Intelligent Wear Condition Prediction of Ball Bearings Based on Convolutional Neural Networks and Lubricating Oil
Ball bearings play a pivotal role in rotating machinery, making it crucial to detect their wear condition in real time for preventive maintenance. This paper proposes a novel method, involving one-dimensional convolutional neural network (1DCNN) and lubricating oil, which is sensitive to early abnor...
Saved in:
Published in | Journal of failure analysis and prevention Vol. 24; no. 4; pp. 1854 - 1864 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Materials Park
Springer Nature B.V
01.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1547-7029 1864-1245 |
DOI | 10.1007/s11668-024-01972-0 |
Cover
Loading…
Abstract | Ball bearings play a pivotal role in rotating machinery, making it crucial to detect their wear condition in real time for preventive maintenance. This paper proposes a novel method, involving one-dimensional convolutional neural network (1DCNN) and lubricating oil, which is sensitive to early abnormal wear, to intelligently predict the wear condition of ball bearings. To achieve that, an industrial-level gas turbine is used in the test to simulate the practical working conditions. During the machine’s operation, the lubricating oil is sampled at different time intervals for spectral oil analysis (SOA), which is later utilized as the input data set. The 1DCNN model is then constructed and fine-tuned to extract its wear characters, and finally outputs a one-dimensional time-sequence feature vector of the SOA data, providing wear information for the upcoming hours. The predicted results have shown that the 1DCNN model can effectively predict the trend of wear condition with higher accuracy of over 97% and better generalization performance compared with the BP neural networks. Additionally, the validation test results have also verified the reliability of the 1DCNN model, which can be useful for manufacturing industries in reducing costly maintenance fees by early detection of potential failure. |
---|---|
AbstractList | Ball bearings play a pivotal role in rotating machinery, making it crucial to detect their wear condition in real time for preventive maintenance. This paper proposes a novel method, involving one-dimensional convolutional neural network (1DCNN) and lubricating oil, which is sensitive to early abnormal wear, to intelligently predict the wear condition of ball bearings. To achieve that, an industrial-level gas turbine is used in the test to simulate the practical working conditions. During the machine’s operation, the lubricating oil is sampled at different time intervals for spectral oil analysis (SOA), which is later utilized as the input data set. The 1DCNN model is then constructed and fine-tuned to extract its wear characters, and finally outputs a one-dimensional time-sequence feature vector of the SOA data, providing wear information for the upcoming hours. The predicted results have shown that the 1DCNN model can effectively predict the trend of wear condition with higher accuracy of over 97% and better generalization performance compared with the BP neural networks. Additionally, the validation test results have also verified the reliability of the 1DCNN model, which can be useful for manufacturing industries in reducing costly maintenance fees by early detection of potential failure. |
Author | Sun, Jiasi Guo, Xiaopeng Su, Changqing Bu, Jiali |
Author_xml | – sequence: 1 givenname: Jiasi orcidid: 0009-0004-2836-7864 surname: Sun fullname: Sun, Jiasi – sequence: 2 givenname: Jiali surname: Bu fullname: Bu, Jiali – sequence: 3 givenname: Xiaopeng surname: Guo fullname: Guo, Xiaopeng – sequence: 4 givenname: Changqing surname: Su fullname: Su, Changqing |
BookMark | eNotkMtOAyEUhompibb6Aq5IXI9yHaZL23hp0lgXGpeEcmlQhBZmNL69tHV1fjgfJ5xvDEYxRQvAFUY3GCFxWzBu265BhDUITwVp0Ak4x13LGkwYH9XMmWgEItMzMC7lAyHKMeHnYLeIvQ3Bb2zs4btVGc5TNL73KcKXbI3Xh5gcnKkQ4KwSPm5KPRVrYO1U_DuFYU-pAJ_tkA-l_0n5s0AVDVwO6-y16us7uPLhApw6FYq9_K8T8PZw_zp_aparx8X8btloIlDfdG7NLDNGWO0YU4asCRaGTtvO1lUYpZ3SljvdUtd2pF5YzJWmmjlaeaHoBFwf525z2g229PIjDbl-skhanXHaId5WihwpnVMp2Tq5zf5L5V-JkdyrlUe1sqqVB7US0T_cxG8L |
Cites_doi | 10.1016/j.triboint.2021.107326 10.1007/s00521-021-06688-y 10.1108/ILT-04-2022-0151 10.1108/ILT-04-2023-0113 10.1016/j.eswa.2022.117494 10.1177/16878132221135745 10.1108/ILT-11-2021-0438 10.5194/ms-13-485-2022 10.1016/j.triboint.2019.05.040 10.1016/j.cja.2017.11.016 10.1016/j.wear.2021.204104 10.1016/j.ymssp.2018.08.039 10.3390/act12070301 10.1007/s11668-022-01469-8 10.1007/s11668-023-01616-9 10.17531/ein.2020.3.6 10.1016/j.aei.2017.02.005 10.1016/j.jsv.2016.05.027 |
ContentType | Journal Article |
Copyright | ASM International 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: ASM International 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 7SR 7TA 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1007/s11668-024-01972-0 |
DatabaseName | CrossRef Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Materials Business File METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1864-1245 |
EndPage | 1864 |
ExternalDocumentID | 10_1007_s11668_024_01972_0 |
GroupedDBID | -Y2 .86 .VR 06C 06D 0R~ 0VY 199 1N0 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBRH ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ATHPR AXYYD AYFIA AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA CAG CCPQU CITATION COF CS3 CSCUP D-I D1I DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HRMNR HZ~ I-F IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KB. KDC KOV L6V LLZTM M4Y M7S MA- NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P9N PDBOC PF0 PHGZM PHGZT PT4 PTHSS Q2X QOR QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~8M ~A9 7SR 7TA 7TB 8BQ 8FD ABRTQ FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c270t-8fb4e4dd7ecf44ad2b217d3968e5474338ace5fc63f682743e15ac3c4f3f447a3 |
ISSN | 1547-7029 |
IngestDate | Tue Aug 26 03:12:46 EDT 2025 Tue Jul 01 04:28:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c270t-8fb4e4dd7ecf44ad2b217d3968e5474338ace5fc63f682743e15ac3c4f3f447a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0004-2836-7864 |
PQID | 3100538056 |
PQPubID | 326254 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3100538056 crossref_primary_10_1007_s11668_024_01972_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Materials Park |
PublicationPlace_xml | – name: Materials Park |
PublicationTitle | Journal of failure analysis and prevention |
PublicationYear | 2024 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | MS Hasan (1972_CR12) 2022; 165 P Mohammad-Reza (1972_CR4) 2022; 34 JG Gupta (1972_CR5) 2021; 486–487 W Hong (1972_CR2) 2018; 31 MS Rathore (1972_CR1) 2022; 2022 N Zhao (1972_CR8) 2022; 2022 J RodRigues (1972_CR6) 2020; 22 II Argatov (1972_CR7) 2019; 138 M Wang (1972_CR15) 2023; 75 H Sun (1972_CR11) 2024; 17 S Wang (1972_CR13) 2023; 12 Y Ma (1972_CR19) 2020; 42 Y Zhu (1972_CR20) 2022; 14 O Janssens (1972_CR16) 2016; 377 J Sun (1972_CR23) 2023; 75 JM Wakiru (1972_CR9) 2019; 18 PP More (1972_CR3) 2022; 74 Y Liu (1972_CR22) 2015; 35 Qi Zhang (1972_CR24) 2023; 23 C Lu (1972_CR18) 2017; 32 R Mohammad (1972_CR10) 2022; 203 F Zhang (1972_CR14) 2023; 16–3291 X Shen (1972_CR21) 2022; 13 J Deng (1972_CR17) 2020; 142–147 |
References_xml | – volume: 42 start-page: 1911 year: 2020 ident: 1972_CR19 publication-title: Syst. Eng. Electron. – volume: 35 start-page: 1370 year: 2015 ident: 1972_CR22 publication-title: Spectrosc. Spect. Anal. – volume: 165 start-page: 107326 year: 2022 ident: 1972_CR12 publication-title: Tribol. Int. doi: 10.1016/j.triboint.2021.107326 – volume: 34 start-page: 5465 year: 2022 ident: 1972_CR4 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06688-y – volume: 75 start-page: 36 issue: 1 year: 2023 ident: 1972_CR23 publication-title: Ind. Lubr. Tribol. doi: 10.1108/ILT-04-2022-0151 – volume: 2022 start-page: 1436144 year: 2022 ident: 1972_CR8 publication-title: Math. Probl. Eng. – volume: 75 start-page: 875 issue: 8 year: 2023 ident: 1972_CR15 publication-title: Ind Lubr Tribol doi: 10.1108/ILT-04-2023-0113 – volume: 203 start-page: 117494 year: 2022 ident: 1972_CR10 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117494 – volume: 14 start-page: 168781322211357 issue: 11 year: 2022 ident: 1972_CR20 publication-title: Adv. Mechan. Eng. doi: 10.1177/16878132221135745 – volume: 74 start-page: 274 issue: 2 year: 2022 ident: 1972_CR3 publication-title: Ind Lubr Tribol doi: 10.1108/ILT-11-2021-0438 – volume: 13 start-page: 485 year: 2022 ident: 1972_CR21 publication-title: Mech. Sci. doi: 10.5194/ms-13-485-2022 – volume: 138 start-page: 211 year: 2019 ident: 1972_CR7 publication-title: Tribol. Int. doi: 10.1016/j.triboint.2019.05.040 – volume: 31 start-page: 867 year: 2018 ident: 1972_CR2 publication-title: J. Chin. Aeronaut doi: 10.1016/j.cja.2017.11.016 – volume: 486–487 start-page: 204104 year: 2021 ident: 1972_CR5 publication-title: Wear doi: 10.1016/j.wear.2021.204104 – volume: 18 start-page: 108 year: 2019 ident: 1972_CR9 publication-title: Mechan. Syst. Signal Progr. doi: 10.1016/j.ymssp.2018.08.039 – volume: 12 start-page: 301 issue: 7 year: 2023 ident: 1972_CR13 publication-title: Actuators doi: 10.3390/act12070301 – volume: 16–3291 start-page: 1 year: 2023 ident: 1972_CR14 publication-title: Energies – volume: 2022 start-page: 1853 issue: 22 year: 2022 ident: 1972_CR1 publication-title: J. Fail. Anal. Preven. doi: 10.1007/s11668-022-01469-8 – volume: 23 start-page: 795 year: 2023 ident: 1972_CR24 publication-title: J Fail. Anal. Preven. doi: 10.1007/s11668-023-01616-9 – volume: 22 start-page: 440 issue: 3 year: 2020 ident: 1972_CR6 publication-title: Eksploatacja i Niezawodnosc doi: 10.17531/ein.2020.3.6 – volume: 17 start-page: 1 year: 2024 ident: 1972_CR11 publication-title: J. Fail. Anal. Preven. – volume: 142–147 start-page: 122 year: 2020 ident: 1972_CR17 publication-title: Mod. Manuf. Eng. – volume: 32 start-page: 139 year: 2017 ident: 1972_CR18 publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2017.02.005 – volume: 377 start-page: 331 year: 2016 ident: 1972_CR16 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.05.027 |
SSID | ssj0035125 |
Score | 2.309241 |
Snippet | Ball bearings play a pivotal role in rotating machinery, making it crucial to detect their wear condition in real time for preventive maintenance. This paper... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 1854 |
SubjectTerms | Artificial neural networks Back propagation networks Ball bearings Gas turbines Lubricating oils Network reliability Neural networks Preventive maintenance Rotating machinery |
Title | Intelligent Wear Condition Prediction of Ball Bearings Based on Convolutional Neural Networks and Lubricating Oil |
URI | https://www.proquest.com/docview/3100538056 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxFMsLMgHblFQGjtOctystiyr0uXQit4i23FWlVbpPhIO_BP-LTOx8yisEHBJG8dJLM8Xz9gz85mQ90wXgINZ6nPDjQ_zL-anWkhfKxWotEiEnmG-8-elOFvz8020mUx-jKKWmlp90N_vzSv5H6lCGcgVs2T_QbL9Q6EA_oN84QgShuNfyfhTz6dZe1-Rkedkhx5olOiXW_TAdOZghg7oDGq0m3RmoLkK9BJA9W-ugSAp5Olof9rAcMvdvGiU3UeouvQuXDTG76ZsKbdX1hHhGE4c-4CLpRwcT5V3vpV3234NoMHzq_78Y7PzNluJO3pdDjfZDIibTse6JYqQ9wFy-0uUGH-NjelTaOyIy2M_Dtyyh7FliUAyRcsz2Q3TNtXawZGPxlywOPhIf-PN9-qGwOVKz4SA5mErccs1Pxg0Yef9X17k8_Vika9ON6sH5CCEGUg4JQfH8yxbdmqegaUUtWS8rv0uI8vmZf76jn2rZ1_pt5bM6gl57ORGjy2enpKJqZ6RRyNiyufkZoQsisiiPbLogCy6Kykii3bIoi2yKFzZQxa1yKIdsijAg46QRQFZL8h6fro6OfPd5hy-DuOg9pNSweddFLHRJeeyCBVMbguWisRAj3DGEqlNVGrBSpGEUGBmkdRM85JB_Viyl2Ra7SrzilAzw5VIFpRxUMIzpZJlJFITwfiiuFLikHhd5-XXloMlH9i2satz6Oq87eo8OCRHXf_m7lu9y9GNBaodrP3Xf778hjwcEHxEpvVtY96C2Vmrdw4APwHPv4fE |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Wear+Condition+Prediction+of+Ball+Bearings+Based+on+Convolutional+Neural+Networks+and+Lubricating+Oil&rft.jtitle=Journal+of+failure+analysis+and+prevention&rft.au=Sun+Jiasi&rft.au=Bu+Jiali&rft.au=Guo+Xiaopeng&rft.au=Su+Changqing&rft.date=2024-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1547-7029&rft.eissn=1864-1245&rft.volume=24&rft.issue=4&rft.spage=1854&rft.epage=1864&rft_id=info:doi/10.1007%2Fs11668-024-01972-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-7029&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-7029&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-7029&client=summon |