FranzTWendlandHMultilevel quasi-interpolationIMA J. Numer. Anal.2023435293429644648525 DũngDSampling and cubature on sparse grids based on a B-spline quasi-interpolationFound. Comput. Math.201616119312403552844 BuhmannMDaiFPointwise approximation with quasi-interpolation by radial basis functionsJ. Approx. Theroy20151921561923313479 HardyRLTheory and applications of the multiquadric-biharmonic method 20 years of discovery 1968–1988Comput. Math. Appl.1990198–91632081040159 JeongBKerseySYoonJApproximation of multivariate functions on sparse grids by kernel-based quasi-interpolationSIAM J. Sci. Comput.202143A953A9794229253 DickJLeobacherGPillichshammerFRandomized Smolyak algorithms based on digital sequences for multivariate integrationIMA J. Numer. Anal.2007276556742371826 KaarniojaVKazashiYKuoFYNobileFSloanIHFast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantificationNumer. Math.202215033774363819 SloanIHJoeSLattice Methods for Multiple Integration1994New YorkOxford University Press WasilkowskiGWWoźniakowskiHExplicit cost bounds of algorithms for multivariate tensor product problemsJ. Complexity1995111561319049 BeatsonRPowellMUnivariate multiquadric approximation: quasi-interpolation to scattered dataConstr. Approx.199282752881164070 GaoWWWuZMA quasi-interpolation scheme for periodic data based on multiquadric trigonometric B-splinesJ. Comput. App. Math.201427120303209910 BellmannRAdaptive Control Processes: A Guided Tour1961New YorkPrinceton Press BuhmannMOn quasi-interpolation with radial basis functionsJ. Approx. Theory1993721031301198376 FasshauerGEMcCourtMJKernel-Based Approximation Methods Using Matlab2015HackensackWorld Scientific BuhmannMJägerJQuasi-interpolation2022CambridgeCambridge University Press KämmererLPottsDVolkmerTHigh-dimensional sparse FFT based on sampling along multiple rank-1 latticesAppl. Comput. Harmon. Anal.2021512252574185099 GaoWWSunXPWuZMZhouXMultivariate Monte Carlo approximation based on scattered dataSIAM J. Sci. Comput.202042226222804127103 GaoWWFasshauerGEFisherNDivergence-free quasi-interpolationAppl. Comput. Harmon. Anal.2022604714884423813 GaoWWWuZMApproximation orders and shape preserving properties of the multiquadric trigonometric B-spline quasi-interpolantComput. Math. Appl.2015696967073320282 Khavinson, S., Best Approximation by Linear Superpositions, Translations of Mathematical Monographs, vol. 159, AMS (1997) Tan, P.N., Steinbach, M., Vipin,K.: Introduction to Data Mining. Pearson Addison-Wesley (2006) UstaFLevesleyJMultilevel quasi-interpolation on a sparse grid with the GaussianNumer. Algorithms2018177938083766595 SunZGaoWWYangRA convergent iterated quasi-interpolation for periodic domain and its applications to surface PDEsJ. Sci. Comput.2022932374483528 KolomoitsevYLomakoTTikhonovSSparse grid approximation in weighted Wiener spacesJ. Four. Anal. Appl.20232919514552583 NasdalaRPottsDEfficient multivariate approximation on the cubeNumer. Math.20211473934294215342 KochPELycheTNeamtuMSchumakerLLControl curves and knot insertion for trigonometric splinesAdv. Comput. Math.199534054241339172 KuoFYSloanIHWozniakowskiHPeriodization may fail in high dimensionsNumer. Algorithm.2007463693912374244 