Intelligent Wear Condition Prediction of Ball Bearings Based on Convolutional Neural Networks and Lubricating Oil

Ball bearings play a pivotal role in rotating machinery, making it crucial to detect their wear condition in real time for preventive maintenance. This paper proposes a novel method, involving one-dimensional convolutional neural network (1DCNN) and lubricating oil, which is sensitive to early abnor...

Full description

Saved in:
Bibliographic Details
Published inJournal of failure analysis and prevention Vol. 24; no. 4; pp. 1854 - 1864
Main Authors Sun, Jiasi, Bu, Jiali, Guo, Xiaopeng, Su, Changqing
Format Journal Article
LanguageEnglish
Published Materials Park Springer Nature B.V 01.08.2024
Subjects
Online AccessGet full text
ISSN1547-7029
1864-1245
DOI10.1007/s11668-024-01972-0

Cover

Loading…
Abstract Ball bearings play a pivotal role in rotating machinery, making it crucial to detect their wear condition in real time for preventive maintenance. This paper proposes a novel method, involving one-dimensional convolutional neural network (1DCNN) and lubricating oil, which is sensitive to early abnormal wear, to intelligently predict the wear condition of ball bearings. To achieve that, an industrial-level gas turbine is used in the test to simulate the practical working conditions. During the machine’s operation, the lubricating oil is sampled at different time intervals for spectral oil analysis (SOA), which is later utilized as the input data set. The 1DCNN model is then constructed and fine-tuned to extract its wear characters, and finally outputs a one-dimensional time-sequence feature vector of the SOA data, providing wear information for the upcoming hours. The predicted results have shown that the 1DCNN model can effectively predict the trend of wear condition with higher accuracy of over 97% and better generalization performance compared with the BP neural networks. Additionally, the validation test results have also verified the reliability of the 1DCNN model, which can be useful for manufacturing industries in reducing costly maintenance fees by early detection of potential failure.
AbstractList Ball bearings play a pivotal role in rotating machinery, making it crucial to detect their wear condition in real time for preventive maintenance. This paper proposes a novel method, involving one-dimensional convolutional neural network (1DCNN) and lubricating oil, which is sensitive to early abnormal wear, to intelligently predict the wear condition of ball bearings. To achieve that, an industrial-level gas turbine is used in the test to simulate the practical working conditions. During the machine’s operation, the lubricating oil is sampled at different time intervals for spectral oil analysis (SOA), which is later utilized as the input data set. The 1DCNN model is then constructed and fine-tuned to extract its wear characters, and finally outputs a one-dimensional time-sequence feature vector of the SOA data, providing wear information for the upcoming hours. The predicted results have shown that the 1DCNN model can effectively predict the trend of wear condition with higher accuracy of over 97% and better generalization performance compared with the BP neural networks. Additionally, the validation test results have also verified the reliability of the 1DCNN model, which can be useful for manufacturing industries in reducing costly maintenance fees by early detection of potential failure.
Author Sun, Jiasi
Guo, Xiaopeng
Su, Changqing
Bu, Jiali
Author_xml – sequence: 1
  givenname: Jiasi
  orcidid: 0009-0004-2836-7864
  surname: Sun
  fullname: Sun, Jiasi
– sequence: 2
  givenname: Jiali
  surname: Bu
  fullname: Bu, Jiali
– sequence: 3
  givenname: Xiaopeng
  surname: Guo
  fullname: Guo, Xiaopeng
– sequence: 4
  givenname: Changqing
  surname: Su
  fullname: Su, Changqing
BookMark eNotkMtOAyEUhompibb6Aq5IXI9yHaZL23hp0lgXGpeEcmlQhBZmNL69tHV1fjgfJ5xvDEYxRQvAFUY3GCFxWzBu265BhDUITwVp0Ak4x13LGkwYH9XMmWgEItMzMC7lAyHKMeHnYLeIvQ3Bb2zs4btVGc5TNL73KcKXbI3Xh5gcnKkQ4KwSPm5KPRVrYO1U_DuFYU-pAJ_tkA-l_0n5s0AVDVwO6-y16us7uPLhApw6FYq9_K8T8PZw_zp_aparx8X8btloIlDfdG7NLDNGWO0YU4asCRaGTtvO1lUYpZ3SljvdUtd2pF5YzJWmmjlaeaHoBFwf525z2g229PIjDbl-skhanXHaId5WihwpnVMp2Tq5zf5L5V-JkdyrlUe1sqqVB7US0T_cxG8L
Cites_doi 10.1016/j.triboint.2021.107326
10.1007/s00521-021-06688-y
10.1108/ILT-04-2022-0151
10.1108/ILT-04-2023-0113
10.1016/j.eswa.2022.117494
10.1177/16878132221135745
10.1108/ILT-11-2021-0438
10.5194/ms-13-485-2022
10.1016/j.triboint.2019.05.040
10.1016/j.cja.2017.11.016
10.1016/j.wear.2021.204104
10.1016/j.ymssp.2018.08.039
10.3390/act12070301
10.1007/s11668-022-01469-8
10.1007/s11668-023-01616-9
10.17531/ein.2020.3.6
10.1016/j.aei.2017.02.005
10.1016/j.jsv.2016.05.027
ContentType Journal Article
Copyright ASM International 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: ASM International 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SR
7TA
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1007/s11668-024-01972-0
DatabaseName CrossRef
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Materials Business File
METADEX
DatabaseTitleList Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1864-1245
EndPage 1864
ExternalDocumentID 10_1007_s11668_024_01972_0
GroupedDBID -Y2
.86
.VR
06C
06D
0R~
0VY
199
1N0
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBRH
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
CITATION
COF
CS3
CSCUP
D-I
D1I
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KB.
KDC
KOV
L6V
LLZTM
M4Y
M7S
MA-
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9N
PDBOC
PF0
PHGZM
PHGZT
PT4
PTHSS
Q2X
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~A9
7SR
7TA
7TB
8BQ
8FD
ABRTQ
FR3
JG9
KR7
ID FETCH-LOGICAL-c270t-8fb4e4dd7ecf44ad2b217d3968e5474338ace5fc63f682743e15ac3c4f3f447a3
ISSN 1547-7029
IngestDate Tue Aug 26 03:12:46 EDT 2025
Tue Jul 01 04:28:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c270t-8fb4e4dd7ecf44ad2b217d3968e5474338ace5fc63f682743e15ac3c4f3f447a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-2836-7864
PQID 3100538056
PQPubID 326254
PageCount 11
ParticipantIDs proquest_journals_3100538056
crossref_primary_10_1007_s11668_024_01972_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Materials Park
PublicationPlace_xml – name: Materials Park
PublicationTitle Journal of failure analysis and prevention
PublicationYear 2024
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References MS Hasan (1972_CR12) 2022; 165
P Mohammad-Reza (1972_CR4) 2022; 34
JG Gupta (1972_CR5) 2021; 486–487
W Hong (1972_CR2) 2018; 31
MS Rathore (1972_CR1) 2022; 2022
N Zhao (1972_CR8) 2022; 2022
J RodRigues (1972_CR6) 2020; 22
II Argatov (1972_CR7) 2019; 138
M Wang (1972_CR15) 2023; 75
H Sun (1972_CR11) 2024; 17
S Wang (1972_CR13) 2023; 12
Y Ma (1972_CR19) 2020; 42
Y Zhu (1972_CR20) 2022; 14
O Janssens (1972_CR16) 2016; 377
J Sun (1972_CR23) 2023; 75
JM Wakiru (1972_CR9) 2019; 18
PP More (1972_CR3) 2022; 74
Y Liu (1972_CR22) 2015; 35
Qi Zhang (1972_CR24) 2023; 23
C Lu (1972_CR18) 2017; 32
R Mohammad (1972_CR10) 2022; 203
F Zhang (1972_CR14) 2023; 16–3291
X Shen (1972_CR21) 2022; 13
J Deng (1972_CR17) 2020; 142–147
References_xml – volume: 42
  start-page: 1911
  year: 2020
  ident: 1972_CR19
  publication-title: Syst. Eng. Electron.
– volume: 35
  start-page: 1370
  year: 2015
  ident: 1972_CR22
  publication-title: Spectrosc. Spect. Anal.
– volume: 165
  start-page: 107326
  year: 2022
  ident: 1972_CR12
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2021.107326
– volume: 34
  start-page: 5465
  year: 2022
  ident: 1972_CR4
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06688-y
– volume: 75
  start-page: 36
  issue: 1
  year: 2023
  ident: 1972_CR23
  publication-title: Ind. Lubr. Tribol.
  doi: 10.1108/ILT-04-2022-0151
– volume: 2022
  start-page: 1436144
  year: 2022
  ident: 1972_CR8
  publication-title: Math. Probl. Eng.
– volume: 75
  start-page: 875
  issue: 8
  year: 2023
  ident: 1972_CR15
  publication-title: Ind Lubr Tribol
  doi: 10.1108/ILT-04-2023-0113
– volume: 203
  start-page: 117494
  year: 2022
  ident: 1972_CR10
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117494
– volume: 14
  start-page: 168781322211357
  issue: 11
  year: 2022
  ident: 1972_CR20
  publication-title: Adv. Mechan. Eng.
  doi: 10.1177/16878132221135745
– volume: 74
  start-page: 274
  issue: 2
  year: 2022
  ident: 1972_CR3
  publication-title: Ind Lubr Tribol
  doi: 10.1108/ILT-11-2021-0438
– volume: 13
  start-page: 485
  year: 2022
  ident: 1972_CR21
  publication-title: Mech. Sci.
  doi: 10.5194/ms-13-485-2022
– volume: 138
  start-page: 211
  year: 2019
  ident: 1972_CR7
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2019.05.040
– volume: 31
  start-page: 867
  year: 2018
  ident: 1972_CR2
  publication-title: J. Chin. Aeronaut
  doi: 10.1016/j.cja.2017.11.016
– volume: 486–487
  start-page: 204104
  year: 2021
  ident: 1972_CR5
  publication-title: Wear
  doi: 10.1016/j.wear.2021.204104
– volume: 18
  start-page: 108
  year: 2019
  ident: 1972_CR9
  publication-title: Mechan. Syst. Signal Progr.
  doi: 10.1016/j.ymssp.2018.08.039
– volume: 12
  start-page: 301
  issue: 7
  year: 2023
  ident: 1972_CR13
  publication-title: Actuators
  doi: 10.3390/act12070301
– volume: 16–3291
  start-page: 1
  year: 2023
  ident: 1972_CR14
  publication-title: Energies
– volume: 2022
  start-page: 1853
  issue: 22
  year: 2022
  ident: 1972_CR1
  publication-title: J. Fail. Anal. Preven.
  doi: 10.1007/s11668-022-01469-8
– volume: 23
  start-page: 795
  year: 2023
  ident: 1972_CR24
  publication-title: J Fail. Anal. Preven.
  doi: 10.1007/s11668-023-01616-9
– volume: 22
  start-page: 440
  issue: 3
  year: 2020
  ident: 1972_CR6
  publication-title: Eksploatacja i Niezawodnosc
  doi: 10.17531/ein.2020.3.6
– volume: 17
  start-page: 1
  year: 2024
  ident: 1972_CR11
  publication-title: J. Fail. Anal. Preven.
– volume: 142–147
  start-page: 122
  year: 2020
  ident: 1972_CR17
  publication-title: Mod. Manuf. Eng.
– volume: 32
  start-page: 139
  year: 2017
  ident: 1972_CR18
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2017.02.005
– volume: 377
  start-page: 331
  year: 2016
  ident: 1972_CR16
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.05.027
SSID ssj0035125
Score 2.309241
Snippet Ball bearings play a pivotal role in rotating machinery, making it crucial to detect their wear condition in real time for preventive maintenance. This paper...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 1854
SubjectTerms Artificial neural networks
Back propagation networks
Ball bearings
Gas turbines
Lubricating oils
Network reliability
Neural networks
Preventive maintenance
Rotating machinery
Title Intelligent Wear Condition Prediction of Ball Bearings Based on Convolutional Neural Networks and Lubricating Oil
URI https://www.proquest.com/docview/3100538056
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxFMsLMgHblFQGjtOctystiyr0uXQit4i23FWlVbpPhIO_BP-LTOx8yisEHBJG8dJLM8Xz9gz85mQ90wXgINZ6nPDjQ_zL-anWkhfKxWotEiEnmG-8-elOFvz8020mUx-jKKWmlp90N_vzSv5H6lCGcgVs2T_QbL9Q6EA_oN84QgShuNfyfhTz6dZe1-Rkedkhx5olOiXW_TAdOZghg7oDGq0m3RmoLkK9BJA9W-ugSAp5Olof9rAcMvdvGiU3UeouvQuXDTG76ZsKbdX1hHhGE4c-4CLpRwcT5V3vpV3234NoMHzq_78Y7PzNluJO3pdDjfZDIibTse6JYqQ9wFy-0uUGH-NjelTaOyIy2M_Dtyyh7FliUAyRcsz2Q3TNtXawZGPxlywOPhIf-PN9-qGwOVKz4SA5mErccs1Pxg0Yef9X17k8_Vika9ON6sH5CCEGUg4JQfH8yxbdmqegaUUtWS8rv0uI8vmZf76jn2rZ1_pt5bM6gl57ORGjy2enpKJqZ6RRyNiyufkZoQsisiiPbLogCy6Kykii3bIoi2yKFzZQxa1yKIdsijAg46QRQFZL8h6fro6OfPd5hy-DuOg9pNSweddFLHRJeeyCBVMbguWisRAj3DGEqlNVGrBSpGEUGBmkdRM85JB_Viyl2Ra7SrzilAzw5VIFpRxUMIzpZJlJFITwfiiuFLikHhd5-XXloMlH9i2satz6Oq87eo8OCRHXf_m7lu9y9GNBaodrP3Xf778hjwcEHxEpvVtY96C2Vmrdw4APwHPv4fE
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Wear+Condition+Prediction+of+Ball+Bearings+Based+on+Convolutional+Neural+Networks+and+Lubricating+Oil&rft.jtitle=Journal+of+failure+analysis+and+prevention&rft.au=Sun+Jiasi&rft.au=Bu+Jiali&rft.au=Guo+Xiaopeng&rft.au=Su+Changqing&rft.date=2024-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1547-7029&rft.eissn=1864-1245&rft.volume=24&rft.issue=4&rft.spage=1854&rft.epage=1864&rft_id=info:doi/10.1007%2Fs11668-024-01972-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-7029&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-7029&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-7029&client=summon