Sequence submodular maximization meets streaming
In this paper, we study the problem of maximizing a sequence submodular function in the streaming setting, where the utility function is defined on sequences instead of sets of elements. We encode the sequence submodular maximization with a weighted digraph, in which the weight of a vertex reveals t...
Saved in:
Published in | Journal of combinatorial optimization Vol. 41; no. 1; pp. 43 - 55 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we study the problem of maximizing a sequence submodular function in the streaming setting, where the utility function is defined on sequences instead of sets of elements. We encode the sequence submodular maximization with a weighted digraph, in which the weight of a vertex reveals the utility value in selecting a single element and the weight of an edge reveals the additional profit with respect to a certain selection sequence. The edges are visited in a streaming fashion and the aim is to sieve a sequence of at most
k
elements from the stream, such that the utility is maximized. In this work, we present an edge-based threshold procedure, which makes one pass over the stream, attains an approximation ratio of
(
1
/
(
2
Δ
+
1
)
-
O
(
ϵ
)
)
, consumes
O
(
k
Δ
/
ϵ
)
memory source in total and
O
(
log
(
k
Δ
)
/
ϵ
)
update time per edge, where
Δ
is the minimum of the maximal outdegree and indegree of the directed graph. |
---|---|
AbstractList | In this paper, we study the problem of maximizing a sequence submodular function in the streaming setting, where the utility function is defined on sequences instead of sets of elements. We encode the sequence submodular maximization with a weighted digraph, in which the weight of a vertex reveals the utility value in selecting a single element and the weight of an edge reveals the additional profit with respect to a certain selection sequence. The edges are visited in a streaming fashion and the aim is to sieve a sequence of at most k elements from the stream, such that the utility is maximized. In this work, we present an edge-based threshold procedure, which makes one pass over the stream, attains an approximation ratio of (1/(2Δ+1)-O(ϵ)), consumes O(kΔ/ϵ) memory source in total and O(log(kΔ)/ϵ) update time per edge, where Δ is the minimum of the maximal outdegree and indegree of the directed graph. In this paper, we study the problem of maximizing a sequence submodular function in the streaming setting, where the utility function is defined on sequences instead of sets of elements. We encode the sequence submodular maximization with a weighted digraph, in which the weight of a vertex reveals the utility value in selecting a single element and the weight of an edge reveals the additional profit with respect to a certain selection sequence. The edges are visited in a streaming fashion and the aim is to sieve a sequence of at most k elements from the stream, such that the utility is maximized. In this work, we present an edge-based threshold procedure, which makes one pass over the stream, attains an approximation ratio of ( 1 / ( 2 Δ + 1 ) - O ( ϵ ) ) , consumes O ( k Δ / ϵ ) memory source in total and O ( log ( k Δ ) / ϵ ) update time per edge, where Δ is the minimum of the maximal outdegree and indegree of the directed graph. |
Author | Zhang, Dongmei Guo, Longkun Yang, Ruiqi Xu, Dachuan |
Author_xml | – sequence: 1 givenname: Ruiqi surname: Yang fullname: Yang, Ruiqi organization: Department of Operations Research and Information Engineering, Beijing University of Technology, School of Mathematical Sciences, University of Chinese Academy Sciences – sequence: 2 givenname: Dachuan surname: Xu fullname: Xu, Dachuan organization: Department of Operations Research and Information Engineering, Beijing University of Technology – sequence: 3 givenname: Longkun orcidid: 0000-0003-2891-4253 surname: Guo fullname: Guo, Longkun email: longkun.guo@gmail.com organization: Shandong Key Laboratory of Computer Networks, School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences) – sequence: 4 givenname: Dongmei surname: Zhang fullname: Zhang, Dongmei organization: School of Computer Science and Technology, Shandong Jianzhu University |
BookMark | eNp9kE9LxDAQxYOs4K76BTwVPEdnkjSdHmXxHyx4UM8hbdOlyzZdkxbUT2-0gjdP82DeezP8VmzhB-8Yu0C4QoDiOiJQQRwEcACtBc-P2BLzQnJBpBdJSxJcl5CfsFWMOwBIWi0ZPLu3yfnaZXGq-qGZ9jZkvX3v-u7Tjt3gs965MWZxDM72nd-esePW7qM7_52n7PXu9mX9wDdP94_rmw2vRQEjJwuqEBW1WpQgnbKITU3oSoeiEVXaaawpV3lVaIHoNChqG7KoULbUlvKUXc69hzCkD-NodsMUfDpphCIAUlLI5BKzqw5DjMG15hC63oYPg2C-yZiZjElkzA8Zk6eQnEMxmf3Whb_qf1Jfnmtmkw |
Cites_doi | 10.1016/0166-218X(84)90003-9 10.1145/2422436.2422466 10.1142/S0217595919500222 10.1137/1.9781611973730.80 10.1007/s10107-015-0900-7 10.1007/978-3-642-22006-7_29 10.1007/s40305-019-00244-1 10.1109/FOCS.2011.46 10.1145/2623330.2623637 10.1007/s11590-019-01430-z 10.1007/BF01588971 10.1016/S0167-6377(03)00062-2 10.1007/978-3-030-26176-4_51 10.1137/130929205 10.1007/s10898-019-00840-8 10.1137/080733991 10.1145/285055.285059 10.1109/FOCS.2012.55 10.1007/978-3-662-47672-7_26 10.1137/090779346 10.1137/090750020 10.1007/s40305-014-0053-z 10.1137/1.9781611973082.83 10.24963/ijcai.2018/379 10.1137/1.9781611975482.16 10.1137/1.9781611973730.76 10.1109/FOCS.2016.34 10.1007/s40305-018-0233-3 10.1007/s10878-014-9707-3 10.1007/978-3-642-17572-5_20 10.1007/978-3-030-36412-0_46 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10878-020-00662-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1573-2886 |
EndPage | 55 |
ExternalDocumentID | 10_1007_s10878_020_00662_5 |
GrantInformation_xml | – fundername: Natural Science Foundation of Fujian Province grantid: 2017J01753 funderid: http://dx.doi.org/10.13039/501100003392 – fundername: National Natural Science Foundation of China (CN) grantid: 11531014; 61772005 – fundername: National Natural Science Foundation of China grantid: 11871081 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9R PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c270t-8a0472b8f62903e4a11dc81e9e12d2b47261c8545b76211e6048fd8a1413f8f93 |
IEDL.DBID | U2A |
ISSN | 1382-6905 |
IngestDate | Fri Jul 25 11:18:26 EDT 2025 Tue Jul 01 03:13:04 EDT 2025 Fri Feb 21 02:48:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Streaming algorithm Sequence Submodular maximization Threshold |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-8a0472b8f62903e4a11dc81e9e12d2b47261c8545b76211e6048fd8a1413f8f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2891-4253 |
PQID | 2480084323 |
PQPubID | 2043856 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2480084323 crossref_primary_10_1007_s10878_020_00662_5 springer_journals_10_1007_s10878_020_00662_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210100 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 1 year: 2021 text: 20210100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Journal of combinatorial optimization |
PublicationTitleAbbrev | J Comb Optim |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Chekuri C, Gupta S, Quanrud K (2015) Streaming algorithms for submodular function maximization. In Proceedings of the 42nd International Colloquium on Automata, Languages and Programming, pp 318–330 CalinescuGChekuriCPalMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J Comput201140617401766286319310.1137/080733991 Mitrovic M, Kazemi E, Feldman M, Krause A, Karbasi A (2019) Adaptive sequence submodularity. ArXiv:1902.05981 WangYXuDJiangYZhangDMinimizing ratio of monotone non-submodular functionsJ Oper Res Soc China201973449459400811110.1007/s40305-019-00244-1 ConfortiMCornuéjolsGSubmodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theoremDiscrete Appl Math19847325127473689010.1016/0166-218X(84)90003-9 WuWZhangZDuDSet function optimizationJ Oper Res Soc China201972183193395703910.1007/s40305-018-0233-3 