PottsDVolkmerTSparse high-dimensional FFT based on rank-1 lattice samplingAppl. Comput. Harmon. Anal.2016417137483546427 DũngDThaoMXDimension-dependent error estimates for sampling recovery on Smolyak grids based on B-spline quasi-interpolationJ. Approx. Theory20202501053384035964 SpeleersHManniCEffortless quasi-interpolation in hierarchical spacesNumer. Math.20161321551843439218 WuZMSchabackRShape preserving properties and convergence of univariate multiquadric quasi-interpolationActa Math. Appl. Sin.1994104414461324588 AdamsRAFournierJJFSobolev Spaces20032AmsterdamElsevier BungartzHGriebelMSparse gridsActa Numer.2004131472602249147 PeigneyMA Fourier-based machine learning technique with application in engineeringInt. J. Numer. Methods Eng.20211228668974200052 KolomoitsevYKrivosheinASkopinaMApproximation by periodic multivariate quasi-projection operatorsJ. Math. Anal. Appl.20204894095814 StanleySSQuasi-interpolation with Trigonometric Splines1996NashvilleVanderbilt University DickJKuoFYSloanIHHigh-dimensional integration: the quasi-Monte Carlo wayActa Numer.2013221332883038697 GrohsPQuasi-interpolation in Riemannian manifoldsIMA J. Numer. Anal.2013333849874308148610.1093/imanum/drs026 RomanSThe formula of Faà di BrunoAm. Math. Monthly198087805809 KuoFYSchwabChSloanIHQuasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficientSIAM J. Numer. Anal.201250335133743024159 GriebelMPardoLPinkusASuliEToddMSparse grids and related approximation schemes for higher dimensional problemsFoundations of Computational Mathematics LMS 3312006CambridgeCambridge University Press WuZMLiuJPGeneralized Strang–Fix condition for scattered data quasi-interpolationAdv. Comput. Math.2005232012142132000 HubbertSJägerJLevesleyJConvergence of sparse grid Gaussian convolution approximation for multi-dimensional periodic functionsAppl. Comput. Harm. Anal.2023624534744510018 BeylkinGMolekampMAlgorithms for numerical analysis in high dimensionsSIAM J. Sci. Comput.200526213321592196592 SS Stanley (1435_CR55) 1996 PE Koch (1435_CR36) 1995; 3 R Beatson (1435_CR4) 1992 E Vainikko (1435_CR59) 2008; 46 FY Kuo (1435_CR43) 2012; 50 M Peigney (1435_CR49) 2021; 122 WW Gao (1435_CR22) 2020; 42 B Jeong (1435_CR32) 2021; 43 GE Fasshauer (1435_CR18) 2015 S Roman (1435_CR52) 1980; 87 J Dick (1435_CR14) 2007; 27 WW Gao (1435_CR23) 2020; 58 R Nasdala (1435_CR47) 2021; 147 Y Kolomoitsev (1435_CR40) 2023; 29 J Dick (1435_CR13) 2013; 22 RL Hardy (1435_CR29) 1990; 19 RA Adams (1435_CR1) 2003 E Novak (1435_CR48) 1996; 75 IH Sloan (1435_CR53) 1994 D Dũng (1435_CR16) 2016; 16 L Kämmerer (1435_CR34) 2021; 51 D Dũng (1435_CR17) 2020; 250 Y Kolomoitsev (1435_CR37) 2020; 489 1435_CR35 M Buhmann (1435_CR10) 2015; 192 B Adcock (1435_CR2) 2019; 142 Y Kolomoitsev (1435_CR39) 2021; 52 ZM Wu (1435_CR63) 2005; 23 H Speleers (1435_CR54) 2016; 132 M Buhmann (1435_CR8) 1988; 8 T Franz (1435_CR19) 2023; 43 R Bellmann (1435_CR6) 1961 A Vitushkin (1435_CR60) 2004; 51 WW Gao (1435_CR20) 2014; 271 H Montanelli (1435_CR45) 2020; 129 G Backus (1435_CR3) 1968; 16 T Gerstner (1435_CR26) 1998; 18 Y Kolomoitsev (1435_CR38) 2021; 270 Z Sun (1435_CR56) 2022; 93 R Beatson (1435_CR5) 1992; 8 1435_CR25 V Kaarnioja (1435_CR33) 2022; 150 M Buhmann (1435_CR11) 2022 WW Gao (1435_CR21) 2015; 69 D Potts (1435_CR50) 2016; 41 G Beylkin (1435_CR7) 2005; 26 P Kritzer (1435_CR41) 2020; 146 P Grohs (1435_CR28) 2013; 33 S Hubbert (1435_CR31) 2023; 62 M Griebel (1435_CR27) 2006 P Hennig (1435_CR30) 2015; 47 D Potts (1435_CR51) 2021; 59 H Bungartz (1435_CR12) 2004; 13 FY Kuo (1435_CR42) 2007; 46 C Lemieux (1435_CR44) 2009 F Usta (1435_CR58) 2018; 17 GW Wasilkowski (1435_CR61) 1995; 11 1435_CR57 WW Gao (1435_CR24) 2022; 60 M Buhmann (1435_CR9) 1993; 72 ZM Wu (1435_CR62) 1994; 10 Z Morrow (1435_CR46) 2020; 42 D Dũng (1435_CR15) 2011; 27 |
References_xml | – reference: BeatsonRPowellMUnivariate multiquadric approximation: quasi-interpolation to scattered dataConstr. Approx.199282752881164070 – reference: LemieuxCMonte Carlo and Quasi-Monte Carlo sampling2009New YorkSpringer – reference: PottsDSchmischkeMApproximation of high-dimensional periodic functions with Fourier-based methodsSIAM J. Numer. Anal.202159239324294313847 – reference: GaoWWFasshauerGEFisherNDivergence-free quasi-interpolationAppl. Comput. Harmon. Anal.2022604714884423813 – reference: Garcke, J.: Sparse grid tutorial, pp. 1–26 (2006). https://www.researchgate.net/publication/228357801 – reference: GaoWWFasshauerGESunXPZhouXOptimality and regularization properties of quasi-interpolation: deterministic and stochastic approachesSIAM J. Numer. Anal.202058205920784119331 – reference: KolomoitsevYLomakoTTikhonovSSparse grid approximation in weighted Wiener spacesJ. Four. Anal. Appl.20232919514552583 – reference: Tan, P.N., Steinbach, M., Vipin,K.: Introduction to Data Mining. Pearson Addison-Wesley (2006) – reference: BuhmannMDaiFPointwise approximation with quasi-interpolation by radial basis functionsJ. Approx. Theroy20151921561923313479 – reference: BellmannRAdaptive Control Processes: A Guided Tour1961New YorkPrinceton Press – reference: SunZGaoWWYangRA convergent iterated quasi-interpolation for periodic domain and its applications to surface PDEsJ. Sci. Comput.2022932374483528 – reference: SloanIHJoeSLattice Methods for Multiple Integration1994New YorkOxford University Press – reference: DũngDSampling and cubature on sparse grids based on a B-spline quasi-interpolationFound. Comput. Math.201616119312403552844 – reference: BackusGGilbertFThe resolving power of gross earth dataGeophys. J. R. Astr. Soc.196816169205 – reference: DũngDB-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothnessJ. Complexity2011275415672846705 – reference: SpeleersHManniCEffortless quasi-interpolation in hierarchical spacesNumer. Math.20161321551843439218 – reference: BuhmannMOn quasi-interpolation with radial basis functionsJ. Approx. Theory1993721031301198376 – reference: KuoFYSchwabChSloanIHQuasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficientSIAM J. Numer. Anal.201250335133743024159 – reference: HennigPOsborneMAGirolamiMProbabilistic numerics and uncertainty in computationsProc. Roy. Soc.2015472179 – reference: UstaFLevesleyJMultilevel quasi-interpolation on a sparse grid with the GaussianNumer. Algorithms2018177938083766595 – reference: GrohsPQuasi-interpolation in Riemannian manifoldsIMA J. Numer. Anal.2013333849874308148610.1093/imanum/drs026 – reference: PottsDVolkmerTSparse high-dimensional FFT based on rank-1 lattice samplingAppl. Comput. Harmon. Anal.2016417137483546427 – reference: KaarniojaVKazashiYKuoFYNobileFSloanIHFast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantificationNumer. Math.202215033774363819 – reference: KritzerPPillichshammerFPlaskotaLWasilkowskiGWOn efficient weighted integration via a change of variablesNumer. Math.20201465455704169483 – reference: FranzTWendlandHMultilevel quasi-interpolationIMA J. Numer. Anal.2023435293429644648525 – reference: NasdalaRPottsDEfficient multivariate approximation on the cubeNumer. Math.20211473934294215342 – reference: StanleySSQuasi-interpolation with Trigonometric Splines1996NashvilleVanderbilt University – reference: DickJLeobacherGPillichshammerFRandomized Smolyak algorithms based on digital sequences for multivariate integrationIMA J. Numer. Anal.2007276556742371826 – reference: NovakERitterKHigh dimensional integration of smooth functions over cubesNumer. Math.19967579971417864 – reference: WasilkowskiGWWoźniakowskiHExplicit cost bounds of algorithms for multivariate tensor product problemsJ. Complexity1995111561319049 – reference: DickJKuoFYSloanIHHigh-dimensional integration: the quasi-Monte Carlo wayActa Numer.2013221332883038697 – reference: KuoFYSloanIHWozniakowskiHPeriodization may fail in high dimensionsNumer. Algorithm.2007463693912374244 – reference: GriebelMPardoLPinkusASuliEToddMSparse grids and related approximation schemes for higher dimensional problemsFoundations of Computational Mathematics LMS 3312006CambridgeCambridge University Press – reference: WuZMLiuJPGeneralized Strang–Fix condition for scattered data quasi-interpolationAdv. Comput. Math.2005232012142132000 – reference: KolomoitsevYPrestinJApproximation properties of periodic multivariate quasi-interpolation operatorsJ. Approx. Theory20212704293702 – reference: DũngDThaoMXDimension-dependent error estimates for sampling recovery on Smolyak grids based on B-spline quasi-interpolationJ. Approx. Theory20202501053384035964 – reference: HubbertSJägerJLevesleyJConvergence of sparse grid Gaussian convolution approximation for multi-dimensional periodic functionsAppl. Comput. Harm. Anal.2023624534744510018 – reference: VitushkinAOn Hilbert’s thirteenth problem and related questionsRuss. Math. Surv.200451111252068840 – reference: KämmererLPottsDVolkmerTHigh-dimensional sparse FFT based on sampling along multiple rank-1 latticesAppl. Comput. Harmon. Anal.2021512252574185099 – reference: MontanelliHYangHZError bounds for deep ReLU networks using the Kolmogorov–Arnold superposition theoremNeur. Net.202012916 – reference: GaoWWWuZMA quasi-interpolation scheme for periodic data based on multiquadric trigonometric B-splinesJ. Comput. App. Math.201427120303209910 – reference: VainikkoEVainikkoGA spline product quasi-interpolation method for weakly singular Fredholm integral equationsSIAM J. Numer. Anal.200846179918202399396 – reference: KochPELycheTNeamtuMSchumakerLLControl curves and knot insertion for trigonometric splinesAdv. Comput. Math.199534054241339172 – reference: BungartzHGriebelMSparse gridsActa Numer.2004131472602249147 – reference: GaoWWSunXPWuZMZhouXMultivariate Monte Carlo approximation based on scattered dataSIAM J. Sci. Comput.202042226222804127103 – reference: GerstnerTGriebelMNumerical integration using sparse gridsNumer. Algorithms1998182092321669959 – reference: GaoWWWuZMApproximation orders and shape preserving properties of the multiquadric trigonometric B-spline quasi-interpolantComput. Math. Appl.2015696967073320282 – reference: AdcockBBaoAYBrugiapagliaSCorrecting for unknown errors in sparse high-dimensional function approximationNumer. Math.20191426677113962896 – reference: KolomoitsevYSkopinaMQuasi-projection operators in weighted Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document} spacesAppl. Comput. Harmon. Anal.2021521651974218420 – reference: BuhmannMConvergence of univariate quasi-interpolation using multiquadricsIMA J. Numer. Anal.19888365383968100 – reference: Khavinson, S., Best Approximation by Linear Superpositions, Translations of Mathematical Monographs, vol. 159, AMS (1997) – reference: FasshauerGEMcCourtMJKernel-Based Approximation Methods Using Matlab2015HackensackWorld Scientific – reference: BeylkinGMolekampMAlgorithms for numerical analysis in high dimensionsSIAM J. Sci. Comput.200526213321592196592 – reference: JeongBKerseySYoonJApproximation of multivariate functions on sparse grids by kernel-based quasi-interpolationSIAM J. Sci. Comput.202143A953A9794229253 – reference: RomanSThe formula of Faà di BrunoAm. Math. Monthly198087805809 – reference: MorrowZStoyanovMA method for dimensionally adaptive sparse trigonometric interpolation of periodic functionsSIAM J. Sci. Comput.202042A2346A24604138211 – reference: PeigneyMA Fourier-based machine learning technique with application in engineeringInt. J. Numer. Methods Eng.20211228668974200052 – reference: KolomoitsevYKrivosheinASkopinaMApproximation by periodic multivariate quasi-projection operatorsJ. Math. Anal. Appl.20204894095814 – reference: AdamsRAFournierJJFSobolev Spaces20032AmsterdamElsevier – reference: BuhmannMJägerJQuasi-interpolation2022CambridgeCambridge University Press – reference: WuZMSchabackRShape preserving properties and convergence of univariate multiquadric quasi-interpolationActa Math. Appl. Sin.1994104414461324588 – reference: BeatsonRLightWBraessDSchumakerLLQuasi-interpolation in the absence of polynomial reproductionNumerical Methods of Approximation Theory1992BaselBirkhauser2139 – reference: HardyRLTheory and applications of the multiquadric-biharmonic method 20 years of discovery 1968–1988Comput. Math. Appl.1990198–91632081040159 – volume: 150 start-page: 33 year: 2022 ident: 1435_CR33 publication-title: Numer. Math. doi: 10.1007/s00211-021-01242-3 – volume: 147 start-page: 393 year: 2021 ident: 1435_CR47 publication-title: Numer. Math. doi: 10.1007/s00211-021-01177-9 – ident: 1435_CR57 – volume: 62 start-page: 453 year: 2023 ident: 1435_CR31 publication-title: Appl. Comput. Harm. Anal. doi: 10.1016/j.acha.2022.10.005 – volume: 27 start-page: 655 year: 2007 ident: 1435_CR14 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drm002 – volume: 59 start-page: 2393 year: 2021 ident: 1435_CR51 publication-title: SIAM J. Numer. Anal. doi: 10.1137/20M1354921 – volume: 192 start-page: 156 year: 2015 ident: 1435_CR10 publication-title: J. Approx. Theroy doi: 10.1016/j.jat.2014.11.005 – volume-title: Quasi-interpolation year: 2022 ident: 1435_CR11 doi: 10.1017/9781139680523 – volume: 69 start-page: 696 year: 2015 ident: 1435_CR21 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2015.02.008 – volume: 42 start-page: A2346 year: 2020 ident: 1435_CR46 publication-title: SIAM J. Sci. Comput. doi: 10.1137/19M1283483 – volume: 132 start-page: 155 year: 2016 ident: 1435_CR54 publication-title: Numer. Math. doi: 10.1007/s00211-015-0711-z – volume: 72 start-page: 103 year: 1993 ident: 1435_CR9 publication-title: J. Approx. Theory doi: 10.1006/jath.1993.1009 – volume: 17 start-page: 793 year: 2018 ident: 1435_CR58 publication-title: Numer. Algorithms doi: 10.1007/s11075-017-0340-y – volume: 8 start-page: 275 year: 1992 ident: 1435_CR5 publication-title: Constr. Approx. doi: 10.1007/BF01279020 – ident: 1435_CR25 – volume-title: Sobolev Spaces year: 2003 ident: 1435_CR1 – volume-title: Adaptive Control Processes: A Guided Tour year: 1961 ident: 1435_CR6 doi: 10.1515/9781400874668 – volume: 8 start-page: 365 year: 1988 ident: 1435_CR8 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/8.3.365 – volume: 23 start-page: 201 year: 2005 ident: 1435_CR63 publication-title: Adv. Comput. Math. doi: 10.1007/s10444-004-1832-6 – volume: 87 start-page: 805 year: 1980 ident: 1435_CR52 publication-title: Am. Math. Monthly doi: 10.1080/00029890.1980.11995156 – volume: 47 start-page: 21 year: 2015 ident: 1435_CR30 publication-title: Proc. Roy. Soc. – volume-title: Quasi-interpolation with Trigonometric Splines year: 1996 ident: 1435_CR55 – volume: 60 start-page: 471 year: 2022 ident: 1435_CR24 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2022.04.004 – volume: 43 start-page: 2934 issue: 5 year: 2023 ident: 1435_CR19 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drac059 – volume: 29 start-page: 19 year: 2023 ident: 1435_CR40 publication-title: J. Four. Anal. Appl. doi: 10.1007/s00041-023-09994-2 – volume-title: Lattice Methods for Multiple Integration year: 1994 ident: 1435_CR53 doi: 10.1093/oso/9780198534723.001.0001 – ident: 1435_CR35 – volume: 16 start-page: 1193 year: 2016 ident: 1435_CR16 publication-title: Found. Comput. Math. doi: 10.1007/s10208-015-9274-8 – volume: 75 start-page: 79 year: 1996 ident: 1435_CR48 publication-title: Numer. Math. doi: 10.1007/s002110050231 – volume: 93 start-page: 37 issue: 2 year: 2022 ident: 1435_CR56 publication-title: J. Sci. Comput. doi: 10.1007/s10915-022-01998-2 – volume-title: Monte Carlo and Quasi-Monte Carlo sampling year: 2009 ident: 1435_CR44 – volume: 52 start-page: 165 year: 2021 ident: 1435_CR39 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2020.01.003 – volume: 146 start-page: 545 year: 2020 ident: 1435_CR41 publication-title: Numer. Math. doi: 10.1007/s00211-020-01147-7 – volume: 46 start-page: 369 year: 2007 ident: 1435_CR42 publication-title: Numer. Algorithm. doi: 10.1007/s11075-007-9145-8 – volume: 142 start-page: 667 year: 2019 ident: 1435_CR2 publication-title: Numer. Math. doi: 10.1007/s00211-019-01051-9 – volume: 41 start-page: 713 year: 2016 ident: 1435_CR50 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2015.05.002 – volume: 271 start-page: 20 year: 2014 ident: 1435_CR20 publication-title: J. Comput. App. Math. doi: 10.1016/j.cam.2014.03.012 – volume-title: Kernel-Based Approximation Methods Using Matlab year: 2015 ident: 1435_CR18 doi: 10.1142/9335 – volume: 122 start-page: 866 year: 2021 ident: 1435_CR49 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.6565 – start-page: 21 volume-title: Numerical Methods of Approximation Theory year: 1992 ident: 1435_CR4 doi: 10.1007/978-3-0348-8619-2_2 – volume: 27 start-page: 541 year: 2011 ident: 1435_CR15 publication-title: J. Complexity doi: 10.1016/j.jco.2011.02.004 – volume: 51 start-page: 225 year: 2021 ident: 1435_CR34 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2020.11.002 – volume: 43 start-page: A953 year: 2021 ident: 1435_CR32 publication-title: SIAM J. Sci. Comput. doi: 10.1137/20M1318055 – volume: 51 start-page: 11 issue: 1 year: 2004 ident: 1435_CR60 publication-title: Russ. Math. Surv. doi: 10.1070/RM2004v059n01ABEH000698 – volume: 22 start-page: 133 year: 2013 ident: 1435_CR13 publication-title: Acta Numer. doi: 10.1017/S0962492913000044 – volume: 46 start-page: 1799 year: 2008 ident: 1435_CR59 publication-title: SIAM J. Numer. Anal. doi: 10.1137/070693308 – volume: 13 start-page: 147 year: 2004 ident: 1435_CR12 publication-title: Acta Numer. doi: 10.1017/S0962492904000182 – volume: 33 start-page: 849 issue: 3 year: 2013 ident: 1435_CR28 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drs026 – volume: 3 start-page: 405 year: 1995 ident: 1435_CR36 publication-title: Adv. Comput. Math. doi: 10.1007/BF03028369 – volume: 11 start-page: 1 year: 1995 ident: 1435_CR61 publication-title: J. Complexity doi: 10.1006/jcom.1995.1001 – volume: 129 start-page: 1 year: 2020 ident: 1435_CR45 publication-title: Neur. Net. doi: 10.1016/j.neunet.2019.12.013 – volume: 250 start-page: 105 year: 2020 ident: 1435_CR17 publication-title: J. Approx. Theory doi: 10.1016/j.jat.2019.105338 – volume: 489 year: 2020 ident: 1435_CR37 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2020.124192 – volume: 42 start-page: 2262 year: 2020 ident: 1435_CR22 publication-title: SIAM J. Sci. Comput. doi: 10.1137/19M1249138 – volume-title: Foundations of Computational Mathematics LMS 331 year: 2006 ident: 1435_CR27 – volume: 58 start-page: 2059 year: 2020 ident: 1435_CR23 publication-title: SIAM J. Numer. Anal. doi: 10.1137/19M1266496 – volume: 10 start-page: 441 year: 1994 ident: 1435_CR62 publication-title: Acta Math. Appl. Sin. doi: 10.1007/BF02016334 – volume: 19 start-page: 163 issue: 8–9 year: 1990 ident: 1435_CR29 publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(90)90272-L – volume: 270 year: 2021 ident: 1435_CR38 publication-title: J. Approx. Theory doi: 10.1016/j.jat.2021.105631 – volume: 50 start-page: 3351 year: 2012 ident: 1435_CR43 publication-title: SIAM J. Numer. Anal. doi: 10.1137/110845537 – volume: 16 start-page: 169 year: 1968 ident: 1435_CR3 publication-title: Geophys. J. R. Astr. Soc. doi: 10.1111/j.1365-246X.1968.tb00216.x – volume: 26 start-page: 2133 year: 2005 ident: 1435_CR7 publication-title: SIAM J. Sci. Comput. doi: 10.1137/040604959 – volume: 18 start-page: 209 year: 1998 ident: 1435_CR26 publication-title: Numer. Algorithms doi: 10.1023/A:1019129717644 |
SSID | ssj0017641 |
Score | 2.3959107 |
Snippet | The paper proposes a general quasi-interpolation scheme for high-dimensional function approximation. To facilitate error analysis, we view our... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1855 |
SubjectTerms | Approximation Convolution Dimensional analysis Discretization Error analysis Interpolation Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical Analysis Numerical and Computational Physics Operators (mathematics) Quadratures Regularization Simulation Theoretical |
Title | Quasi-interpolation for high-dimensional function approximation |
URI | https://link.springer.com/article/10.1007/s00211-024-01435-6 https://www.proquest.com/docview/3118298071 |
Volume | 156 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7odtGD06k4naMHb5rRpknanGTI5lAmCBbmqSRpCkOYYjsQ_3qT_hoOPeycENL3kn4vvO99D-CKBJLwQFKUSEwRUYmHhCcI4pgmfqpwIJktcJ49sWlEHuZ0XhWFZTXbvU5JFn_qptjNwpF5-mLLmjAgj9gutKkX8rAF7dH96-O4yR4EjHg1tYNyPq-KZf5e5TcgraPMjcRogTeTDkT1Tkuaydtwlcuh-t4Qcdz2Uw7hoApAnVF5Yo5gRy-70KmbOzjVXe_C_qwRdM2O4fZ5JbIFWpRduUr-nGPiXcfKHaPEtggo5T0cC5TFaKFW_rUoSyNPIJqMX-6mqOq9gIx_3BxxGgRpQLRHFdap1iZM1CIUrkqYwIoKGbIk1ImirrYSgDwNMGFSSO0LzwrO-KfQWr4v9Rk4Bg0EZ9plyk9JIoh0qWJUKJ4yX2mP9eC6dkD8UUpsxI2YcmGp2FgqLiwVm9n92kdxdd2y2LfPJB6acKkHN7XJ18P_r3a-3fQL2MPWawWZrw-t_HOlL01QkstBdQYHsBvh0Q9Cvtkp |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFL1oXagLH1WxWnUW7jQwk8ljshIRS9W2ILTQXchroJsqTgt-vsk8WhRduE7I4uRxT7jnngtwTbgmgmuKrMYUEWMTpBJFkMDUprnBXLNQ4Dwcsf6EPE_ptC4KKxq1e5OSLF_qVbFbCEf-64uDasIHecQ2YcuTgSz0LZjg-1XugDOSNMIOKsS0LpX5fY3v4WjNMX-kRcto0zuAvZomRvfVvh7Chpu3Yb9pwRDVN7INu8OV7WpxBHevS1XM0KzqnVWp3CLPSqNgSoxsMPKvTDiiEM7K0dJT_HNWFTAew6T3OH7oo7pDAvIoxgskKOc5Jy6hBrvcOU_mnMpUbCxT2FClM2YzZw2NXTDqEznHhGmlXaqSYAuTnkBr_jZ3pxD5N1sJ5mJm0pxYRXRMDaPKiJylxiWsAzcNUPK9MsKQK8vjElbpYZUlrNLP7jZYyvpSFDINnxmReVLTgdsG3_Xw36ud_W_6FWz3x8OBHDyNXs5hB4ftLuV3XWgtPpbuwtOIhb4sT80Xkw2-OA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxGA1aQfTgUhWrVefgTYMzmSyTkxS11KVFwUJvQ7aBXsZip-DPN8ksVdGD54QcXpbvhe977wPgHDOJOZMEaokIxEpHUEQCQ46IjjOFmKRO4Dwc0cEYP0zI5IuK31e71ynJUtPgXJry4mqms6tG-OZCk_0GI1dBYQM-pKtgzT7HkTvpY9Rr8giM4qgu8iCcTyrZzO9rfA9NS775I0XqI09_B2xVlDHolXu8C1ZM3gbbdTuGoLqdbbA5bCxY53vg-mUh5lM4LftolRVvgWWogTMohtqZ-peGHIELbX7U-4t_TEsx4z4Y9-9ebwaw6pYALaJhATlhLGPYREQhkxljiZ0RiQiVpgIpImRCdWK0IqFxpn08YwhTKaSJReQsYuID0MrfcnMIAvt-C05NSFWcYS2wDImiRCie0ViZiHbARQ1UOitNMdLG_tjDmlpYUw9ramd3ayzT6oLM09h9bHhiCU4HXNb4Lof_Xu3of9PPwPrzbT99uh89HoMN5HbbV-J1Qat4X5gTyygKeeoPzSfbn8J0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-interpolation+for+high-dimensional+function+approximation&rft.jtitle=Numerische+Mathematik&rft.au=Gao+Wenwu&rft.au=Wang%2C+Jiecheng&rft.au=Sun+Zhengjie&rft.au=Fasshauer%2C+Gregory+E&rft.date=2024-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=156&rft.issue=5&rft.spage=1855&rft.epage=1885&rft_id=info:doi/10.1007%2Fs00211-024-01435-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon |