Quasi-interpolation for high-dimensional function approximation

The paper proposes a general quasi-interpolation scheme for high-dimensional function approximation. To facilitate error analysis, we view our quasi-interpolation as a two-step procedure. In the first step, we approximate a target function by a purpose-built convolution operator (with an error term...

Full description

Saved in:
Bibliographic Details
Published inNumerische Mathematik Vol. 156; no. 5; pp. 1855 - 1885
Main Authors Gao, Wenwu, Wang, Jiecheng, Sun, Zhengjie, Fasshauer, Gregory E.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0029-599X
0945-3245
DOI10.1007/s00211-024-01435-6

Cover

Abstract The paper proposes a general quasi-interpolation scheme for high-dimensional function approximation. To facilitate error analysis, we view our quasi-interpolation as a two-step procedure. In the first step, we approximate a target function by a purpose-built convolution operator (with an error term referred to as convolution error). In the second step, we discretize the underlying convolution operator using certain quadrature rule at the given sampling data sites (with an error term called discretization error). The final approximation error is obtained as an optimally balanced sum of these two errors, which in turn views our quasi-interpolation as a regularization technique that balances convolution error and discretization error. As a concrete example, we construct a sparse grid quasi-interpolation scheme for high-dimensional function approximation. Both theoretical analysis and numerical implementations provide evidence that our quasi-interpolation scheme is robust and is capable of mitigating the curse of dimensionality for approximating high-dimensional functions.
AbstractList The paper proposes a general quasi-interpolation scheme for high-dimensional function approximation. To facilitate error analysis, we view our quasi-interpolation as a two-step procedure. In the first step, we approximate a target function by a purpose-built convolution operator (with an error term referred to as convolution error). In the second step, we discretize the underlying convolution operator using certain quadrature rule at the given sampling data sites (with an error term called discretization error). The final approximation error is obtained as an optimally balanced sum of these two errors, which in turn views our quasi-interpolation as a regularization technique that balances convolution error and discretization error. As a concrete example, we construct a sparse grid quasi-interpolation scheme for high-dimensional function approximation. Both theoretical analysis and numerical implementations provide evidence that our quasi-interpolation scheme is robust and is capable of mitigating the curse of dimensionality for approximating high-dimensional functions.
Author Gao, Wenwu
Sun, Zhengjie
Fasshauer, Gregory E.
Wang, Jiecheng
Author_xml – sequence: 1
  givenname: Wenwu
  surname: Gao
  fullname: Gao, Wenwu
  organization: School of Big Data and Statistics, Anhui University
– sequence: 2
  givenname: Jiecheng
  surname: Wang
  fullname: Wang, Jiecheng
  organization: School of Economic, Management and Law, University of South China
– sequence: 3
  givenname: Zhengjie
  surname: Sun
  fullname: Sun, Zhengjie
  email: sunzhengjie1218@163.com
  organization: School of Mathematics and Statistics, Nanjing University of Science and Technology
– sequence: 4
  givenname: Gregory E.
  surname: Fasshauer
  fullname: Fasshauer, Gregory E.
  organization: Department of Applied Mathematics and Statistics, Colorado School of Mines
BookMark eNp9kE9LAzEQxYNUsFa_gKeC5-gkm2w2J5HiPyiIoOAtpLuTdkubrMku6Lc3dgVvnmaYeb-ZxzslEx88EnLB4IoBqOsEwBmjwAUFJgpJyyMyBS0kLbiQk9wD11Rq_X5CTlPaAjBVCjYlNy-DTS1tfY-xCzvbt8HPXYjzTbve0Kbdo095ZHdzN_j6sLVdF8Nnuz9oz8ixs7uE5791Rt7u714Xj3T5_PC0uF3SmivoqZZKOSWQyZqjQ9RKoa0s1E1peS3tqiqbCptaAkpdce0UF-XKrrCwTItKFjNyOd7Nvz8GTL3ZhiFmX8kUjGWiAsWyio-qOoaUIjrTxWw0fhkG5icoMwZlclDmEJQpM1SMUMpiv8b4d_of6hus6G4S
Cites_doi 10.1007/s00211-021-01242-3
10.1007/s00211-021-01177-9
10.1016/j.acha.2022.10.005
10.1093/imanum/drm002
10.1137/20M1354921
10.1016/j.jat.2014.11.005
10.1017/9781139680523
10.1016/j.camwa.2015.02.008
10.1137/19M1283483
10.1007/s00211-015-0711-z
10.1006/jath.1993.1009
10.1007/s11075-017-0340-y
10.1007/BF01279020
10.1515/9781400874668
10.1093/imanum/8.3.365
10.1007/s10444-004-1832-6
10.1080/00029890.1980.11995156
10.1016/j.acha.2022.04.004
10.1093/imanum/drac059
10.1007/s00041-023-09994-2
10.1093/oso/9780198534723.001.0001
10.1007/s10208-015-9274-8
10.1007/s002110050231
10.1007/s10915-022-01998-2
10.1016/j.acha.2020.01.003
10.1007/s00211-020-01147-7
10.1007/s11075-007-9145-8
10.1007/s00211-019-01051-9
10.1016/j.acha.2015.05.002
10.1016/j.cam.2014.03.012
10.1142/9335
10.1002/nme.6565
10.1007/978-3-0348-8619-2_2
10.1016/j.jco.2011.02.004
10.1016/j.acha.2020.11.002
10.1137/20M1318055
10.1070/RM2004v059n01ABEH000698
10.1017/S0962492913000044
10.1137/070693308
10.1017/S0962492904000182
10.1093/imanum/drs026
10.1007/BF03028369
10.1006/jcom.1995.1001
10.1016/j.neunet.2019.12.013
10.1016/j.jat.2019.105338
10.1016/j.jmaa.2020.124192
10.1137/19M1249138
10.1137/19M1266496
10.1007/BF02016334
10.1016/0898-1221(90)90272-L
10.1016/j.jat.2021.105631
10.1137/110845537
10.1111/j.1365-246X.1968.tb00216.x
10.1137/040604959
10.1023/A:1019129717644
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s00211-024-01435-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 0945-3245
EndPage 1885
ExternalDocumentID 10_1007_s00211_024_01435_6
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XJT
YLTOR
YNT
YQT
Z45
Z5O
Z7R
Z7X
Z83
Z86
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-9577f74e15c2efee977ea8a0cd6a2c5ab86d8edc50e59829f7246babe3a194853
IEDL.DBID AGYKE
ISSN 0029-599X
IngestDate Fri Jul 25 11:08:00 EDT 2025
Tue Jul 01 00:36:52 EDT 2025
Fri Feb 21 02:36:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 41A25
65D40
41A30
41A63
65D15
41A05
42B05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-9577f74e15c2efee977ea8a0cd6a2c5ab86d8edc50e59829f7246babe3a194853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3118298071
PQPubID 2043616
PageCount 31
ParticipantIDs proquest_journals_3118298071
crossref_primary_10_1007_s00211_024_01435_6
springer_journals_10_1007_s00211_024_01435_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Numerische Mathematik
PublicationTitleAbbrev Numer. Math
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References BuhmannMConvergence of univariate quasi-interpolation using multiquadricsIMA J. Numer. Anal.19888365383968100
AdcockBBaoAYBrugiapagliaSCorrecting for unknown errors in sparse high-dimensional function approximationNumer. Math.20191426677113962896
KolomoitsevYSkopinaMQuasi-projection operators in weighted Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document} spacesAppl. Comput. Harmon. Anal.2021521651974218420
BackusGGilbertFThe resolving power of gross earth dataGeophys. J. R. Astr. Soc.196816169205
GaoWWFasshauerGESunXPZhouXOptimality and regularization properties of quasi-interpolation: deterministic and stochastic approachesSIAM J. Numer. Anal.202058205920784119331
PottsDSchmischkeMApproximation of high-dimensional periodic functions with Fourier-based methodsSIAM J. Numer. Anal.202159239324294313847
KolomoitsevYPrestinJApproximation properties of periodic multivariate quasi-interpolation operatorsJ. Approx. Theory20212704293702
NovakERitterKHigh dimensional integration of smooth functions over cubesNumer. Math.19967579971417864
HennigPOsborneMAGirolamiMProbabilistic numerics and uncertainty in computationsProc. Roy. Soc.2015472179
BeatsonRLightWBraessDSchumakerLLQuasi-interpolation in the absence of polynomial reproductionNumerical Methods of Approximation Theory1992BaselBirkhauser2139
KritzerPPillichshammerFPlaskotaLWasilkowskiGWOn efficient weighted integration via a change of variablesNumer. Math.20201465455704169483
Garcke, J.: Sparse grid tutorial, pp. 1–26 (2006). https://www.researchgate.net/publication/228357801
MorrowZStoyanovMA method for dimensionally adaptive sparse trigonometric interpolation of periodic functionsSIAM J. Sci. Comput.202042A2346A24604138211
LemieuxCMonte Carlo and Quasi-Monte Carlo sampling2009New YorkSpringer
GerstnerTGriebelMNumerical integration using sparse gridsNumer. Algorithms1998182092321669959
DũngDB-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothnessJ. Complexity2011275415672846705
VitushkinAOn Hilbert’s thirteenth problem and related questionsRuss. Math. Surv.200451111252068840
MontanelliHYangHZError bounds for deep ReLU networks using the Kolmogorov–Arnold superposition theoremNeur. Net.202012916
VainikkoEVainikkoGA spline product quasi-interpolation method for weakly singular Fredholm integral equationsSIAM J. Numer. Anal.200846179918202399396
FranzTWendlandHMultilevel quasi-interpolationIMA J. Numer. Anal.2023435293429644648525
DũngDSampling and cubature on sparse grids based on a B-spline quasi-interpolationFound. Comput. Math.201616119312403552844
BuhmannMDaiFPointwise approximation with quasi-interpolation by radial basis functionsJ. Approx. Theroy20151921561923313479
HardyRLTheory and applications of the multiquadric-biharmonic method 20 years of discovery 1968–1988Comput. Math. Appl.1990198–91632081040159
JeongBKerseySYoonJApproximation of multivariate functions on sparse grids by kernel-based quasi-interpolationSIAM J. Sci. Comput.202143A953A9794229253
DickJLeobacherGPillichshammerFRandomized Smolyak algorithms based on digital sequences for multivariate integrationIMA J. Numer. Anal.2007276556742371826
KaarniojaVKazashiYKuoFYNobileFSloanIHFast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantificationNumer. Math.202215033774363819
SloanIHJoeSLattice Methods for Multiple Integration1994New YorkOxford University Press
WasilkowskiGWWoźniakowskiHExplicit cost bounds of algorithms for multivariate tensor product problemsJ. Complexity1995111561319049
BeatsonRPowellMUnivariate multiquadric approximation: quasi-interpolation to scattered dataConstr. Approx.199282752881164070
GaoWWWuZMA quasi-interpolation scheme for periodic data based on multiquadric trigonometric B-splinesJ. Comput. App. Math.201427120303209910
BellmannRAdaptive Control Processes: A Guided Tour1961New YorkPrinceton Press
BuhmannMOn quasi-interpolation with radial basis functionsJ. Approx. Theory1993721031301198376
FasshauerGEMcCourtMJKernel-Based Approximation Methods Using Matlab2015HackensackWorld Scientific
BuhmannMJägerJQuasi-interpolation2022CambridgeCambridge University Press
KämmererLPottsDVolkmerTHigh-dimensional sparse FFT based on sampling along multiple rank-1 latticesAppl. Comput. Harmon. Anal.2021512252574185099
GaoWWSunXPWuZMZhouXMultivariate Monte Carlo approximation based on scattered dataSIAM J. Sci. Comput.202042226222804127103
GaoWWFasshauerGEFisherNDivergence-free quasi-interpolationAppl. Comput. Harmon. Anal.2022604714884423813
GaoWWWuZMApproximation orders and shape preserving properties of the multiquadric trigonometric B-spline quasi-interpolantComput. Math. Appl.2015696967073320282
Khavinson, S., Best Approximation by Linear Superpositions, Translations of Mathematical Monographs, vol. 159, AMS (1997)
Tan, P.N., Steinbach, M., Vipin,K.: Introduction to Data Mining. Pearson Addison-Wesley (2006)
UstaFLevesleyJMultilevel quasi-interpolation on a sparse grid with the GaussianNumer. Algorithms2018177938083766595
SunZGaoWWYangRA convergent iterated quasi-interpolation for periodic domain and its applications to surface PDEsJ. Sci. Comput.2022932374483528
KolomoitsevYLomakoTTikhonovSSparse grid approximation in weighted Wiener spacesJ. Four. Anal. Appl.20232919514552583
NasdalaRPottsDEfficient multivariate approximation on the cubeNumer. Math.20211473934294215342
KochPELycheTNeamtuMSchumakerLLControl curves and knot insertion for trigonometric splinesAdv. Comput. Math.199534054241339172
KuoFYSloanIHWozniakowskiHPeriodization may fail in high dimensionsNumer. Algorithm.2007463693912374244
PottsDVolkmerTSparse high-dimensional FFT based on rank-1 lattice samplingAppl. Comput. Harmon. Anal.2016417137483546427
DũngDThaoMXDimension-dependent error estimates for sampling recovery on Smolyak grids based on B-spline quasi-interpolationJ. Approx. Theory20202501053384035964
SpeleersHManniCEffortless quasi-interpolation in hierarchical spacesNumer. Math.20161321551843439218
WuZMSchabackRShape preserving properties and convergence of univariate multiquadric quasi-interpolationActa Math. Appl. Sin.1994104414461324588
AdamsRAFournierJJFSobolev Spaces20032AmsterdamElsevier
BungartzHGriebelMSparse gridsActa Numer.2004131472602249147
PeigneyMA Fourier-based machine learning technique with application in engineeringInt. J. Numer. Methods Eng.20211228668974200052
KolomoitsevYKrivosheinASkopinaMApproximation by periodic multivariate quasi-projection operatorsJ. Math. Anal. Appl.20204894095814
StanleySSQuasi-interpolation with Trigonometric Splines1996NashvilleVanderbilt University
DickJKuoFYSloanIHHigh-dimensional integration: the quasi-Monte Carlo wayActa Numer.2013221332883038697
GrohsPQuasi-interpolation in Riemannian manifoldsIMA J. Numer. Anal.2013333849874308148610.1093/imanum/drs026
RomanSThe formula of Faà di BrunoAm. Math. Monthly198087805809
KuoFYSchwabChSloanIHQuasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficientSIAM J. Numer. Anal.201250335133743024159
GriebelMPardoLPinkusASuliEToddMSparse grids and related approximation schemes for higher dimensional problemsFoundations of Computational Mathematics LMS 3312006CambridgeCambridge University Press
WuZMLiuJPGeneralized Strang–Fix condition for scattered data quasi-interpolationAdv. Comput. Math.2005232012142132000
HubbertSJägerJLevesleyJConvergence of sparse grid Gaussian convolution approximation for multi-dimensional periodic functionsAppl. Comput. Harm. Anal.2023624534744510018
BeylkinGMolekampMAlgorithms for numerical analysis in high dimensionsSIAM J. Sci. Comput.200526213321592196592
SS Stanley (1435_CR55) 1996
PE Koch (1435_CR36) 1995; 3
R Beatson (1435_CR4) 1992
E Vainikko (1435_CR59) 2008; 46
FY Kuo (1435_CR43) 2012; 50
M Peigney (1435_CR49) 2021; 122
WW Gao (1435_CR22) 2020; 42
B Jeong (1435_CR32) 2021; 43
GE Fasshauer (1435_CR18) 2015
S Roman (1435_CR52) 1980; 87
J Dick (1435_CR14) 2007; 27
WW Gao (1435_CR23) 2020; 58
R Nasdala (1435_CR47) 2021; 147
Y Kolomoitsev (1435_CR40) 2023; 29
J Dick (1435_CR13) 2013; 22
RL Hardy (1435_CR29) 1990; 19
RA Adams (1435_CR1) 2003
E Novak (1435_CR48) 1996; 75
IH Sloan (1435_CR53) 1994
D Dũng (1435_CR16) 2016; 16
L Kämmerer (1435_CR34) 2021; 51
D Dũng (1435_CR17) 2020; 250
Y Kolomoitsev (1435_CR37) 2020; 489
1435_CR35
M Buhmann (1435_CR10) 2015; 192
B Adcock (1435_CR2) 2019; 142
Y Kolomoitsev (1435_CR39) 2021; 52
ZM Wu (1435_CR63) 2005; 23
H Speleers (1435_CR54) 2016; 132
M Buhmann (1435_CR8) 1988; 8
T Franz (1435_CR19) 2023; 43
R Bellmann (1435_CR6) 1961
A Vitushkin (1435_CR60) 2004; 51
WW Gao (1435_CR20) 2014; 271
H Montanelli (1435_CR45) 2020; 129
G Backus (1435_CR3) 1968; 16
T Gerstner (1435_CR26) 1998; 18
Y Kolomoitsev (1435_CR38) 2021; 270
Z Sun (1435_CR56) 2022; 93
R Beatson (1435_CR5) 1992; 8
1435_CR25
V Kaarnioja (1435_CR33) 2022; 150
M Buhmann (1435_CR11) 2022
WW Gao (1435_CR21) 2015; 69
D Potts (1435_CR50) 2016; 41
G Beylkin (1435_CR7) 2005; 26
P Kritzer (1435_CR41) 2020; 146
P Grohs (1435_CR28) 2013; 33
S Hubbert (1435_CR31) 2023; 62
M Griebel (1435_CR27) 2006
P Hennig (1435_CR30) 2015; 47
D Potts (1435_CR51) 2021; 59
H Bungartz (1435_CR12) 2004; 13
FY Kuo (1435_CR42) 2007; 46
C Lemieux (1435_CR44) 2009
F Usta (1435_CR58) 2018; 17
GW Wasilkowski (1435_CR61) 1995; 11
1435_CR57
WW Gao (1435_CR24) 2022; 60
M Buhmann (1435_CR9) 1993; 72
ZM Wu (1435_CR62) 1994; 10
Z Morrow (1435_CR46) 2020; 42
D Dũng (1435_CR15) 2011; 27
References_xml – reference: BeatsonRPowellMUnivariate multiquadric approximation: quasi-interpolation to scattered dataConstr. Approx.199282752881164070
– reference: LemieuxCMonte Carlo and Quasi-Monte Carlo sampling2009New YorkSpringer
– reference: PottsDSchmischkeMApproximation of high-dimensional periodic functions with Fourier-based methodsSIAM J. Numer. Anal.202159239324294313847
– reference: GaoWWFasshauerGEFisherNDivergence-free quasi-interpolationAppl. Comput. Harmon. Anal.2022604714884423813
– reference: Garcke, J.: Sparse grid tutorial, pp. 1–26 (2006). https://www.researchgate.net/publication/228357801
– reference: GaoWWFasshauerGESunXPZhouXOptimality and regularization properties of quasi-interpolation: deterministic and stochastic approachesSIAM J. Numer. Anal.202058205920784119331
– reference: KolomoitsevYLomakoTTikhonovSSparse grid approximation in weighted Wiener spacesJ. Four. Anal. Appl.20232919514552583
– reference: Tan, P.N., Steinbach, M., Vipin,K.: Introduction to Data Mining. Pearson Addison-Wesley (2006)
– reference: BuhmannMDaiFPointwise approximation with quasi-interpolation by radial basis functionsJ. Approx. Theroy20151921561923313479
– reference: BellmannRAdaptive Control Processes: A Guided Tour1961New YorkPrinceton Press
– reference: SunZGaoWWYangRA convergent iterated quasi-interpolation for periodic domain and its applications to surface PDEsJ. Sci. Comput.2022932374483528
– reference: SloanIHJoeSLattice Methods for Multiple Integration1994New YorkOxford University Press
– reference: DũngDSampling and cubature on sparse grids based on a B-spline quasi-interpolationFound. Comput. Math.201616119312403552844
– reference: BackusGGilbertFThe resolving power of gross earth dataGeophys. J. R. Astr. Soc.196816169205
– reference: DũngDB-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothnessJ. Complexity2011275415672846705
– reference: SpeleersHManniCEffortless quasi-interpolation in hierarchical spacesNumer. Math.20161321551843439218
– reference: BuhmannMOn quasi-interpolation with radial basis functionsJ. Approx. Theory1993721031301198376
– reference: KuoFYSchwabChSloanIHQuasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficientSIAM J. Numer. Anal.201250335133743024159
– reference: HennigPOsborneMAGirolamiMProbabilistic numerics and uncertainty in computationsProc. Roy. Soc.2015472179
– reference: UstaFLevesleyJMultilevel quasi-interpolation on a sparse grid with the GaussianNumer. Algorithms2018177938083766595
– reference: GrohsPQuasi-interpolation in Riemannian manifoldsIMA J. Numer. Anal.2013333849874308148610.1093/imanum/drs026
– reference: PottsDVolkmerTSparse high-dimensional FFT based on rank-1 lattice samplingAppl. Comput. Harmon. Anal.2016417137483546427
– reference: KaarniojaVKazashiYKuoFYNobileFSloanIHFast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantificationNumer. Math.202215033774363819
– reference: KritzerPPillichshammerFPlaskotaLWasilkowskiGWOn efficient weighted integration via a change of variablesNumer. Math.20201465455704169483
– reference: FranzTWendlandHMultilevel quasi-interpolationIMA J. Numer. Anal.2023435293429644648525
– reference: NasdalaRPottsDEfficient multivariate approximation on the cubeNumer. Math.20211473934294215342
– reference: StanleySSQuasi-interpolation with Trigonometric Splines1996NashvilleVanderbilt University
– reference: DickJLeobacherGPillichshammerFRandomized Smolyak algorithms based on digital sequences for multivariate integrationIMA J. Numer. Anal.2007276556742371826
– reference: NovakERitterKHigh dimensional integration of smooth functions over cubesNumer. Math.19967579971417864
– reference: WasilkowskiGWWoźniakowskiHExplicit cost bounds of algorithms for multivariate tensor product problemsJ. Complexity1995111561319049
– reference: DickJKuoFYSloanIHHigh-dimensional integration: the quasi-Monte Carlo wayActa Numer.2013221332883038697
– reference: KuoFYSloanIHWozniakowskiHPeriodization may fail in high dimensionsNumer. Algorithm.2007463693912374244
– reference: GriebelMPardoLPinkusASuliEToddMSparse grids and related approximation schemes for higher dimensional problemsFoundations of Computational Mathematics LMS 3312006CambridgeCambridge University Press
– reference: WuZMLiuJPGeneralized Strang–Fix condition for scattered data quasi-interpolationAdv. Comput. Math.2005232012142132000
– reference: KolomoitsevYPrestinJApproximation properties of periodic multivariate quasi-interpolation operatorsJ. Approx. Theory20212704293702
– reference: DũngDThaoMXDimension-dependent error estimates for sampling recovery on Smolyak grids based on B-spline quasi-interpolationJ. Approx. Theory20202501053384035964
– reference: HubbertSJägerJLevesleyJConvergence of sparse grid Gaussian convolution approximation for multi-dimensional periodic functionsAppl. Comput. Harm. Anal.2023624534744510018
– reference: VitushkinAOn Hilbert’s thirteenth problem and related questionsRuss. Math. Surv.200451111252068840
– reference: KämmererLPottsDVolkmerTHigh-dimensional sparse FFT based on sampling along multiple rank-1 latticesAppl. Comput. Harmon. Anal.2021512252574185099
– reference: MontanelliHYangHZError bounds for deep ReLU networks using the Kolmogorov–Arnold superposition theoremNeur. Net.202012916
– reference: GaoWWWuZMA quasi-interpolation scheme for periodic data based on multiquadric trigonometric B-splinesJ. Comput. App. Math.201427120303209910
– reference: VainikkoEVainikkoGA spline product quasi-interpolation method for weakly singular Fredholm integral equationsSIAM J. Numer. Anal.200846179918202399396
– reference: KochPELycheTNeamtuMSchumakerLLControl curves and knot insertion for trigonometric splinesAdv. Comput. Math.199534054241339172
– reference: BungartzHGriebelMSparse gridsActa Numer.2004131472602249147
– reference: GaoWWSunXPWuZMZhouXMultivariate Monte Carlo approximation based on scattered dataSIAM J. Sci. Comput.202042226222804127103
– reference: GerstnerTGriebelMNumerical integration using sparse gridsNumer. Algorithms1998182092321669959
– reference: GaoWWWuZMApproximation orders and shape preserving properties of the multiquadric trigonometric B-spline quasi-interpolantComput. Math. Appl.2015696967073320282
– reference: AdcockBBaoAYBrugiapagliaSCorrecting for unknown errors in sparse high-dimensional function approximationNumer. Math.20191426677113962896
– reference: KolomoitsevYSkopinaMQuasi-projection operators in weighted Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document} spacesAppl. Comput. Harmon. Anal.2021521651974218420
– reference: BuhmannMConvergence of univariate quasi-interpolation using multiquadricsIMA J. Numer. Anal.19888365383968100
– reference: Khavinson, S., Best Approximation by Linear Superpositions, Translations of Mathematical Monographs, vol. 159, AMS (1997)
– reference: FasshauerGEMcCourtMJKernel-Based Approximation Methods Using Matlab2015HackensackWorld Scientific
– reference: BeylkinGMolekampMAlgorithms for numerical analysis in high dimensionsSIAM J. Sci. Comput.200526213321592196592
– reference: JeongBKerseySYoonJApproximation of multivariate functions on sparse grids by kernel-based quasi-interpolationSIAM J. Sci. Comput.202143A953A9794229253
– reference: RomanSThe formula of Faà di BrunoAm. Math. Monthly198087805809
– reference: MorrowZStoyanovMA method for dimensionally adaptive sparse trigonometric interpolation of periodic functionsSIAM J. Sci. Comput.202042A2346A24604138211
– reference: PeigneyMA Fourier-based machine learning technique with application in engineeringInt. J. Numer. Methods Eng.20211228668974200052
– reference: KolomoitsevYKrivosheinASkopinaMApproximation by periodic multivariate quasi-projection operatorsJ. Math. Anal. Appl.20204894095814
– reference: AdamsRAFournierJJFSobolev Spaces20032AmsterdamElsevier
– reference: BuhmannMJägerJQuasi-interpolation2022CambridgeCambridge University Press
– reference: WuZMSchabackRShape preserving properties and convergence of univariate multiquadric quasi-interpolationActa Math. Appl. Sin.1994104414461324588
– reference: BeatsonRLightWBraessDSchumakerLLQuasi-interpolation in the absence of polynomial reproductionNumerical Methods of Approximation Theory1992BaselBirkhauser2139
– reference: HardyRLTheory and applications of the multiquadric-biharmonic method 20 years of discovery 1968–1988Comput. Math. Appl.1990198–91632081040159
– volume: 150
  start-page: 33
  year: 2022
  ident: 1435_CR33
  publication-title: Numer. Math.
  doi: 10.1007/s00211-021-01242-3
– volume: 147
  start-page: 393
  year: 2021
  ident: 1435_CR47
  publication-title: Numer. Math.
  doi: 10.1007/s00211-021-01177-9
– ident: 1435_CR57
– volume: 62
  start-page: 453
  year: 2023
  ident: 1435_CR31
  publication-title: Appl. Comput. Harm. Anal.
  doi: 10.1016/j.acha.2022.10.005
– volume: 27
  start-page: 655
  year: 2007
  ident: 1435_CR14
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drm002
– volume: 59
  start-page: 2393
  year: 2021
  ident: 1435_CR51
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/20M1354921
– volume: 192
  start-page: 156
  year: 2015
  ident: 1435_CR10
  publication-title: J. Approx. Theroy
  doi: 10.1016/j.jat.2014.11.005
– volume-title: Quasi-interpolation
  year: 2022
  ident: 1435_CR11
  doi: 10.1017/9781139680523
– volume: 69
  start-page: 696
  year: 2015
  ident: 1435_CR21
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2015.02.008
– volume: 42
  start-page: A2346
  year: 2020
  ident: 1435_CR46
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/19M1283483
– volume: 132
  start-page: 155
  year: 2016
  ident: 1435_CR54
  publication-title: Numer. Math.
  doi: 10.1007/s00211-015-0711-z
– volume: 72
  start-page: 103
  year: 1993
  ident: 1435_CR9
  publication-title: J. Approx. Theory
  doi: 10.1006/jath.1993.1009
– volume: 17
  start-page: 793
  year: 2018
  ident: 1435_CR58
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-017-0340-y
– volume: 8
  start-page: 275
  year: 1992
  ident: 1435_CR5
  publication-title: Constr. Approx.
  doi: 10.1007/BF01279020
– ident: 1435_CR25
– volume-title: Sobolev Spaces
  year: 2003
  ident: 1435_CR1
– volume-title: Adaptive Control Processes: A Guided Tour
  year: 1961
  ident: 1435_CR6
  doi: 10.1515/9781400874668
– volume: 8
  start-page: 365
  year: 1988
  ident: 1435_CR8
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/8.3.365
– volume: 23
  start-page: 201
  year: 2005
  ident: 1435_CR63
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-004-1832-6
– volume: 87
  start-page: 805
  year: 1980
  ident: 1435_CR52
  publication-title: Am. Math. Monthly
  doi: 10.1080/00029890.1980.11995156
– volume: 47
  start-page: 21
  year: 2015
  ident: 1435_CR30
  publication-title: Proc. Roy. Soc.
– volume-title: Quasi-interpolation with Trigonometric Splines
  year: 1996
  ident: 1435_CR55
– volume: 60
  start-page: 471
  year: 2022
  ident: 1435_CR24
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2022.04.004
– volume: 43
  start-page: 2934
  issue: 5
  year: 2023
  ident: 1435_CR19
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drac059
– volume: 29
  start-page: 19
  year: 2023
  ident: 1435_CR40
  publication-title: J. Four. Anal. Appl.
  doi: 10.1007/s00041-023-09994-2
– volume-title: Lattice Methods for Multiple Integration
  year: 1994
  ident: 1435_CR53
  doi: 10.1093/oso/9780198534723.001.0001
– ident: 1435_CR35
– volume: 16
  start-page: 1193
  year: 2016
  ident: 1435_CR16
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-015-9274-8
– volume: 75
  start-page: 79
  year: 1996
  ident: 1435_CR48
  publication-title: Numer. Math.
  doi: 10.1007/s002110050231
– volume: 93
  start-page: 37
  issue: 2
  year: 2022
  ident: 1435_CR56
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-022-01998-2
– volume-title: Monte Carlo and Quasi-Monte Carlo sampling
  year: 2009
  ident: 1435_CR44
– volume: 52
  start-page: 165
  year: 2021
  ident: 1435_CR39
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2020.01.003
– volume: 146
  start-page: 545
  year: 2020
  ident: 1435_CR41
  publication-title: Numer. Math.
  doi: 10.1007/s00211-020-01147-7
– volume: 46
  start-page: 369
  year: 2007
  ident: 1435_CR42
  publication-title: Numer. Algorithm.
  doi: 10.1007/s11075-007-9145-8
– volume: 142
  start-page: 667
  year: 2019
  ident: 1435_CR2
  publication-title: Numer. Math.
  doi: 10.1007/s00211-019-01051-9
– volume: 41
  start-page: 713
  year: 2016
  ident: 1435_CR50
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2015.05.002
– volume: 271
  start-page: 20
  year: 2014
  ident: 1435_CR20
  publication-title: J. Comput. App. Math.
  doi: 10.1016/j.cam.2014.03.012
– volume-title: Kernel-Based Approximation Methods Using Matlab
  year: 2015
  ident: 1435_CR18
  doi: 10.1142/9335
– volume: 122
  start-page: 866
  year: 2021
  ident: 1435_CR49
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.6565
– start-page: 21
  volume-title: Numerical Methods of Approximation Theory
  year: 1992
  ident: 1435_CR4
  doi: 10.1007/978-3-0348-8619-2_2
– volume: 27
  start-page: 541
  year: 2011
  ident: 1435_CR15
  publication-title: J. Complexity
  doi: 10.1016/j.jco.2011.02.004
– volume: 51
  start-page: 225
  year: 2021
  ident: 1435_CR34
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2020.11.002
– volume: 43
  start-page: A953
  year: 2021
  ident: 1435_CR32
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/20M1318055
– volume: 51
  start-page: 11
  issue: 1
  year: 2004
  ident: 1435_CR60
  publication-title: Russ. Math. Surv.
  doi: 10.1070/RM2004v059n01ABEH000698
– volume: 22
  start-page: 133
  year: 2013
  ident: 1435_CR13
  publication-title: Acta Numer.
  doi: 10.1017/S0962492913000044
– volume: 46
  start-page: 1799
  year: 2008
  ident: 1435_CR59
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/070693308
– volume: 13
  start-page: 147
  year: 2004
  ident: 1435_CR12
  publication-title: Acta Numer.
  doi: 10.1017/S0962492904000182
– volume: 33
  start-page: 849
  issue: 3
  year: 2013
  ident: 1435_CR28
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drs026
– volume: 3
  start-page: 405
  year: 1995
  ident: 1435_CR36
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF03028369
– volume: 11
  start-page: 1
  year: 1995
  ident: 1435_CR61
  publication-title: J. Complexity
  doi: 10.1006/jcom.1995.1001
– volume: 129
  start-page: 1
  year: 2020
  ident: 1435_CR45
  publication-title: Neur. Net.
  doi: 10.1016/j.neunet.2019.12.013
– volume: 250
  start-page: 105
  year: 2020
  ident: 1435_CR17
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2019.105338
– volume: 489
  year: 2020
  ident: 1435_CR37
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2020.124192
– volume: 42
  start-page: 2262
  year: 2020
  ident: 1435_CR22
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/19M1249138
– volume-title: Foundations of Computational Mathematics LMS 331
  year: 2006
  ident: 1435_CR27
– volume: 58
  start-page: 2059
  year: 2020
  ident: 1435_CR23
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/19M1266496
– volume: 10
  start-page: 441
  year: 1994
  ident: 1435_CR62
  publication-title: Acta Math. Appl. Sin.
  doi: 10.1007/BF02016334
– volume: 19
  start-page: 163
  issue: 8–9
  year: 1990
  ident: 1435_CR29
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(90)90272-L
– volume: 270
  year: 2021
  ident: 1435_CR38
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2021.105631
– volume: 50
  start-page: 3351
  year: 2012
  ident: 1435_CR43
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110845537
– volume: 16
  start-page: 169
  year: 1968
  ident: 1435_CR3
  publication-title: Geophys. J. R. Astr. Soc.
  doi: 10.1111/j.1365-246X.1968.tb00216.x
– volume: 26
  start-page: 2133
  year: 2005
  ident: 1435_CR7
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/040604959
– volume: 18
  start-page: 209
  year: 1998
  ident: 1435_CR26
  publication-title: Numer. Algorithms
  doi: 10.1023/A:1019129717644
SSID ssj0017641
Score 2.3959107
Snippet The paper proposes a general quasi-interpolation scheme for high-dimensional function approximation. To facilitate error analysis, we view our...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1855
SubjectTerms Approximation
Convolution
Dimensional analysis
Discretization
Error analysis
Interpolation
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Operators (mathematics)
Quadratures
Regularization
Simulation
Theoretical
Title Quasi-interpolation for high-dimensional function approximation
URI https://link.springer.com/article/10.1007/s00211-024-01435-6
https://www.proquest.com/docview/3118298071
Volume 156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7odtGD06k4naMHb5rRpknanGTI5lAmCBbmqSRpCkOYYjsQ_3qT_hoOPeycENL3kn4vvO99D-CKBJLwQFKUSEwRUYmHhCcI4pgmfqpwIJktcJ49sWlEHuZ0XhWFZTXbvU5JFn_qptjNwpF5-mLLmjAgj9gutKkX8rAF7dH96-O4yR4EjHg1tYNyPq-KZf5e5TcgraPMjcRogTeTDkT1Tkuaydtwlcuh-t4Qcdz2Uw7hoApAnVF5Yo5gRy-70KmbOzjVXe_C_qwRdM2O4fZ5JbIFWpRduUr-nGPiXcfKHaPEtggo5T0cC5TFaKFW_rUoSyNPIJqMX-6mqOq9gIx_3BxxGgRpQLRHFdap1iZM1CIUrkqYwIoKGbIk1ImirrYSgDwNMGFSSO0LzwrO-KfQWr4v9Rk4Bg0EZ9plyk9JIoh0qWJUKJ4yX2mP9eC6dkD8UUpsxI2YcmGp2FgqLiwVm9n92kdxdd2y2LfPJB6acKkHN7XJ18P_r3a-3fQL2MPWawWZrw-t_HOlL01QkstBdQYHsBvh0Q9Cvtkp
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFL1oXagLH1WxWnUW7jQwk8ljshIRS9W2ILTQXchroJsqTgt-vsk8WhRduE7I4uRxT7jnngtwTbgmgmuKrMYUEWMTpBJFkMDUprnBXLNQ4Dwcsf6EPE_ptC4KKxq1e5OSLF_qVbFbCEf-64uDasIHecQ2YcuTgSz0LZjg-1XugDOSNMIOKsS0LpX5fY3v4WjNMX-kRcto0zuAvZomRvfVvh7Chpu3Yb9pwRDVN7INu8OV7WpxBHevS1XM0KzqnVWp3CLPSqNgSoxsMPKvTDiiEM7K0dJT_HNWFTAew6T3OH7oo7pDAvIoxgskKOc5Jy6hBrvcOU_mnMpUbCxT2FClM2YzZw2NXTDqEznHhGmlXaqSYAuTnkBr_jZ3pxD5N1sJ5mJm0pxYRXRMDaPKiJylxiWsAzcNUPK9MsKQK8vjElbpYZUlrNLP7jZYyvpSFDINnxmReVLTgdsG3_Xw36ud_W_6FWz3x8OBHDyNXs5hB4ftLuV3XWgtPpbuwtOIhb4sT80Xkw2-OA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxGA1aQfTgUhWrVefgTYMzmSyTkxS11KVFwUJvQ7aBXsZip-DPN8ksVdGD54QcXpbvhe977wPgHDOJOZMEaokIxEpHUEQCQ46IjjOFmKRO4Dwc0cEYP0zI5IuK31e71ynJUtPgXJry4mqms6tG-OZCk_0GI1dBYQM-pKtgzT7HkTvpY9Rr8giM4qgu8iCcTyrZzO9rfA9NS775I0XqI09_B2xVlDHolXu8C1ZM3gbbdTuGoLqdbbA5bCxY53vg-mUh5lM4LftolRVvgWWogTMohtqZ-peGHIELbX7U-4t_TEsx4z4Y9-9ebwaw6pYALaJhATlhLGPYREQhkxljiZ0RiQiVpgIpImRCdWK0IqFxpn08YwhTKaSJReQsYuID0MrfcnMIAvt-C05NSFWcYS2wDImiRCie0ViZiHbARQ1UOitNMdLG_tjDmlpYUw9ramd3ayzT6oLM09h9bHhiCU4HXNb4Lof_Xu3of9PPwPrzbT99uh89HoMN5HbbV-J1Qat4X5gTyygKeeoPzSfbn8J0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-interpolation+for+high-dimensional+function+approximation&rft.jtitle=Numerische+Mathematik&rft.au=Gao+Wenwu&rft.au=Wang%2C+Jiecheng&rft.au=Sun+Zhengjie&rft.au=Fasshauer%2C+Gregory+E&rft.date=2024-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=156&rft.issue=5&rft.spage=1855&rft.epage=1885&rft_id=info:doi/10.1007%2Fs00211-024-01435-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon