SFLVis: visual analysis of software fault localization

Since the birth of software, fault localization has been a time-consuming and laborious task. Programmers need to constantly find faults in software through program logging, assertions, breakpoints, and profiling. In order to improve the debugging efficiency, many fault localization methods based on...

Full description

Saved in:
Bibliographic Details
Published inJournal of visualization Vol. 27; no. 4; pp. 585 - 602
Main Authors Sun, Desheng, Yue, Xiaoqi, Liu, Chao, Qin, Hongxing, Hu, Haibo
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1343-8875
1875-8975
DOI10.1007/s12650-024-00979-x

Cover

Abstract Since the birth of software, fault localization has been a time-consuming and laborious task. Programmers need to constantly find faults in software through program logging, assertions, breakpoints, and profiling. In order to improve the debugging efficiency, many fault localization methods based on test cases have been proposed, such as program spectrum-based methods, and slice-based methods. However, these methods are far from the logic of actual debugging and still require programmers to use traditional methods. However, programmers cannot access the execution process of the program, they need to constantly modify breakpoints and repeatedly check variable values, which makes fault localization very time-consuming. After interviewing five experts in the field of visualization and software testing, we designed SFLVis to provide users with a new method to improve the efficiency of fault localization. We designed an algorithm to obtain the process of program execution and combined it with existing fault localization methods. The goal is to show users the execution results of test cases, source code logic, and the level of suspicion of statements, and reproduce the execution process of test cases. We designed rich interactive features to help users explore SFLVis and correlate information from various views to improve the efficiency of fault localization. To verify the effectiveness of SFLVis, we conducted a case study using the program in the Siemens Suite dataset and conducted group experiments and related interviews with 20 volunteers. The results show that SFLVis can effectively improve programmers’ efficiency compared with existing fault localization methods. Graphical abstract
AbstractList Since the birth of software, fault localization has been a time-consuming and laborious task. Programmers need to constantly find faults in software through program logging, assertions, breakpoints, and profiling. In order to improve the debugging efficiency, many fault localization methods based on test cases have been proposed, such as program spectrum-based methods, and slice-based methods. However, these methods are far from the logic of actual debugging and still require programmers to use traditional methods. However, programmers cannot access the execution process of the program, they need to constantly modify breakpoints and repeatedly check variable values, which makes fault localization very time-consuming. After interviewing five experts in the field of visualization and software testing, we designed SFLVis to provide users with a new method to improve the efficiency of fault localization. We designed an algorithm to obtain the process of program execution and combined it with existing fault localization methods. The goal is to show users the execution results of test cases, source code logic, and the level of suspicion of statements, and reproduce the execution process of test cases. We designed rich interactive features to help users explore SFLVis and correlate information from various views to improve the efficiency of fault localization. To verify the effectiveness of SFLVis, we conducted a case study using the program in the Siemens Suite dataset and conducted group experiments and related interviews with 20 volunteers. The results show that SFLVis can effectively improve programmers’ efficiency compared with existing fault localization methods. Graphical abstract
Since the birth of software, fault localization has been a time-consuming and laborious task. Programmers need to constantly find faults in software through program logging, assertions, breakpoints, and profiling. In order to improve the debugging efficiency, many fault localization methods based on test cases have been proposed, such as program spectrum-based methods, and slice-based methods. However, these methods are far from the logic of actual debugging and still require programmers to use traditional methods. However, programmers cannot access the execution process of the program, they need to constantly modify breakpoints and repeatedly check variable values, which makes fault localization very time-consuming. After interviewing five experts in the field of visualization and software testing, we designed SFLVis to provide users with a new method to improve the efficiency of fault localization. We designed an algorithm to obtain the process of program execution and combined it with existing fault localization methods. The goal is to show users the execution results of test cases, source code logic, and the level of suspicion of statements, and reproduce the execution process of test cases. We designed rich interactive features to help users explore SFLVis and correlate information from various views to improve the efficiency of fault localization. To verify the effectiveness of SFLVis, we conducted a case study using the program in the Siemens Suite dataset and conducted group experiments and related interviews with 20 volunteers. The results show that SFLVis can effectively improve programmers’ efficiency compared with existing fault localization methods.
Author Qin, Hongxing
Yue, Xiaoqi
Liu, Chao
Sun, Desheng
Hu, Haibo
Author_xml – sequence: 1
  givenname: Desheng
  surname: Sun
  fullname: Sun, Desheng
  organization: School of Big Data and Software Engineering, Chongqing University
– sequence: 2
  givenname: Xiaoqi
  surname: Yue
  fullname: Yue, Xiaoqi
  organization: School of Big Data and Software Engineering, Chongqing University
– sequence: 3
  givenname: Chao
  surname: Liu
  fullname: Liu, Chao
  organization: School of Big Data and Software Engineering, Chongqing University
– sequence: 4
  givenname: Hongxing
  surname: Qin
  fullname: Qin, Hongxing
  organization: College of Computer Science, Chongqing University
– sequence: 5
  givenname: Haibo
  surname: Hu
  fullname: Hu, Haibo
  email: haibo.hu@cqu.edu.cn
  organization: School of Big Data and Software Engineering, Chongqing University
BookMark eNp9kEtPwzAQhC1UJNrCH-AUibNh_YpjbqiigFSJA4-r5SYOShXi4k2g5ddjCBI3TrtazYxmvxmZdKHzhJwyOGcA-gIZzxVQ4JICGG3o7oBMWaEVLYxWk7QLKWiRDkdkhrgB4ExqNiX5w3L13OBl9t7g4NrMda7dY4NZqDMMdf_hos9qN7R91obStc2n65vQHZPD2rXoT37nnDwtrx8Xt3R1f3O3uFrRkmvoqRGgDOdroQQHoSQX3uc5r7hnGpxQSpdVXvlU2BVSVS79YHTqVhlfr11hxJycjbnbGN4Gj73dhCGmjmgFaKkNSK6Tio-qMgbE6Gu7jc2ri3vLwH7zsSMfm_jYHz52l0xiNGESdy8-_kX_4_oCBE9o1A
Cites_doi 10.1109/ICSTW.2013.47
10.1109/SERE.2012.12
10.1109/ICSME52107.2021.00039
10.1109/ACCESS.2022.3151395
10.1109/32.341844
10.1007/s10515-022-00326-0
10.1145/357172.357173
10.1007/978-3-540-88582-5_51
10.1109/ASE.2003.1240292
10.1145/2635868.2635906
10.1016/j.jss.2004.06.026
10.1145/1529282.1529374
10.1016/S0950-5849(98)00089-5
10.1145/581396.581397
10.1145/774833.774843
10.1109/TSE.2007.70722
10.1109/TSMC.1981.4308636
10.1145/1596495.1596502
10.1109/SCCC.2018.8705160
10.1142/S021819400900426X
10.1016/S0065-2458(03)62003-6
10.1145/2351676.2351752
10.1145/1101908.1101949
10.1109/PRDC47002.2019.00045
10.1007/s10664-005-3861-2
10.1145/1037187.1024412
10.1145/3524610.3527877
10.1145/143062.143098
10.1109/PRDC.2006.18
10.1007/978-3-540-78137-0_20
10.1145/1363686.1363855
10.1109/TVCG.2018.2865026
10.1145/2591062.2591099
10.1145/2000791.2000795
10.1109/ICSE.2009.5070561
10.1109/TSE.2016.2521368
10.1145/1050849.1050865
ContentType Journal Article
Copyright The Visualization Society of Japan 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Visualization Society of Japan 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s12650-024-00979-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1875-8975
EndPage 602
ExternalDocumentID 10_1007_s12650_024_00979_x
GrantInformation_xml – fundername: Natural Science Foundation of China
  grantid: U1836114
– fundername: National Natural Science Foundation of China
  grantid: 62202074
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2KG
2VQ
30V
4.4
406
408
40D
5GY
67Z
8TC
96X
AAAVM
AACDK
AAFNC
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUBZ
ABULA
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACPQW
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
ADZMO
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFRHK
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGIAB
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
AYJHY
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HF~
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IOS
ITM
IWAJR
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MET
MIO
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PT5
R89
R9I
RLLFE
RNI
ROL
RSV
RZK
S1Z
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7R
Z7X
Z7Y
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-9305922b3532035423ee662d2e170a3557cd6de979a845da65097002d9efba893
IEDL.DBID U2A
ISSN 1343-8875
IngestDate Sun Jul 13 03:49:32 EDT 2025
Tue Jul 01 04:10:07 EDT 2025
Fri Feb 21 02:40:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords View interaction
Fault localization
Visual analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-9305922b3532035423ee662d2e170a3557cd6de979a845da65097002d9efba893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3074790427
PQPubID 2043635
PageCount 18
ParticipantIDs proquest_journals_3074790427
crossref_primary_10_1007_s12650_024_00979_x
springer_journals_10_1007_s12650_024_00979_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of visualization
PublicationTitleAbbrev J Vis
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Zhang X-Y, Zheng Z (2019) A visualization analytical framework for software fault localization metrics. In: 2019 IEEE 24th pacific rim international symposium on dependable computing (PRDC), IEEE, pp 148–14809
DoHElbaumSRothermelGSupporting controlled experimentation with testing techniques: an infrastructure and its potential impactEmpir Softw Eng20051040543510.1007/s10664-005-3861-2
PaiGJDuganJBEmpirical analysis of software fault content and fault proneness using Bayesian methodsIEEE Trans Softw Eng2007331067568610.1109/TSE.2007.70722
Hao D, Zhang L, Zhang L, Sun J, Mei H (2009) Vida: visual interactive debugging. In: 2009 IEEE 31st international conference on software engineering, IEEE, pp 583–586
RosenblumDSA practical approach to programming with assertionsIEEE Trans Softw Eng1995211193110.1109/32.341844
Edwards JC (2003) Method, system, and program for logging statements to monitor execution of a program. Google Patents. US Patent 6,539,501
Ribeiro HL (2016) On the use of control-and data-ow in fault localization. PhD thesis, Universidade de São Paulo
Bhushan RC, Yadav D (2017) Number of test cases required in achieving statement, branch and path coverage using ‘gcov’: an analysis. In: 7th international workshop on computer science and engineering (WCSE 2017) Beijing, China, pp 176–180
Collofello JS, Cousins L (1987) Towards automatic software fault location through decision-to-decision path analysis. In: Managing requirements knowledge, international workshop On, IEEE Computer Society, pp 539–539
Janssen T, Abreu R, Van Gemund AJ (2009) Zoltar: a spectrum-based fault localization tool. In: Proceedings of the 2009 ESEC/FSE workshop on software integration and evolution@ Runtime, pp 23–30
Rosenblum DS (1992) Towards a method of programming with assertions. In: Proceedings of the 14th international conference on software engineering, pp 92–104
WeiserMDProgram slices: formal, psychological, and practical investigations of an automatic program abstraction method1979USAUniversity of Michigan
KorelBRillingJDynamic program slicing methodsInf Softw Technol19984011–1264765910.1016/S0950-5849(98)00089-5
WongWEGaoRLiYAbreuRWotawaFA survey on software fault localizationIEEE Trans Softw Eng201642870774010.1109/TSE.2016.2521368
Mutti D (2014) Coverage based debugging visualization. PhD thesis, Universidade de São Paulo
Zhang S, Zhang C (2014) Software bug localization with markov logic. In: Companion proceedings of the 36th international conference on software engineering, pp 424–427
BinkleyDWHarmanMA survey of empirical results on program slicingAdv Comput20046210517810517810.1016/S0065-2458(03)62003-6
Campos J, Riboira A, Perez A, Abreu R (2012) Gzoltar: an eclipse plug-in for testing and debugging. In: Proceedings of the 27th IEEE/ACM international conference on automated software engineering, pp 378–381
Stallman RM, et al. (1999) Using and porting the GNU compiler collection vol. 86. Free Software Foundation, ???
XuBQianJZhangXWuZChenLA brief survey of program slicingACM SIGSOFT Softw Eng Notes200530213610.1145/1050849.1050865
Jones JA, Harrold MJ (2005) Empirical evaluation of the tarantula automatic fault-localization technique. In: Proceedings of the 20th IEEE/ACM international conference on automated software engineering, pp 273–282
Tip F (1994) A survey of program slicing techniques. Centrum voor Wiskunde en Informatica Amsterdam, ???
Ghandehari LSG, Bourazjany MN, Lei Y, Kacker RN, Kuhn DR (2013) Applying combinatorial testing to the siemens suite. In: 2013 IEEE Sixth international conference on software testing, verification and validation workshops, IEEE, pp 362–371
Nessa S, Abedin M, Wong WE, Khan L, Qi Y (2009) Fault localization using n-gram analysis. In: Proceedings of the 3rd international conference on wireless algorithms, systems, and applications, pp 548–559
Planning S (2002) The economic impacts of inadequate infrastructure for software testing. National Institute of Standards and Technology, 1
Jones JA, Harrold MJ, Stasko J (2002) Visualization of test information to assist fault localization. In: Proceedings of the 24th international conference on software engineering. ICSE, IEEE, pp 467–477
XieCXuWMuellerKA visual analytics framework for the detection of anomalous call stack trees in high performance computing applicationsIEEE Trans Visual Comput Graph201825121522410.1109/TVCG.2018.2865026
Wong WE, Debroy V, Li Y, Gao R (2012) Software fault localization using dstar (d*). In: 2012 IEEE sixth international conference on software security and reliability, IEEE, pp 21–30
SugiyamaKTagawaSTodaMMethods for visual understanding of hierarchical system structuresIEEE Trans Syst Man Cybern198111210912561143610.1109/TSMC.1981.4308636
WongWESugetaTQiYMaldonadoJCSmart debugging software architectural design in SDLJ Syst Softw2005761152810.1016/j.jss.2004.06.026
Hauswirth M, Chilimbi TM (2004) Low-overhead memory leak detection using adaptive statistical profiling. In: Proceedings of the 11th international conference on architectural support for programming languages and operating systems, pp 156–164
Abreu R, González A, Zoeteweij P, Gemund AJ (2008) Automatic software fault localization using generic program invariants. In: Proceedings of the 2008 ACM symposium on applied computing, pp 712–717
Kanda T, Shimari K, Inoue K (2022)didiffff: a viewer for comparing changes in both code and execution traces. In: Proceedings of the 30th IEEE/ACM international conference on program comprehension, pp 528–532
Renieres M, Reiss SP (2003) Fault localization with nearest neighbor queries. In: 18th IEEE International conference on automated software engineering, Proceedings, IEEE, pp 30–39
Stallman R, Pesch R, Shebs S, et al.: Debugging with GDB. Free Software Foundation 675 (1988)
Orso A, Jones JA, Harrold MJ, Stasko J Gammatella (2004) Visualization of program-execution data for deployed software. In: Proceedings. 26th international conference on software engineering, IEEE, pp 699–700
NadimMMondalDRoyCKLeveraging structural properties of source code graphs for just-in-time bug predictionAutom Softw Eng202229113010.1007/s10515-022-00326-0
Xuan J, Monperrus M (2014) Test case purification for improving fault localization. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering, pp 52–63
Abreu R, Mayer W, Stumptner M, Gemund AJ (2009) Refining spectrum-based fault localization rankings. In: Proceedings of the 2009 ACM symposium on applied computing, pp 409–414
Abreu R, Zoeteweij P, Van Gemund AJ (2006) An evaluation of similarity coefficients for software fault localization. In: 2006 12th Pacific rim international symposium on dependable computing (PRDC’06), IEEE, pp 39–46
QayumAKhanSURAkhunzadaAFinecodeanalyzer: multi-perspective source code analysis support for software developer through fine-granular level interactive code visualizationIEEE Access202210204962051310.1109/ACCESS.2022.3151395
Silva FP, Souza HA, Chaim ML (2018) An empirical assessment of visual debugging tools effectiveness and efficiency. In: 2018 37th international conference of the Chilean computer science society (SCCC), IEEE, pp 1–8
NaishLLeeHJRamamohanaraoKA model for spectra-based software diagnosisACM Trans Softw Eng Methodol (TOSEM)201120313210.1145/2000791.2000795
Cellier P, Ducassé M, Ferré S, Ridoux O (2008) Formal concept analysis enhances fault localization in software. In: Formal concept analysis: 6th international conference, ICFCA 2008, Montreal, Canada, February 25-28, 2008. Proceedings, Springer, 6, pp 273–288
ChoiS-SChaS-HTappertCCA survey of binary similarity and distance measuresJ Syst Cybern Inf2010814348
Zhang X-Y, Jiang M (2021) Spica: a methodology for reviewing and analysing fault localisation techniques. In: 2021 IEEE international conference on software maintenance and evolution (ICSME), IEEE, pp 366–377
HennessyJSymbolic debugging of optimized codeACM Trans Program Languag Syst (TOPLAS)19824332334410.1145/357172.357173
WongWEQiYBP neural network-based effective fault localizationInt J Softw Eng Knowl Eng2009190457359710.1142/S021819400900426X
979_CR16
979_CR17
979_CR39
979_CR18
WE Wong (979_CR42) 2016; 42
979_CR19
DS Rosenblum (979_CR32) 1995; 21
M Nadim (979_CR22) 2022; 29
979_CR30
C Xie (979_CR43) 2018; 25
979_CR31
979_CR11
979_CR33
979_CR12
J Hennessy (979_CR15) 1982; 4
979_CR34
979_CR13
979_CR35
979_CR14
979_CR37
979_CR2
979_CR1
B Korel (979_CR20) 1998; 40
GJ Pai (979_CR26) 2007; 33
S-S Choi (979_CR8) 2010; 8
979_CR27
979_CR29
WE Wong (979_CR40) 2009; 19
979_CR7
DW Binkley (979_CR5) 2004; 62
979_CR21
WE Wong (979_CR41) 2005; 76
979_CR9
979_CR4
979_CR45
979_CR3
979_CR24
K Sugiyama (979_CR36) 1981; 11
979_CR46
979_CR6
979_CR25
979_CR47
979_CR48
L Naish (979_CR23) 2011; 20
A Qayum (979_CR28) 2022; 10
H Do (979_CR10) 2005; 10
B Xu (979_CR44) 2005; 30
MD Weiser (979_CR38) 1979
References_xml – reference: Ribeiro HL (2016) On the use of control-and data-ow in fault localization. PhD thesis, Universidade de São Paulo
– reference: Stallman RM, et al. (1999) Using and porting the GNU compiler collection vol. 86. Free Software Foundation, ???
– reference: Abreu R, González A, Zoeteweij P, Gemund AJ (2008) Automatic software fault localization using generic program invariants. In: Proceedings of the 2008 ACM symposium on applied computing, pp 712–717
– reference: Abreu R, Mayer W, Stumptner M, Gemund AJ (2009) Refining spectrum-based fault localization rankings. In: Proceedings of the 2009 ACM symposium on applied computing, pp 409–414
– reference: Jones JA, Harrold MJ (2005) Empirical evaluation of the tarantula automatic fault-localization technique. In: Proceedings of the 20th IEEE/ACM international conference on automated software engineering, pp 273–282
– reference: RosenblumDSA practical approach to programming with assertionsIEEE Trans Softw Eng1995211193110.1109/32.341844
– reference: Zhang X-Y, Jiang M (2021) Spica: a methodology for reviewing and analysing fault localisation techniques. In: 2021 IEEE international conference on software maintenance and evolution (ICSME), IEEE, pp 366–377
– reference: DoHElbaumSRothermelGSupporting controlled experimentation with testing techniques: an infrastructure and its potential impactEmpir Softw Eng20051040543510.1007/s10664-005-3861-2
– reference: Zhang X-Y, Zheng Z (2019) A visualization analytical framework for software fault localization metrics. In: 2019 IEEE 24th pacific rim international symposium on dependable computing (PRDC), IEEE, pp 148–14809
– reference: Cellier P, Ducassé M, Ferré S, Ridoux O (2008) Formal concept analysis enhances fault localization in software. In: Formal concept analysis: 6th international conference, ICFCA 2008, Montreal, Canada, February 25-28, 2008. Proceedings, Springer, 6, pp 273–288
– reference: Mutti D (2014) Coverage based debugging visualization. PhD thesis, Universidade de São Paulo
– reference: PaiGJDuganJBEmpirical analysis of software fault content and fault proneness using Bayesian methodsIEEE Trans Softw Eng2007331067568610.1109/TSE.2007.70722
– reference: Campos J, Riboira A, Perez A, Abreu R (2012) Gzoltar: an eclipse plug-in for testing and debugging. In: Proceedings of the 27th IEEE/ACM international conference on automated software engineering, pp 378–381
– reference: Wong WE, Debroy V, Li Y, Gao R (2012) Software fault localization using dstar (d*). In: 2012 IEEE sixth international conference on software security and reliability, IEEE, pp 21–30
– reference: Abreu R, Zoeteweij P, Van Gemund AJ (2006) An evaluation of similarity coefficients for software fault localization. In: 2006 12th Pacific rim international symposium on dependable computing (PRDC’06), IEEE, pp 39–46
– reference: XieCXuWMuellerKA visual analytics framework for the detection of anomalous call stack trees in high performance computing applicationsIEEE Trans Visual Comput Graph201825121522410.1109/TVCG.2018.2865026
– reference: WongWESugetaTQiYMaldonadoJCSmart debugging software architectural design in SDLJ Syst Softw2005761152810.1016/j.jss.2004.06.026
– reference: Edwards JC (2003) Method, system, and program for logging statements to monitor execution of a program. Google Patents. US Patent 6,539,501
– reference: Jones JA, Harrold MJ, Stasko J (2002) Visualization of test information to assist fault localization. In: Proceedings of the 24th international conference on software engineering. ICSE, IEEE, pp 467–477
– reference: Rosenblum DS (1992) Towards a method of programming with assertions. In: Proceedings of the 14th international conference on software engineering, pp 92–104
– reference: Hauswirth M, Chilimbi TM (2004) Low-overhead memory leak detection using adaptive statistical profiling. In: Proceedings of the 11th international conference on architectural support for programming languages and operating systems, pp 156–164
– reference: Orso A, Jones JA, Harrold MJ, Stasko J Gammatella (2004) Visualization of program-execution data for deployed software. In: Proceedings. 26th international conference on software engineering, IEEE, pp 699–700
– reference: HennessyJSymbolic debugging of optimized codeACM Trans Program Languag Syst (TOPLAS)19824332334410.1145/357172.357173
– reference: NadimMMondalDRoyCKLeveraging structural properties of source code graphs for just-in-time bug predictionAutom Softw Eng202229113010.1007/s10515-022-00326-0
– reference: NaishLLeeHJRamamohanaraoKA model for spectra-based software diagnosisACM Trans Softw Eng Methodol (TOSEM)201120313210.1145/2000791.2000795
– reference: Bhushan RC, Yadav D (2017) Number of test cases required in achieving statement, branch and path coverage using ‘gcov’: an analysis. In: 7th international workshop on computer science and engineering (WCSE 2017) Beijing, China, pp 176–180
– reference: WongWEQiYBP neural network-based effective fault localizationInt J Softw Eng Knowl Eng2009190457359710.1142/S021819400900426X
– reference: Stallman R, Pesch R, Shebs S, et al.: Debugging with GDB. Free Software Foundation 675 (1988)
– reference: Ghandehari LSG, Bourazjany MN, Lei Y, Kacker RN, Kuhn DR (2013) Applying combinatorial testing to the siemens suite. In: 2013 IEEE Sixth international conference on software testing, verification and validation workshops, IEEE, pp 362–371
– reference: BinkleyDWHarmanMA survey of empirical results on program slicingAdv Comput20046210517810517810.1016/S0065-2458(03)62003-6
– reference: KorelBRillingJDynamic program slicing methodsInf Softw Technol19984011–1264765910.1016/S0950-5849(98)00089-5
– reference: QayumAKhanSURAkhunzadaAFinecodeanalyzer: multi-perspective source code analysis support for software developer through fine-granular level interactive code visualizationIEEE Access202210204962051310.1109/ACCESS.2022.3151395
– reference: ChoiS-SChaS-HTappertCCA survey of binary similarity and distance measuresJ Syst Cybern Inf2010814348
– reference: Tip F (1994) A survey of program slicing techniques. Centrum voor Wiskunde en Informatica Amsterdam, ???
– reference: WeiserMDProgram slices: formal, psychological, and practical investigations of an automatic program abstraction method1979USAUniversity of Michigan
– reference: Xuan J, Monperrus M (2014) Test case purification for improving fault localization. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering, pp 52–63
– reference: Kanda T, Shimari K, Inoue K (2022)didiffff: a viewer for comparing changes in both code and execution traces. In: Proceedings of the 30th IEEE/ACM international conference on program comprehension, pp 528–532
– reference: Nessa S, Abedin M, Wong WE, Khan L, Qi Y (2009) Fault localization using n-gram analysis. In: Proceedings of the 3rd international conference on wireless algorithms, systems, and applications, pp 548–559
– reference: SugiyamaKTagawaSTodaMMethods for visual understanding of hierarchical system structuresIEEE Trans Syst Man Cybern198111210912561143610.1109/TSMC.1981.4308636
– reference: Janssen T, Abreu R, Van Gemund AJ (2009) Zoltar: a spectrum-based fault localization tool. In: Proceedings of the 2009 ESEC/FSE workshop on software integration and evolution@ Runtime, pp 23–30
– reference: Zhang S, Zhang C (2014) Software bug localization with markov logic. In: Companion proceedings of the 36th international conference on software engineering, pp 424–427
– reference: Renieres M, Reiss SP (2003) Fault localization with nearest neighbor queries. In: 18th IEEE International conference on automated software engineering, Proceedings, IEEE, pp 30–39
– reference: Silva FP, Souza HA, Chaim ML (2018) An empirical assessment of visual debugging tools effectiveness and efficiency. In: 2018 37th international conference of the Chilean computer science society (SCCC), IEEE, pp 1–8
– reference: WongWEGaoRLiYAbreuRWotawaFA survey on software fault localizationIEEE Trans Softw Eng201642870774010.1109/TSE.2016.2521368
– reference: Planning S (2002) The economic impacts of inadequate infrastructure for software testing. National Institute of Standards and Technology, 1
– reference: Hao D, Zhang L, Zhang L, Sun J, Mei H (2009) Vida: visual interactive debugging. In: 2009 IEEE 31st international conference on software engineering, IEEE, pp 583–586
– reference: XuBQianJZhangXWuZChenLA brief survey of program slicingACM SIGSOFT Softw Eng Notes200530213610.1145/1050849.1050865
– reference: Collofello JS, Cousins L (1987) Towards automatic software fault location through decision-to-decision path analysis. In: Managing requirements knowledge, international workshop On, IEEE Computer Society, pp 539–539
– ident: 979_CR12
  doi: 10.1109/ICSTW.2013.47
– ident: 979_CR39
  doi: 10.1109/SERE.2012.12
– ident: 979_CR46
  doi: 10.1109/ICSME52107.2021.00039
– ident: 979_CR27
– volume: 10
  start-page: 20496
  year: 2022
  ident: 979_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3151395
– volume-title: Program slices: formal, psychological, and practical investigations of an automatic program abstraction method
  year: 1979
  ident: 979_CR38
– volume: 21
  start-page: 19
  issue: 1
  year: 1995
  ident: 979_CR32
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/32.341844
– ident: 979_CR21
– volume: 29
  start-page: 1
  issue: 1
  year: 2022
  ident: 979_CR22
  publication-title: Autom Softw Eng
  doi: 10.1007/s10515-022-00326-0
– volume: 4
  start-page: 323
  issue: 3
  year: 1982
  ident: 979_CR15
  publication-title: ACM Trans Program Languag Syst (TOPLAS)
  doi: 10.1145/357172.357173
– ident: 979_CR24
  doi: 10.1007/978-3-540-88582-5_51
– ident: 979_CR29
  doi: 10.1109/ASE.2003.1240292
– ident: 979_CR45
  doi: 10.1145/2635868.2635906
– volume: 76
  start-page: 15
  issue: 1
  year: 2005
  ident: 979_CR41
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2004.06.026
– ident: 979_CR2
  doi: 10.1145/1529282.1529374
– volume: 40
  start-page: 647
  issue: 11–12
  year: 1998
  ident: 979_CR20
  publication-title: Inf Softw Technol
  doi: 10.1016/S0950-5849(98)00089-5
– ident: 979_CR18
  doi: 10.1145/581396.581397
– ident: 979_CR9
– ident: 979_CR25
  doi: 10.1145/774833.774843
– volume: 8
  start-page: 43
  issue: 1
  year: 2010
  ident: 979_CR8
  publication-title: J Syst Cybern Inf
– ident: 979_CR11
– volume: 33
  start-page: 675
  issue: 10
  year: 2007
  ident: 979_CR26
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2007.70722
– volume: 11
  start-page: 109
  issue: 2
  year: 1981
  ident: 979_CR36
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1981.4308636
– ident: 979_CR16
  doi: 10.1145/1596495.1596502
– ident: 979_CR33
  doi: 10.1109/SCCC.2018.8705160
– volume: 19
  start-page: 573
  issue: 04
  year: 2009
  ident: 979_CR40
  publication-title: Int J Softw Eng Knowl Eng
  doi: 10.1142/S021819400900426X
– volume: 62
  start-page: 105
  issue: 105178
  year: 2004
  ident: 979_CR5
  publication-title: Adv Comput
  doi: 10.1016/S0065-2458(03)62003-6
– ident: 979_CR6
  doi: 10.1145/2351676.2351752
– ident: 979_CR17
  doi: 10.1145/1101908.1101949
– ident: 979_CR30
– ident: 979_CR47
  doi: 10.1109/PRDC47002.2019.00045
– ident: 979_CR4
– volume: 10
  start-page: 405
  year: 2005
  ident: 979_CR10
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-005-3861-2
– ident: 979_CR14
  doi: 10.1145/1037187.1024412
– ident: 979_CR19
  doi: 10.1145/3524610.3527877
– ident: 979_CR31
  doi: 10.1145/143062.143098
– ident: 979_CR34
– ident: 979_CR3
  doi: 10.1109/PRDC.2006.18
– ident: 979_CR7
  doi: 10.1007/978-3-540-78137-0_20
– ident: 979_CR37
– ident: 979_CR35
– ident: 979_CR1
  doi: 10.1145/1363686.1363855
– volume: 25
  start-page: 215
  issue: 1
  year: 2018
  ident: 979_CR43
  publication-title: IEEE Trans Visual Comput Graph
  doi: 10.1109/TVCG.2018.2865026
– ident: 979_CR48
  doi: 10.1145/2591062.2591099
– volume: 20
  start-page: 1
  issue: 3
  year: 2011
  ident: 979_CR23
  publication-title: ACM Trans Softw Eng Methodol (TOSEM)
  doi: 10.1145/2000791.2000795
– ident: 979_CR13
  doi: 10.1109/ICSE.2009.5070561
– volume: 42
  start-page: 707
  issue: 8
  year: 2016
  ident: 979_CR42
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2016.2521368
– volume: 30
  start-page: 1
  issue: 2
  year: 2005
  ident: 979_CR44
  publication-title: ACM SIGSOFT Softw Eng Notes
  doi: 10.1145/1050849.1050865
SSID ssj0021471
Score 2.3127759
Snippet Since the birth of software, fault localization has been a time-consuming and laborious task. Programmers need to constantly find faults in software through...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 585
SubjectTerms Algorithms
Classical and Continuum Physics
Computer Imaging
Debugging
Efficiency
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Fault location
Heat and Mass Transfer
Localization
Pattern Recognition and Graphics
Programmers
Regular Paper
Software testing
Source code
Vision
Title SFLVis: visual analysis of software fault localization
URI https://link.springer.com/article/10.1007/s12650-024-00979-x
https://www.proquest.com/docview/3074790427
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2hdoGBjwKiUCoPbGApsWOnYatQS8XXAkVlipzYkSqhFjUp8PM5pw4BBAOzE0t59t29i33vAE40R86QMEkF9xQNMi5oon1BNXpMlfoGx-yvgds7ORoHVxMxcUVheXXbvTqSLD11XezGkE1QjCnUFh9EFJljU2Dubs1xzPqfaZZfpVkBp2hCwpXK_D7H93BUc8wfx6JltBluw6ajiaS_WtcdWDOzFmw5ykicQeYt2PiiJ7gL8n548zjNz8nrNF_i68opjpB5RnL0t29qYUimls8FKWOYq8Hcg_Fw8HAxoq4xAk1Z6BU0QiONGEu47erABTIiY6Rkmhk_9BQyiDDVUhv8QNULhFZWJS9EZHRkskQhQ9mHxmw-MwdAMNvymFIYkwwLVMYVTwMehjxQUqa9zLThtMInflnpX8S10rFFM0Y04xLN-L0NnQrC2NlCHnOr0R_Znh5tOKtgrYf_nu3wf48fwTorV9bezutAo1gszTEyhiLpQrN_-XQ96JYb5QNptbbn
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2hMgADHwVEoYAHNrCU2InTsFWIqkDbhRZ1s5zYkSqhFjUp8PM5pw4FBAOzE0t59t29i33vAC40R86QMEFD7ikaZDykifZDqtFjqtQ3OGZ_DfQHojsK7sfh2BWF5dVt9-pIsvTUq2I3hmyCYkyhtvggpsgc15EMtGzfghFrf6ZZfpVmBZyiCYWuVOb3Ob6HoxXH_HEsWkabzi5sO5pI2st13YM1M63DjqOMxBlkXoetL3qC-yAeO72nSX5NXif5Al9XTnGEzDKSo799U3NDMrV4LkgZw1wN5gGMOrfDmy51jRFoyiKvoDEaacxYwm1XBx4iCMYIwTQzfuQpZBBRqoU2-IGqFYRaWZW8CJHRsckShQzlEGrT2dQcAcFsy2NKYUwyLFAZVzwNeBTxQAmRtjLTgMsKH_my1L-QK6Vji6ZENGWJpnxvQLOCUDpbyCW3Gv2x7enRgKsK1tXw37Md_-_xc9joDvs92bsbPJzAJitX2d7Ua0KtmC_MKbKHIjkrN8sHbTu4Rg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yQfTgj6k4nZqDNw1bkzZdvQ21TJ1D0MluIW1SGEg31k79833pUjtFD57TBvol773vNXnfQ-hMMeAMEeXEY21J3IR5JFKORxR4TBk7GsbMr4GHAe8N3buRN1qq4i9uu5dHkouaBqPSlOatqUpaVeEbBWZBIL4QU4gQEGCRq-COHbPTh7T7lXI5ZcrlMgLm5Nmymd_n-B6aKr7544i0iDzhNtq0lBF3F2u8g1Z0Wkdblj5ia5xZHW0saQvuIv4U9l_G2SV-G2dzeF1a9RE8SXAGvvddzjRO5Pw1x0U8s_WYe2gY3jxf9YhtkkBi6rdzEoDBBpRGzHR4YB6wI605p4pqx29LYBN-rLjS8IGy43pKGsU8H5BRgU4iCWxlH9XSSaoPEIbMq02lhPikqSsTJlnsMt9nruQ87iS6gc5LfMR0oYUhKtVjg6YANEWBpvhooGYJobB2kQlm9PoD09-jgS5KWKvhv2c7_N_jp2jt8ToU_dvB_RFap8Uim0t7TVTLZ3N9DEQij06KvfIJjCa8gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SFLVis%3A+visual+analysis+of+software+fault+localization&rft.jtitle=Journal+of+visualization&rft.au=Sun%2C+Desheng&rft.au=Yue%2C+Xiaoqi&rft.au=Liu%2C+Chao&rft.au=Qin%2C+Hongxing&rft.date=2024-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1343-8875&rft.eissn=1875-8975&rft.volume=27&rft.issue=4&rft.spage=585&rft.epage=602&rft_id=info:doi/10.1007%2Fs12650-024-00979-x&rft.externalDocID=10_1007_s12650_024_00979_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-8875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-8875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-8875&client=summon