Gharan SO, Vondrák J (2011) Submodular maximization by simulated annealing. In Proceedings of the 22nd Annual ACM-SIAM symposium on discrete algorithms, pp 1098–1116 Gupta A, Roth A, Schoenebeck G, Talwar K (2010) Constrained non-monotone submodular maximization: offline and secretary algorithms. In Proceedings of the 6th international conference on internet and network economics, pp 246–257 Norouzi-Fard A, Tarnawski J, Mitrović S, Zandieh A, Mousavifar A, Svensson O (2018) Beyond 1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/2$$\end{document}-approximation for submodular maximization on massive data streams. In Proceedings of the 35th international conference on machine learning, pp 3826–3835 Tschiatschek S, Singla A, Krause A (2017) Selecting sequences of items via submodular maximization. In: Proceedings of the 31st AAAI conference on artificial intelligence, pp 2667–2673 Buchbinder N, Feldman M, Garg M (2019) Deterministic (1/2+ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1/2+\epsilon )$$\end{document}-approximation for submodular maximization over a matroid. In Proceedings of the 30th Annual ACM-SIAM symposium on discrete algorithms, pp 241–254 Haba R, Kazemi E, Feldman F, Karbasi A (2020) Streaming submodular maximization under a k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-set system constraint. ArXiv: 2002.03352 Badanidiyuru A, Mirzasoleiman B, Karbasi A, Krause A (2014) Streaming submodular maximization: Massive data summarization on the fly. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 671–680 Bogunovic I, Zhao J, Cevher V (2018) Robust maximization of non-submodular objectives. In Proceedings of the 21st international conference on artificial intelligence and statistics, pp 890–899 GolovinDKrauseAAdaptive submodularity: theory and applications in active learning and stochastic optimizationJ Artif Intell Res20114214274862874807 Yang R, Xu D, Guo L, Zhang D (2019) Sequence submodular maximization meets streaming. In: Proceedings of the 13th international conference on combinatorial optimization and applications, pp 565–575 Das A, Kempe D (2011) Submodular meets spectral: Greedy algorithms for subset selection, sparse approximation and dictionary selection. In Proceedings of the 28th international conference on machine learning, pp 1057–1064 JiangYWangYXuDYangRZhangYStreaming algorithm for maximizing a monotone non-submodular function under d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-knapsack constraintOptim Lett201910.1007/s11590-019-01430-z Feldman M, Karbasi A, Kazemi E (2018) Do less, get more: Streaming submodular maximization with subsampling. In Proceedings of the 32nd international conference on neural information processing systems, pp 730–740 Buchbinder N, Feldman M, Naor JS, Schwartz R (2014) Submodular maximization with cardinality constraints. In Proceedings of the 25th Annual ACM-SIAM symposium on discrete algorithms, pp 1433–1452 Huang CC, Kakimura N, Yoshida Y (2017) Streaming algorithms for maximizing monotone submodular functions under a knapsack constraint. In Proceedings of the 20th international workshop on approximation algorithms for combinatorial optimization problems and the 21st international workshop on randomization and computation No. 11, 11:1–11:14 Yang R, Xu D, Du D, Xu Y, Yan X (2019) Maximization of constrained non-submodular functions. In: Proceedings of the 25th international computing and combinatorics conference, pp 615–626 NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions-IMath Program197814126529450386610.1007/BF01588971 Bai W, Bilmes J (2018) Greed is still good: Maximizing monotone submodular +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document} supermodular(BP) functions. In Proceedings of the 35th international conference on machine learning, pp 314–323 SviridenkoMA note on maximizing a submodular set function subject to a knapsack constraintOper Res Lett20043214143201710710.1016/S0167-6377(03)00062-2 Ene A, Nguyen HL (2016) Constrained submodular maximization: Beyond 1/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/e$$\end{document}. In Proceedings of the 57th IEEE annual symposium on foundations of computer science, pp 248–257 WangYXuDWangYZhangDNon-submodular maximization on massive data streamsJ Glob Optim2020764729743407837610.1007/s10898-019-00840-8 YangRXuDJiangYWangYZhangDApproximating robust parameterized submodular function maximization in large-scalesAsia-Pac J Oper Res2019364671680399646910.1142/S0217595919500222 DuDLiYXiuNXuDSimultaneous approximation of multi-criteria submodular function maximizationJ Oper Res Soc China201423271290326193810.1007/s40305-014-0053-z LeeJMirrokniVSNagarajanVSviridenkoMMaximizing nonmonotone submodular functions under matroid or knapsack constraintsSIAM J Discrete Math201023420532078259497110.1137/090750020 Sviridenko M, Vondrák J, Ward J (2015) Optimal approximation for submodular and supermodular optimization with bounded curvature. In: Proceedings of the 26th Annual ACM-SIAM symposium on discrete algorithms, pp 1134–1148 Kazemi E, Mitrovic M, Zadimoghaddam M, Lattanzi S, Karbasi A (2019) Submodular streaming in all its glory: Tight approximation, minimum memory and low adaptive complexity. In Proceedings of the 36th international conference on machine learning, pp 3311–3320 BuchbinderNFeldmanMSeffiJSchwartzRA tight linear time (1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1/2)$$\end{document}-approximation for unconstrained submodular maximizationSIAM J Comput201544513841402341614010.1137/130929205 Feldman M, Naor J, Schwartz R (2011) A unified continuous greedy algorithm for submodular maximization. In Proceedings of the 52nd IEEE annual symposium on foundations of computer science, pp 570–579 Alaluf N, Feldman M (2019) Making a sieve random: Improved semi-streaming algorithm for submodular maximization under a cardinality constraint. ArXiv: 1906.11237 ChakrabartiAKaleSSubmodular maximization meets streaming: Matchings, matroids, and moreMath Program20151541–2225247342193410.1007/s10107-015-0900-7 FeigeUMirrokniVSVondrákJMaximizing non-monotone submodular functionsSIAM J Comput201140411331153282531210.1137/090779346 WangZMoranBWangXPanQApproximation for maximizing monotone non-decreasing set functions with a greedy methodJ Comb Optim20163112943344024410.1007/s10878-014-9707-3 Bian AA, Buhmann JM, Krause A, Tschiatschek S (2017) Guarantees for greedy maximization of non-submodular functions with applications. In Proceedings of the 34th international conference on machine learning, pp 498–507 Feige U, Izsak R (2013) Welfare maximization and the supermodular degree. In Proceedings of the 4th conference on innovations in theoretical computer science, pp 247-256 Mitrovic M, Feldman M, Krause A, Karbasi A (2018) Submodularity on hypergraphs: From sets to sequences. In Proceedings of the 21st international conference on artificial intelligence and statistics, pp 1177–1184 FeigeUA threshold of lnn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ln n$$\end{document} for approximating set coverJ ACM1998454634652167509510.1145/285055.285059 Elenberg ER, Dimakis AG, Feldman M, Karbasi A (2017) Streaming weak submodularity: Interpreting neural networks on the fly. In Proceedings of the 31st international conference on neural information processing systems, pp 4044–4054 Feldman M, Naor JS, Schwartz R (2011) Nonmonotone submodular maximization via a structural continuous greedy algorithm. In Proceedings of the 38th international colloquium on au 662_CR11 662_CR33 662_CR34 662_CR13 662_CR36 W Wu (662_CR43) 2019; 7 662_CR31 J Lee (662_CR32) 2010; 23 Y Wang (662_CR41) 2019; 7 A Chakrabarti (662_CR10) 2015; 154 662_CR27 U Feige (662_CR18) 1998; 45 662_CR28 662_CR29 662_CR22 Z Wang (662_CR40) 2016; 31 662_CR44 M Conforti (662_CR12) 1984; 7 662_CR23 662_CR45 662_CR24 G Calinescu (662_CR9) 2011; 40 662_CR25 662_CR21 M Sviridenko (662_CR37) 2004; 32 U Feige (662_CR20) 2011; 40 N Buchbinder (662_CR8) 2015; 44 Y Jiang (662_CR30) 2019 662_CR2 662_CR3 D Golovin (662_CR26) 2011; 42 Y Wang (662_CR42) 2020; 76 662_CR1 662_CR6 662_CR19 662_CR7 662_CR4 662_CR5 662_CR15 662_CR16 662_CR38 D Du (662_CR14) 2014; 2 662_CR17 GL Nemhauser (662_CR35) 1978; 14 662_CR39 R Yang (662_CR46) 2019; 36 |
References_xml | – reference: Bai W, Bilmes J (2018) Greed is still good: Maximizing monotone submodular +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document} supermodular(BP) functions. In Proceedings of the 35th international conference on machine learning, pp 314–323 – reference: Bogunovic I, Zhao J, Cevher V (2018) Robust maximization of non-submodular objectives. In Proceedings of the 21st international conference on artificial intelligence and statistics, pp 890–899 – reference: WuWZhangZDuDSet function optimizationJ Oper Res Soc China201972183193395703910.1007/s40305-018-0233-3 – reference: Yang R, Xu D, Du D, Xu Y, Yan X (2019) Maximization of constrained non-submodular functions. In: Proceedings of the 25th international computing and combinatorics conference, pp 615–626 – reference: Bian AA, Buhmann JM, Krause A, Tschiatschek S (2017) Guarantees for greedy maximization of non-submodular functions with applications. In Proceedings of the 34th international conference on machine learning, pp 498–507 – reference: ConfortiMCornuéjolsGSubmodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theoremDiscrete Appl Math19847325127473689010.1016/0166-218X(84)90003-9 – reference: Kazemi E, Mitrovic M, Zadimoghaddam M, Lattanzi S, Karbasi A (2019) Submodular streaming in all its glory: Tight approximation, minimum memory and low adaptive complexity. In Proceedings of the 36th international conference on machine learning, pp 3311–3320 – reference: Buchbinder N, Feldman M, Garg M (2019) Deterministic (1/2+ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1/2+\epsilon )$$\end{document}-approximation for submodular maximization over a matroid. In Proceedings of the 30th Annual ACM-SIAM symposium on discrete algorithms, pp 241–254 – reference: Buchbinder N, Feldman M, Naor JS, Schwartz R (2014) Submodular maximization with cardinality constraints. In Proceedings of the 25th Annual ACM-SIAM symposium on discrete algorithms, pp 1433–1452 – reference: Filmus Y, Ward J (2012) A tight combinatorial algorithm for submodular maximization subject to a matroid constraint. In Proceedings of the 53rd Annual IEEE symposium on foundations of computer science, pp 659–668 – reference: GolovinDKrauseAAdaptive submodularity: theory and applications in active learning and stochastic optimizationJ Artif Intell Res20114214274862874807 – reference: LeeJMirrokniVSNagarajanVSviridenkoMMaximizing nonmonotone submodular functions under matroid or knapsack constraintsSIAM J Discrete Math201023420532078259497110.1137/090750020 – reference: Tschiatschek S, Singla A, Krause A (2017) Selecting sequences of items via submodular maximization. In: Proceedings of the 31st AAAI conference on artificial intelligence, pp 2667–2673 – reference: Feldman M, Karbasi A, Kazemi E (2018) Do less, get more: Streaming submodular maximization with subsampling. In Proceedings of the 32nd international conference on neural information processing systems, pp 730–740 – reference: NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions-IMath Program197814126529450386610.1007/BF01588971 – reference: WangYXuDWangYZhangDNon-submodular maximization on massive data streamsJ Glob Optim2020764729743407837610.1007/s10898-019-00840-8 – reference: Feldman M, Naor JS, Schwartz R (2011) Nonmonotone submodular maximization via a structural continuous greedy algorithm. In Proceedings of the 38th international colloquium on automata, languages, and programming, pp 342–353 – reference: Mitrovic M, Feldman M, Krause A, Karbasi A (2018) Submodularity on hypergraphs: From sets to sequences. In Proceedings of the 21st international conference on artificial intelligence and statistics, pp 1177–1184 – reference: Das A, Kempe D (2011) Submodular meets spectral: Greedy algorithms for subset selection, sparse approximation and dictionary selection. In Proceedings of the 28th international conference on machine learning, pp 1057–1064 – reference: DuDLiYXiuNXuDSimultaneous approximation of multi-criteria submodular function maximizationJ Oper Res Soc China201423271290326193810.1007/s40305-014-0053-z – reference: Ene A, Nguyen HL, Suh A (2019) An optimal streaming algorithm for non-monotone submodular Maximization. ArXiv:1911.12959 – reference: Sviridenko M, Vondrák J, Ward J (2015) Optimal approximation for submodular and supermodular optimization with bounded curvature. In: Proceedings of the 26th Annual ACM-SIAM symposium on discrete algorithms, pp 1134–1148 – reference: WangYXuDJiangYZhangDMinimizing ratio of monotone non-submodular functionsJ Oper Res Soc China201973449459400811110.1007/s40305-019-00244-1 – reference: Gupta A, Roth A, Schoenebeck G, Talwar K (2010) Constrained non-monotone submodular maximization: offline and secretary algorithms. In Proceedings of the 6th international conference on internet and network economics, pp 246–257 – reference: WangZMoranBWangXPanQApproximation for maximizing monotone non-decreasing set functions with a greedy methodJ Comb Optim20163112943344024410.1007/s10878-014-9707-3 – reference: FeigeUA threshold of lnn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ln n$$\end{document} for approximating set coverJ ACM1998454634652167509510.1145/285055.285059 – reference: Haba R, Kazemi E, Feldman F, Karbasi A (2020) Streaming submodular maximization under a k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-set system constraint. ArXiv: 2002.03352 – reference: CalinescuGChekuriCPalMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J Comput201140617401766286319310.1137/080733991 – reference: FeigeUMirrokniVSVondrákJMaximizing non-monotone submodular functionsSIAM J Comput201140411331153282531210.1137/090779346 – reference: Badanidiyuru A, Mirzasoleiman B, Karbasi A, Krause A (2014) Streaming submodular maximization: Massive data summarization on the fly. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 671–680 – reference: Chekuri C, Gupta S, Quanrud K (2015) Streaming algorithms for submodular function maximization. In Proceedings of the 42nd International Colloquium on Automata, Languages and Programming, pp 318–330 – reference: Feldman M, Naor J, Schwartz R (2011) A unified continuous greedy algorithm for submodular maximization. In Proceedings of the 52nd IEEE annual symposium on foundations of computer science, pp 570–579 – reference: Gharan SO, Vondrák J (2011) Submodular maximization by simulated annealing. In Proceedings of the 22nd Annual ACM-SIAM symposium on discrete algorithms, pp 1098–1116 – reference: Alaluf N, Feldman M (2019) Making a sieve random: Improved semi-streaming algorithm for submodular maximization under a cardinality constraint. ArXiv: 1906.11237 – reference: BuchbinderNFeldmanMSeffiJSchwartzRA tight linear time (1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1/2)$$\end{document}-approximation for unconstrained submodular maximizationSIAM J Comput201544513841402341614010.1137/130929205 – reference: Elenberg ER, Dimakis AG, Feldman M, Karbasi A (2017) Streaming weak submodularity: Interpreting neural networks on the fly. In Proceedings of the 31st international conference on neural information processing systems, pp 4044–4054 – reference: Huang CC, Kakimura N, Yoshida Y (2017) Streaming algorithms for maximizing monotone submodular functions under a knapsack constraint. In Proceedings of the 20th international workshop on approximation algorithms for combinatorial optimization problems and the 21st international workshop on randomization and computation No. 11, 11:1–11:14 – reference: Ene A, Nguyen HL (2016) Constrained submodular maximization: Beyond 1/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/e$$\end{document}. In Proceedings of the 57th IEEE annual symposium on foundations of computer science, pp 248–257 – reference: Feige U, Izsak R (2013) Welfare maximization and the supermodular degree. In Proceedings of the 4th conference on innovations in theoretical computer science, pp 247-256 – reference: ChakrabartiAKaleSSubmodular maximization meets streaming: Matchings, matroids, and moreMath Program20151541–2225247342193410.1007/s10107-015-0900-7 – reference: Norouzi-Fard A, Tarnawski J, Mitrović S, Zandieh A, Mousavifar A, Svensson O (2018) Beyond 1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/2$$\end{document}-approximation for submodular maximization on massive data streams. In Proceedings of the 35th international conference on machine learning, pp 3826–3835 – reference: SviridenkoMA note on maximizing a submodular set function subject to a knapsack constraintOper Res Lett20043214143201710710.1016/S0167-6377(03)00062-2 – reference: Mitrovic M, Kazemi E, Feldman M, Krause A, Karbasi A (2019) Adaptive sequence submodularity. ArXiv:1902.05981 – reference: JiangYWangYXuDYangRZhangYStreaming algorithm for maximizing a monotone non-submodular function under d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-knapsack constraintOptim Lett201910.1007/s11590-019-01430-z – reference: Yang R, Xu D, Guo L, Zhang D (2019) Sequence submodular maximization meets streaming. In: Proceedings of the 13th international conference on combinatorial optimization and applications, pp 565–575 – reference: YangRXuDJiangYWangYZhangDApproximating robust parameterized submodular function maximization in large-scalesAsia-Pac J Oper Res2019364671680399646910.1142/S0217595919500222 – volume: 7 start-page: 251 issue: 3 year: 1984 ident: 662_CR12 publication-title: Discrete Appl Math doi: 10.1016/0166-218X(84)90003-9 – ident: 662_CR15 – ident: 662_CR19 doi: 10.1145/2422436.2422466 – ident: 662_CR13 – ident: 662_CR36 – volume: 36 start-page: 671 issue: 4 year: 2019 ident: 662_CR46 publication-title: Asia-Pac J Oper Res doi: 10.1142/S0217595919500222 – ident: 662_CR17 – ident: 662_CR7 doi: 10.1137/1.9781611973730.80 – volume: 154 start-page: 225 issue: 1–2 year: 2015 ident: 662_CR10 publication-title: Math Program doi: 10.1007/s10107-015-0900-7 – ident: 662_CR21 – ident: 662_CR23 doi: 10.1007/978-3-642-22006-7_29 – volume: 7 start-page: 449 issue: 3 year: 2019 ident: 662_CR41 publication-title: J Oper Res Soc China doi: 10.1007/s40305-019-00244-1 – ident: 662_CR22 doi: 10.1109/FOCS.2011.46 – ident: 662_CR5 – ident: 662_CR3 – ident: 662_CR2 doi: 10.1145/2623330.2623637 – year: 2019 ident: 662_CR30 publication-title: Optim Lett doi: 10.1007/s11590-019-01430-z – ident: 662_CR29 – volume: 14 start-page: 265 issue: 1 year: 1978 ident: 662_CR35 publication-title: Math Program doi: 10.1007/BF01588971 – volume: 32 start-page: 41 issue: 1 year: 2004 ident: 662_CR37 publication-title: Oper Res Lett doi: 10.1016/S0167-6377(03)00062-2 – ident: 662_CR34 – ident: 662_CR44 doi: 10.1007/978-3-030-26176-4_51 – volume: 44 start-page: 1384 issue: 5 year: 2015 ident: 662_CR8 publication-title: SIAM J Comput doi: 10.1137/130929205 – volume: 76 start-page: 729 issue: 4 year: 2020 ident: 662_CR42 publication-title: J Glob Optim doi: 10.1007/s10898-019-00840-8 – volume: 40 start-page: 1740 issue: 6 year: 2011 ident: 662_CR9 publication-title: SIAM J Comput doi: 10.1137/080733991 – volume: 45 start-page: 634 issue: 4 year: 1998 ident: 662_CR18 publication-title: J ACM doi: 10.1145/285055.285059 – ident: 662_CR24 doi: 10.1109/FOCS.2012.55 – volume: 42 start-page: 427 issue: 1 year: 2011 ident: 662_CR26 publication-title: J Artif Intell Res – ident: 662_CR11 doi: 10.1007/978-3-662-47672-7_26 – volume: 40 start-page: 1133 issue: 4 year: 2011 ident: 662_CR20 publication-title: SIAM J Comput doi: 10.1137/090779346 – volume: 23 start-page: 2053 issue: 4 year: 2010 ident: 662_CR32 publication-title: SIAM J Discrete Math doi: 10.1137/090750020 – ident: 662_CR1 – ident: 662_CR4 – ident: 662_CR31 – volume: 2 start-page: 271 issue: 3 year: 2014 ident: 662_CR14 publication-title: J Oper Res Soc China doi: 10.1007/s40305-014-0053-z – ident: 662_CR25 doi: 10.1137/1.9781611973082.83 – ident: 662_CR39 doi: 10.24963/ijcai.2018/379 – ident: 662_CR6 doi: 10.1137/1.9781611975482.16 – ident: 662_CR28 – ident: 662_CR38 doi: 10.1137/1.9781611973730.76 – ident: 662_CR33 – ident: 662_CR16 doi: 10.1109/FOCS.2016.34 – volume: 7 start-page: 183 issue: 2 year: 2019 ident: 662_CR43 publication-title: J Oper Res Soc China doi: 10.1007/s40305-018-0233-3 – volume: 31 start-page: 29 issue: 1 year: 2016 ident: 662_CR40 publication-title: J Comb Optim doi: 10.1007/s10878-014-9707-3 – ident: 662_CR27 doi: 10.1007/978-3-642-17572-5_20 – ident: 662_CR45 doi: 10.1007/978-3-030-36412-0_46 |
SSID | ssj0009054 |
Score | 2.2157273 |
Snippet | In this paper, we study the problem of maximizing a sequence submodular function in the streaming setting, where the utility function is defined on sequences... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 43 |
SubjectTerms | Combinatorics Convex and Discrete Geometry Graph theory Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Maximization Operations Research/Decision Theory Optimization Sequences Theory of Computation Weight |
Title | Sequence submodular maximization meets streaming |
URI | https://link.springer.com/article/10.1007/s10878-020-00662-5 https://www.proquest.com/docview/2480084323 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8CA-BSBUmVgg0ix4zjOWKGWClQWqFSmyF-RGNIiEiR-Puc0IQXBwBLJsnXDxfa9s-89A1wawXNrcX0zqyV-Yh2kTJFAac0jZpiW9WHO7IFP5-xuES8aUljZVru3V5L1Tr1BdhNODZY6JjTnmEJtQz92uTvO4jkddVK7Ybx-yhaxI-Z-cUOV-d3G93DUYcwf16J1tJnsw14DE_3R-r8ewJZdHsLuhnggtmZfiqvlEYSPTU20X2KEWxlXXeoX8uOlaIiWfmFtVfqOGyILNHAM88n46WYaNK8hBJomYRUI6YQdlcg5TcPIMkmI0YLY1BJqqMI-TrRAQKRwfyPEclybuRGSYJjKRZ5GJ9Bbrpb2FPwoVSJlJk1wFFPMKBIqRBomT6TSMmEeXLVOyV7XohdZJ2_sXJihC7PahVnswaD1W9YsgDKjTDip_ohGHly3vuy6_7Z29r_h57BDXZVJfSgygF719m4vECZUagj90e3z_XhYz45PicGz5g |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYAB8SkKBTKwQaTYcRJnrBBVgbYLrdTN8lckhrSIBImfzzlNSEEwsESKbN3wEvue7XvPANeGx5m1OL6Z1RIfkfZTpoivtI5DZpiW1WbOeBIPZ-xxHs1rUVjRVLs3R5LVTL0mduPODZY6JXQc4xJqE7aQDHBXyDWj_dZqN4hWV9kid8S1X1RLZX6P8T0dtRzzx7FolW0G-7BX00Svv_quB7BhF4ewu2YeiG_jL8fV4giC57om2iswwy2Nqy71cvnxktdCSy-3tiw8pw2ROQY4htngfno39OvbEHxNk6D0uXTGjopnMU2D0DJJiNGc2NQSaqjCtphojoRI4fxGiI1xbGaGS4JpKuNZGp5AZ7Fc2FPwwlTxlJk0wV5MMaNIoJBpmCyRSsuEdeGmAUW8rkwvRGtv7CAUCKGoIBRRF3oNbqIeAIWgjDur_pCGXbhtsGyb_4529r_uV7A9nI5HYvQweTqHHeoqTqoNkh50yrd3e4GUoVSX1R_yCYFYtUU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66guhBfOLqqj1402KTpml6XNRlfewi6MLeQl4FD9tdbAV_vpM-7Cp68FIICXP4mslMkvm-IHRuOEutBf-mVkv4RNpPqMK-0pqF1FAty8Oc0ZgNJ_R-Gk2XWPxltXtzJVlxGpxKU1ZcLUx6tUR8404ZljhWNGOwnVpFa7AcYzevJ6Tfyu4GUfWsLeSRsA-MatrM7za-h6Y23_xxRVpGnsE22qpTRq9f_eMdtGKzXbS5JCQIrdGX-mq-h4Lnuj7ayyHazY2rNPVm8uN1VpMuvZm1Re45noicgYF9NBncvlwP_fplBF-TOCh8Lp3Io-IpI0kQWioxNppjm1hMDFHQx7DmkBwpWOswtgz8NDVcYsAo5WkSHqBONs_sIfLCRPGEmiSGUVRRo3CgIOswaSyVljHtoosGFLGoBDBEK3XsIBQAoSghFFEX9RrcRO0MuSCUO9n-kIRddNlg2Xb_be3of8PP0PrTzUA83o0fjtEGccUn5VlJD3WKt3d7AtlDoU7LCfIJfa65gQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequence+submodular+maximization+meets+streaming&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Yang%2C+Ruiqi&rft.au=Xu+Dachuan&rft.au=Guo+Longkun&rft.au=Zhang%2C+Dongmei&rft.date=2021-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=41&rft.issue=1&rft.spage=43&rft.epage=55&rft_id=info:doi/10.1007%2Fs10878-020-00662-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon |