Sequence submodular maximization meets streaming

In this paper, we study the problem of maximizing a sequence submodular function in the streaming setting, where the utility function is defined on sequences instead of sets of elements. We encode the sequence submodular maximization with a weighted digraph, in which the weight of a vertex reveals t...

Full description

Saved in:
Bibliographic Details
Published inJournal of combinatorial optimization Vol. 41; no. 1; pp. 43 - 55
Main Authors Yang, Ruiqi, Xu, Dachuan, Guo, Longkun, Zhang, Dongmei
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we study the problem of maximizing a sequence submodular function in the streaming setting, where the utility function is defined on sequences instead of sets of elements. We encode the sequence submodular maximization with a weighted digraph, in which the weight of a vertex reveals the utility value in selecting a single element and the weight of an edge reveals the additional profit with respect to a certain selection sequence. The edges are visited in a streaming fashion and the aim is to sieve a sequence of at most k elements from the stream, such that the utility is maximized. In this work, we present an edge-based threshold procedure, which makes one pass over the stream, attains an approximation ratio of ( 1 / ( 2 Δ + 1 ) - O ( ϵ ) ) , consumes O ( k Δ / ϵ ) memory source in total and O ( log ( k Δ ) / ϵ ) update time per edge, where Δ is the minimum of the maximal outdegree and indegree of the directed graph.
AbstractList In this paper, we study the problem of maximizing a sequence submodular function in the streaming setting, where the utility function is defined on sequences instead of sets of elements. We encode the sequence submodular maximization with a weighted digraph, in which the weight of a vertex reveals the utility value in selecting a single element and the weight of an edge reveals the additional profit with respect to a certain selection sequence. The edges are visited in a streaming fashion and the aim is to sieve a sequence of at most k elements from the stream, such that the utility is maximized. In this work, we present an edge-based threshold procedure, which makes one pass over the stream, attains an approximation ratio of (1/(2Δ+1)-O(ϵ)), consumes O(kΔ/ϵ) memory source in total and O(log(kΔ)/ϵ) update time per edge, where Δ is the minimum of the maximal outdegree and indegree of the directed graph.
In this paper, we study the problem of maximizing a sequence submodular function in the streaming setting, where the utility function is defined on sequences instead of sets of elements. We encode the sequence submodular maximization with a weighted digraph, in which the weight of a vertex reveals the utility value in selecting a single element and the weight of an edge reveals the additional profit with respect to a certain selection sequence. The edges are visited in a streaming fashion and the aim is to sieve a sequence of at most k elements from the stream, such that the utility is maximized. In this work, we present an edge-based threshold procedure, which makes one pass over the stream, attains an approximation ratio of ( 1 / ( 2 Δ + 1 ) - O ( ϵ ) ) , consumes O ( k Δ / ϵ ) memory source in total and O ( log ( k Δ ) / ϵ ) update time per edge, where Δ is the minimum of the maximal outdegree and indegree of the directed graph.
Author Zhang, Dongmei
Guo, Longkun
Yang, Ruiqi
Xu, Dachuan
Author_xml – sequence: 1
  givenname: Ruiqi
  surname: Yang
  fullname: Yang, Ruiqi
  organization: Department of Operations Research and Information Engineering, Beijing University of Technology, School of Mathematical Sciences, University of Chinese Academy Sciences
– sequence: 2
  givenname: Dachuan
  surname: Xu
  fullname: Xu, Dachuan
  organization: Department of Operations Research and Information Engineering, Beijing University of Technology
– sequence: 3
  givenname: Longkun
  orcidid: 0000-0003-2891-4253
  surname: Guo
  fullname: Guo, Longkun
  email: longkun.guo@gmail.com
  organization: Shandong Key Laboratory of Computer Networks, School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences)
– sequence: 4
  givenname: Dongmei
  surname: Zhang
  fullname: Zhang, Dongmei
  organization: School of Computer Science and Technology, Shandong Jianzhu University
BookMark eNp9kE9LxDAQxYOs4K76BTwVPEdnkjSdHmXxHyx4UM8hbdOlyzZdkxbUT2-0gjdP82DeezP8VmzhB-8Yu0C4QoDiOiJQQRwEcACtBc-P2BLzQnJBpBdJSxJcl5CfsFWMOwBIWi0ZPLu3yfnaZXGq-qGZ9jZkvX3v-u7Tjt3gs965MWZxDM72nd-esePW7qM7_52n7PXu9mX9wDdP94_rmw2vRQEjJwuqEBW1WpQgnbKITU3oSoeiEVXaaawpV3lVaIHoNChqG7KoULbUlvKUXc69hzCkD-NodsMUfDpphCIAUlLI5BKzqw5DjMG15hC63oYPg2C-yZiZjElkzA8Zk6eQnEMxmf3Whb_qf1Jfnmtmkw
Cites_doi 10.1016/0166-218X(84)90003-9
10.1145/2422436.2422466
10.1142/S0217595919500222
10.1137/1.9781611973730.80
10.1007/s10107-015-0900-7
10.1007/978-3-642-22006-7_29
10.1007/s40305-019-00244-1
10.1109/FOCS.2011.46
10.1145/2623330.2623637
10.1007/s11590-019-01430-z
10.1007/BF01588971
10.1016/S0167-6377(03)00062-2
10.1007/978-3-030-26176-4_51
10.1137/130929205
10.1007/s10898-019-00840-8
10.1137/080733991
10.1145/285055.285059
10.1109/FOCS.2012.55
10.1007/978-3-662-47672-7_26
10.1137/090779346
10.1137/090750020
10.1007/s40305-014-0053-z
10.1137/1.9781611973082.83
10.24963/ijcai.2018/379
10.1137/1.9781611975482.16
10.1137/1.9781611973730.76
10.1109/FOCS.2016.34
10.1007/s40305-018-0233-3
10.1007/s10878-014-9707-3
10.1007/978-3-642-17572-5_20
10.1007/978-3-030-36412-0_46
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s10878-020-00662-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
EndPage 55
ExternalDocumentID 10_1007_s10878_020_00662_5
GrantInformation_xml – fundername: Natural Science Foundation of Fujian Province
  grantid: 2017J01753
  funderid: http://dx.doi.org/10.13039/501100003392
– fundername: National Natural Science Foundation of China (CN)
  grantid: 11531014; 61772005
– fundername: National Natural Science Foundation of China
  grantid: 11871081
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-8a0472b8f62903e4a11dc81e9e12d2b47261c8545b76211e6048fd8a1413f8f93
IEDL.DBID U2A
ISSN 1382-6905
IngestDate Fri Jul 25 11:18:26 EDT 2025
Tue Jul 01 03:13:04 EDT 2025
Fri Feb 21 02:48:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Streaming algorithm
Sequence
Submodular maximization
Threshold
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-8a0472b8f62903e4a11dc81e9e12d2b47261c8545b76211e6048fd8a1413f8f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2891-4253
PQID 2480084323
PQPubID 2043856
PageCount 13
ParticipantIDs proquest_journals_2480084323
crossref_primary_10_1007_s10878_020_00662_5
springer_journals_10_1007_s10878_020_00662_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210100
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 1
  year: 2021
  text: 20210100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Chekuri C, Gupta S, Quanrud K (2015) Streaming algorithms for submodular function maximization. In Proceedings of the 42nd International Colloquium on Automata, Languages and Programming, pp 318–330
CalinescuGChekuriCPalMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J Comput201140617401766286319310.1137/080733991
Mitrovic M, Kazemi E, Feldman M, Krause A, Karbasi A (2019) Adaptive sequence submodularity. ArXiv:1902.05981
WangYXuDJiangYZhangDMinimizing ratio of monotone non-submodular functionsJ Oper Res Soc China201973449459400811110.1007/s40305-019-00244-1
ConfortiMCornuéjolsGSubmodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theoremDiscrete Appl Math19847325127473689010.1016/0166-218X(84)90003-9
WuWZhangZDuDSet function optimizationJ Oper Res Soc China201972183193395703910.1007/s40305-018-0233-3
Gharan SO, Vondrák J (2011) Submodular maximization by simulated annealing. In Proceedings of the 22nd Annual ACM-SIAM symposium on discrete algorithms, pp 1098–1116
Gupta A, Roth A, Schoenebeck G, Talwar K (2010) Constrained non-monotone submodular maximization: offline and secretary algorithms. In Proceedings of the 6th international conference on internet and network economics, pp 246–257
Norouzi-Fard A, Tarnawski J, Mitrović S, Zandieh A, Mousavifar A, Svensson O (2018) Beyond 1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/2$$\end{document}-approximation for submodular maximization on massive data streams. In Proceedings of the 35th international conference on machine learning, pp 3826–3835
Tschiatschek S, Singla A, Krause A (2017) Selecting sequences of items via submodular maximization. In: Proceedings of the 31st AAAI conference on artificial intelligence, pp 2667–2673
Buchbinder N, Feldman M, Garg M (2019) Deterministic (1/2+ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1/2+\epsilon )$$\end{document}-approximation for submodular maximization over a matroid. In Proceedings of the 30th Annual ACM-SIAM symposium on discrete algorithms, pp 241–254
Haba R, Kazemi E, Feldman F, Karbasi A (2020) Streaming submodular maximization under a k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-set system constraint. ArXiv: 2002.03352
Badanidiyuru A, Mirzasoleiman B, Karbasi A, Krause A (2014) Streaming submodular maximization: Massive data summarization on the fly. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 671–680
Bogunovic I, Zhao J, Cevher V (2018) Robust maximization of non-submodular objectives. In Proceedings of the 21st international conference on artificial intelligence and statistics, pp 890–899
GolovinDKrauseAAdaptive submodularity: theory and applications in active learning and stochastic optimizationJ Artif Intell Res20114214274862874807
Yang R, Xu D, Guo L, Zhang D (2019) Sequence submodular maximization meets streaming. In: Proceedings of the 13th international conference on combinatorial optimization and applications, pp 565–575
Das A, Kempe D (2011) Submodular meets spectral: Greedy algorithms for subset selection, sparse approximation and dictionary selection. In Proceedings of the 28th international conference on machine learning, pp 1057–1064
JiangYWangYXuDYangRZhangYStreaming algorithm for maximizing a monotone non-submodular function under d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-knapsack constraintOptim Lett201910.1007/s11590-019-01430-z
Feldman M, Karbasi A, Kazemi E (2018) Do less, get more: Streaming submodular maximization with subsampling. In Proceedings of the 32nd international conference on neural information processing systems, pp 730–740
Buchbinder N, Feldman M, Naor JS, Schwartz R (2014) Submodular maximization with cardinality constraints. In Proceedings of the 25th Annual ACM-SIAM symposium on discrete algorithms, pp 1433–1452
Huang CC, Kakimura N, Yoshida Y (2017) Streaming algorithms for maximizing monotone submodular functions under a knapsack constraint. In Proceedings of the 20th international workshop on approximation algorithms for combinatorial optimization problems and the 21st international workshop on randomization and computation No. 11, 11:1–11:14
Yang R, Xu D, Du D, Xu Y, Yan X (2019) Maximization of constrained non-submodular functions. In: Proceedings of the 25th international computing and combinatorics conference, pp 615–626
NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions-IMath Program197814126529450386610.1007/BF01588971
Bai W, Bilmes J (2018) Greed is still good: Maximizing monotone submodular +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document} supermodular(BP) functions. In Proceedings of the 35th international conference on machine learning, pp 314–323
SviridenkoMA note on maximizing a submodular set function subject to a knapsack constraintOper Res Lett20043214143201710710.1016/S0167-6377(03)00062-2
Ene A, Nguyen HL (2016) Constrained submodular maximization: Beyond 1/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/e$$\end{document}. In Proceedings of the 57th IEEE annual symposium on foundations of computer science, pp 248–257
WangYXuDWangYZhangDNon-submodular maximization on massive data streamsJ Glob Optim2020764729743407837610.1007/s10898-019-00840-8
YangRXuDJiangYWangYZhangDApproximating robust parameterized submodular function maximization in large-scalesAsia-Pac J Oper Res2019364671680399646910.1142/S0217595919500222
DuDLiYXiuNXuDSimultaneous approximation of multi-criteria submodular function maximizationJ Oper Res Soc China201423271290326193810.1007/s40305-014-0053-z
LeeJMirrokniVSNagarajanVSviridenkoMMaximizing nonmonotone submodular functions under matroid or knapsack constraintsSIAM J Discrete Math201023420532078259497110.1137/090750020
Sviridenko M, Vondrák J, Ward J (2015) Optimal approximation for submodular and supermodular optimization with bounded curvature. In: Proceedings of the 26th Annual ACM-SIAM symposium on discrete algorithms, pp 1134–1148
Kazemi E, Mitrovic M, Zadimoghaddam M, Lattanzi S, Karbasi A (2019) Submodular streaming in all its glory: Tight approximation, minimum memory and low adaptive complexity. In Proceedings of the 36th international conference on machine learning, pp 3311–3320
BuchbinderNFeldmanMSeffiJSchwartzRA tight linear time (1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1/2)$$\end{document}-approximation for unconstrained submodular maximizationSIAM J Comput201544513841402341614010.1137/130929205
Feldman M, Naor J, Schwartz R (2011) A unified continuous greedy algorithm for submodular maximization. In Proceedings of the 52nd IEEE annual symposium on foundations of computer science, pp 570–579
Alaluf N, Feldman M (2019) Making a sieve random: Improved semi-streaming algorithm for submodular maximization under a cardinality constraint. ArXiv: 1906.11237
ChakrabartiAKaleSSubmodular maximization meets streaming: Matchings, matroids, and moreMath Program20151541–2225247342193410.1007/s10107-015-0900-7
FeigeUMirrokniVSVondrákJMaximizing non-monotone submodular functionsSIAM J Comput201140411331153282531210.1137/090779346
WangZMoranBWangXPanQApproximation for maximizing monotone non-decreasing set functions with a greedy methodJ Comb Optim20163112943344024410.1007/s10878-014-9707-3
Bian AA, Buhmann JM, Krause A, Tschiatschek S (2017) Guarantees for greedy maximization of non-submodular functions with applications. In Proceedings of the 34th international conference on machine learning, pp 498–507
Feige U, Izsak R (2013) Welfare maximization and the supermodular degree. In Proceedings of the 4th conference on innovations in theoretical computer science, pp 247-256
Mitrovic M, Feldman M, Krause A, Karbasi A (2018) Submodularity on hypergraphs: From sets to sequences. In Proceedings of the 21st international conference on artificial intelligence and statistics, pp 1177–1184
FeigeUA threshold of lnn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ln n$$\end{document} for approximating set coverJ ACM1998454634652167509510.1145/285055.285059
Elenberg ER, Dimakis AG, Feldman M, Karbasi A (2017) Streaming weak submodularity: Interpreting neural networks on the fly. In Proceedings of the 31st international conference on neural information processing systems, pp 4044–4054
Feldman M, Naor JS, Schwartz R (2011) Nonmonotone submodular maximization via a structural continuous greedy algorithm. In Proceedings of the 38th international colloquium on au
662_CR11
662_CR33
662_CR34
662_CR13
662_CR36
W Wu (662_CR43) 2019; 7
662_CR31
J Lee (662_CR32) 2010; 23
Y Wang (662_CR41) 2019; 7
A Chakrabarti (662_CR10) 2015; 154
662_CR27
U Feige (662_CR18) 1998; 45
662_CR28
662_CR29
662_CR22
Z Wang (662_CR40) 2016; 31
662_CR44
M Conforti (662_CR12) 1984; 7
662_CR23
662_CR45
662_CR24
G Calinescu (662_CR9) 2011; 40
662_CR25
662_CR21
M Sviridenko (662_CR37) 2004; 32
U Feige (662_CR20) 2011; 40
N Buchbinder (662_CR8) 2015; 44
Y Jiang (662_CR30) 2019
662_CR2
662_CR3
D Golovin (662_CR26) 2011; 42
Y Wang (662_CR42) 2020; 76
662_CR1
662_CR6
662_CR19
662_CR7
662_CR4
662_CR5
662_CR15
662_CR16
662_CR38
D Du (662_CR14) 2014; 2
662_CR17
GL Nemhauser (662_CR35) 1978; 14
662_CR39
R Yang (662_CR46) 2019; 36
References_xml – reference: Bai W, Bilmes J (2018) Greed is still good: Maximizing monotone submodular +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document} supermodular(BP) functions. In Proceedings of the 35th international conference on machine learning, pp 314–323
– reference: Bogunovic I, Zhao J, Cevher V (2018) Robust maximization of non-submodular objectives. In Proceedings of the 21st international conference on artificial intelligence and statistics, pp 890–899
– reference: WuWZhangZDuDSet function optimizationJ Oper Res Soc China201972183193395703910.1007/s40305-018-0233-3
– reference: Yang R, Xu D, Du D, Xu Y, Yan X (2019) Maximization of constrained non-submodular functions. In: Proceedings of the 25th international computing and combinatorics conference, pp 615–626
– reference: Bian AA, Buhmann JM, Krause A, Tschiatschek S (2017) Guarantees for greedy maximization of non-submodular functions with applications. In Proceedings of the 34th international conference on machine learning, pp 498–507
– reference: ConfortiMCornuéjolsGSubmodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theoremDiscrete Appl Math19847325127473689010.1016/0166-218X(84)90003-9
– reference: Kazemi E, Mitrovic M, Zadimoghaddam M, Lattanzi S, Karbasi A (2019) Submodular streaming in all its glory: Tight approximation, minimum memory and low adaptive complexity. In Proceedings of the 36th international conference on machine learning, pp 3311–3320
– reference: Buchbinder N, Feldman M, Garg M (2019) Deterministic (1/2+ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1/2+\epsilon )$$\end{document}-approximation for submodular maximization over a matroid. In Proceedings of the 30th Annual ACM-SIAM symposium on discrete algorithms, pp 241–254
– reference: Buchbinder N, Feldman M, Naor JS, Schwartz R (2014) Submodular maximization with cardinality constraints. In Proceedings of the 25th Annual ACM-SIAM symposium on discrete algorithms, pp 1433–1452
– reference: Filmus Y, Ward J (2012) A tight combinatorial algorithm for submodular maximization subject to a matroid constraint. In Proceedings of the 53rd Annual IEEE symposium on foundations of computer science, pp 659–668
– reference: GolovinDKrauseAAdaptive submodularity: theory and applications in active learning and stochastic optimizationJ Artif Intell Res20114214274862874807
– reference: LeeJMirrokniVSNagarajanVSviridenkoMMaximizing nonmonotone submodular functions under matroid or knapsack constraintsSIAM J Discrete Math201023420532078259497110.1137/090750020
– reference: Tschiatschek S, Singla A, Krause A (2017) Selecting sequences of items via submodular maximization. In: Proceedings of the 31st AAAI conference on artificial intelligence, pp 2667–2673
– reference: Feldman M, Karbasi A, Kazemi E (2018) Do less, get more: Streaming submodular maximization with subsampling. In Proceedings of the 32nd international conference on neural information processing systems, pp 730–740
– reference: NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions-IMath Program197814126529450386610.1007/BF01588971
– reference: WangYXuDWangYZhangDNon-submodular maximization on massive data streamsJ Glob Optim2020764729743407837610.1007/s10898-019-00840-8
– reference: Feldman M, Naor JS, Schwartz R (2011) Nonmonotone submodular maximization via a structural continuous greedy algorithm. In Proceedings of the 38th international colloquium on automata, languages, and programming, pp 342–353
– reference: Mitrovic M, Feldman M, Krause A, Karbasi A (2018) Submodularity on hypergraphs: From sets to sequences. In Proceedings of the 21st international conference on artificial intelligence and statistics, pp 1177–1184
– reference: Das A, Kempe D (2011) Submodular meets spectral: Greedy algorithms for subset selection, sparse approximation and dictionary selection. In Proceedings of the 28th international conference on machine learning, pp 1057–1064
– reference: DuDLiYXiuNXuDSimultaneous approximation of multi-criteria submodular function maximizationJ Oper Res Soc China201423271290326193810.1007/s40305-014-0053-z
– reference: Ene A, Nguyen HL, Suh A (2019) An optimal streaming algorithm for non-monotone submodular Maximization. ArXiv:1911.12959
– reference: Sviridenko M, Vondrák J, Ward J (2015) Optimal approximation for submodular and supermodular optimization with bounded curvature. In: Proceedings of the 26th Annual ACM-SIAM symposium on discrete algorithms, pp 1134–1148
– reference: WangYXuDJiangYZhangDMinimizing ratio of monotone non-submodular functionsJ Oper Res Soc China201973449459400811110.1007/s40305-019-00244-1
– reference: Gupta A, Roth A, Schoenebeck G, Talwar K (2010) Constrained non-monotone submodular maximization: offline and secretary algorithms. In Proceedings of the 6th international conference on internet and network economics, pp 246–257
– reference: WangZMoranBWangXPanQApproximation for maximizing monotone non-decreasing set functions with a greedy methodJ Comb Optim20163112943344024410.1007/s10878-014-9707-3
– reference: FeigeUA threshold of lnn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ln n$$\end{document} for approximating set coverJ ACM1998454634652167509510.1145/285055.285059
– reference: Haba R, Kazemi E, Feldman F, Karbasi A (2020) Streaming submodular maximization under a k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-set system constraint. ArXiv: 2002.03352
– reference: CalinescuGChekuriCPalMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J Comput201140617401766286319310.1137/080733991
– reference: FeigeUMirrokniVSVondrákJMaximizing non-monotone submodular functionsSIAM J Comput201140411331153282531210.1137/090779346
– reference: Badanidiyuru A, Mirzasoleiman B, Karbasi A, Krause A (2014) Streaming submodular maximization: Massive data summarization on the fly. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 671–680
– reference: Chekuri C, Gupta S, Quanrud K (2015) Streaming algorithms for submodular function maximization. In Proceedings of the 42nd International Colloquium on Automata, Languages and Programming, pp 318–330
– reference: Feldman M, Naor J, Schwartz R (2011) A unified continuous greedy algorithm for submodular maximization. In Proceedings of the 52nd IEEE annual symposium on foundations of computer science, pp 570–579
– reference: Gharan SO, Vondrák J (2011) Submodular maximization by simulated annealing. In Proceedings of the 22nd Annual ACM-SIAM symposium on discrete algorithms, pp 1098–1116
– reference: Alaluf N, Feldman M (2019) Making a sieve random: Improved semi-streaming algorithm for submodular maximization under a cardinality constraint. ArXiv: 1906.11237
– reference: BuchbinderNFeldmanMSeffiJSchwartzRA tight linear time (1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1/2)$$\end{document}-approximation for unconstrained submodular maximizationSIAM J Comput201544513841402341614010.1137/130929205
– reference: Elenberg ER, Dimakis AG, Feldman M, Karbasi A (2017) Streaming weak submodularity: Interpreting neural networks on the fly. In Proceedings of the 31st international conference on neural information processing systems, pp 4044–4054
– reference: Huang CC, Kakimura N, Yoshida Y (2017) Streaming algorithms for maximizing monotone submodular functions under a knapsack constraint. In Proceedings of the 20th international workshop on approximation algorithms for combinatorial optimization problems and the 21st international workshop on randomization and computation No. 11, 11:1–11:14
– reference: Ene A, Nguyen HL (2016) Constrained submodular maximization: Beyond 1/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/e$$\end{document}. In Proceedings of the 57th IEEE annual symposium on foundations of computer science, pp 248–257
– reference: Feige U, Izsak R (2013) Welfare maximization and the supermodular degree. In Proceedings of the 4th conference on innovations in theoretical computer science, pp 247-256
– reference: ChakrabartiAKaleSSubmodular maximization meets streaming: Matchings, matroids, and moreMath Program20151541–2225247342193410.1007/s10107-015-0900-7
– reference: Norouzi-Fard A, Tarnawski J, Mitrović S, Zandieh A, Mousavifar A, Svensson O (2018) Beyond 1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/2$$\end{document}-approximation for submodular maximization on massive data streams. In Proceedings of the 35th international conference on machine learning, pp 3826–3835
– reference: SviridenkoMA note on maximizing a submodular set function subject to a knapsack constraintOper Res Lett20043214143201710710.1016/S0167-6377(03)00062-2
– reference: Mitrovic M, Kazemi E, Feldman M, Krause A, Karbasi A (2019) Adaptive sequence submodularity. ArXiv:1902.05981
– reference: JiangYWangYXuDYangRZhangYStreaming algorithm for maximizing a monotone non-submodular function under d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-knapsack constraintOptim Lett201910.1007/s11590-019-01430-z
– reference: Yang R, Xu D, Guo L, Zhang D (2019) Sequence submodular maximization meets streaming. In: Proceedings of the 13th international conference on combinatorial optimization and applications, pp 565–575
– reference: YangRXuDJiangYWangYZhangDApproximating robust parameterized submodular function maximization in large-scalesAsia-Pac J Oper Res2019364671680399646910.1142/S0217595919500222
– volume: 7
  start-page: 251
  issue: 3
  year: 1984
  ident: 662_CR12
  publication-title: Discrete Appl Math
  doi: 10.1016/0166-218X(84)90003-9
– ident: 662_CR15
– ident: 662_CR19
  doi: 10.1145/2422436.2422466
– ident: 662_CR13
– ident: 662_CR36
– volume: 36
  start-page: 671
  issue: 4
  year: 2019
  ident: 662_CR46
  publication-title: Asia-Pac J Oper Res
  doi: 10.1142/S0217595919500222
– ident: 662_CR17
– ident: 662_CR7
  doi: 10.1137/1.9781611973730.80
– volume: 154
  start-page: 225
  issue: 1–2
  year: 2015
  ident: 662_CR10
  publication-title: Math Program
  doi: 10.1007/s10107-015-0900-7
– ident: 662_CR21
– ident: 662_CR23
  doi: 10.1007/978-3-642-22006-7_29
– volume: 7
  start-page: 449
  issue: 3
  year: 2019
  ident: 662_CR41
  publication-title: J Oper Res Soc China
  doi: 10.1007/s40305-019-00244-1
– ident: 662_CR22
  doi: 10.1109/FOCS.2011.46
– ident: 662_CR5
– ident: 662_CR3
– ident: 662_CR2
  doi: 10.1145/2623330.2623637
– year: 2019
  ident: 662_CR30
  publication-title: Optim Lett
  doi: 10.1007/s11590-019-01430-z
– ident: 662_CR29
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  ident: 662_CR35
  publication-title: Math Program
  doi: 10.1007/BF01588971
– volume: 32
  start-page: 41
  issue: 1
  year: 2004
  ident: 662_CR37
  publication-title: Oper Res Lett
  doi: 10.1016/S0167-6377(03)00062-2
– ident: 662_CR34
– ident: 662_CR44
  doi: 10.1007/978-3-030-26176-4_51
– volume: 44
  start-page: 1384
  issue: 5
  year: 2015
  ident: 662_CR8
  publication-title: SIAM J Comput
  doi: 10.1137/130929205
– volume: 76
  start-page: 729
  issue: 4
  year: 2020
  ident: 662_CR42
  publication-title: J Glob Optim
  doi: 10.1007/s10898-019-00840-8
– volume: 40
  start-page: 1740
  issue: 6
  year: 2011
  ident: 662_CR9
  publication-title: SIAM J Comput
  doi: 10.1137/080733991
– volume: 45
  start-page: 634
  issue: 4
  year: 1998
  ident: 662_CR18
  publication-title: J ACM
  doi: 10.1145/285055.285059
– ident: 662_CR24
  doi: 10.1109/FOCS.2012.55
– volume: 42
  start-page: 427
  issue: 1
  year: 2011
  ident: 662_CR26
  publication-title: J Artif Intell Res
– ident: 662_CR11
  doi: 10.1007/978-3-662-47672-7_26
– volume: 40
  start-page: 1133
  issue: 4
  year: 2011
  ident: 662_CR20
  publication-title: SIAM J Comput
  doi: 10.1137/090779346
– volume: 23
  start-page: 2053
  issue: 4
  year: 2010
  ident: 662_CR32
  publication-title: SIAM J Discrete Math
  doi: 10.1137/090750020
– ident: 662_CR1
– ident: 662_CR4
– ident: 662_CR31
– volume: 2
  start-page: 271
  issue: 3
  year: 2014
  ident: 662_CR14
  publication-title: J Oper Res Soc China
  doi: 10.1007/s40305-014-0053-z
– ident: 662_CR25
  doi: 10.1137/1.9781611973082.83
– ident: 662_CR39
  doi: 10.24963/ijcai.2018/379
– ident: 662_CR6
  doi: 10.1137/1.9781611975482.16
– ident: 662_CR28
– ident: 662_CR38
  doi: 10.1137/1.9781611973730.76
– ident: 662_CR33
– ident: 662_CR16
  doi: 10.1109/FOCS.2016.34
– volume: 7
  start-page: 183
  issue: 2
  year: 2019
  ident: 662_CR43
  publication-title: J Oper Res Soc China
  doi: 10.1007/s40305-018-0233-3
– volume: 31
  start-page: 29
  issue: 1
  year: 2016
  ident: 662_CR40
  publication-title: J Comb Optim
  doi: 10.1007/s10878-014-9707-3
– ident: 662_CR27
  doi: 10.1007/978-3-642-17572-5_20
– ident: 662_CR45
  doi: 10.1007/978-3-030-36412-0_46
SSID ssj0009054
Score 2.2157273
Snippet In this paper, we study the problem of maximizing a sequence submodular function in the streaming setting, where the utility function is defined on sequences...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 43
SubjectTerms Combinatorics
Convex and Discrete Geometry
Graph theory
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Maximization
Operations Research/Decision Theory
Optimization
Sequences
Theory of Computation
Weight
Title Sequence submodular maximization meets streaming
URI https://link.springer.com/article/10.1007/s10878-020-00662-5
https://www.proquest.com/docview/2480084323
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1Bu8CA-BSBUmVgg0ix4zjOWKGWClQWqFSmyF-RGNIiEiR-Puc0IQXBwBLJsnXDxfa9s-89A1wawXNrcX0zqyV-Yh2kTJFAac0jZpiW9WHO7IFP5-xuES8aUljZVru3V5L1Tr1BdhNODZY6JjTnmEJtQz92uTvO4jkddVK7Ybx-yhaxI-Z-cUOV-d3G93DUYcwf16J1tJnsw14DE_3R-r8ewJZdHsLuhnggtmZfiqvlEYSPTU20X2KEWxlXXeoX8uOlaIiWfmFtVfqOGyILNHAM88n46WYaNK8hBJomYRUI6YQdlcg5TcPIMkmI0YLY1BJqqMI-TrRAQKRwfyPEclybuRGSYJjKRZ5GJ9Bbrpb2FPwoVSJlJk1wFFPMKBIqRBomT6TSMmEeXLVOyV7XohdZJ2_sXJihC7PahVnswaD1W9YsgDKjTDip_ohGHly3vuy6_7Z29r_h57BDXZVJfSgygF719m4vECZUagj90e3z_XhYz45PicGz5g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYAB8SkKBTKwQaTYcRJnrBBVgbYLrdTN8lckhrSIBImfzzlNSEEwsESKbN3wEvue7XvPANeGx5m1OL6Z1RIfkfZTpoivtI5DZpiW1WbOeBIPZ-xxHs1rUVjRVLs3R5LVTL0mduPODZY6JXQc4xJqE7aQDHBXyDWj_dZqN4hWV9kid8S1X1RLZX6P8T0dtRzzx7FolW0G-7BX00Svv_quB7BhF4ewu2YeiG_jL8fV4giC57om2iswwy2Nqy71cvnxktdCSy-3tiw8pw2ROQY4htngfno39OvbEHxNk6D0uXTGjopnMU2D0DJJiNGc2NQSaqjCtphojoRI4fxGiI1xbGaGS4JpKuNZGp5AZ7Fc2FPwwlTxlJk0wV5MMaNIoJBpmCyRSsuEdeGmAUW8rkwvRGtv7CAUCKGoIBRRF3oNbqIeAIWgjDur_pCGXbhtsGyb_4529r_uV7A9nI5HYvQweTqHHeoqTqoNkh50yrd3e4GUoVSX1R_yCYFYtUU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66guhBfOLqqj1402KTpml6XNRlfewi6MLeQl4FD9tdbAV_vpM-7Cp68FIICXP4mslMkvm-IHRuOEutBf-mVkv4RNpPqMK-0pqF1FAty8Oc0ZgNJ_R-Gk2XWPxltXtzJVlxGpxKU1ZcLUx6tUR8404ZljhWNGOwnVpFa7AcYzevJ6Tfyu4GUfWsLeSRsA-MatrM7za-h6Y23_xxRVpGnsE22qpTRq9f_eMdtGKzXbS5JCQIrdGX-mq-h4Lnuj7ayyHazY2rNPVm8uN1VpMuvZm1Re45noicgYF9NBncvlwP_fplBF-TOCh8Lp3Io-IpI0kQWioxNppjm1hMDFHQx7DmkBwpWOswtgz8NDVcYsAo5WkSHqBONs_sIfLCRPGEmiSGUVRRo3CgIOswaSyVljHtoosGFLGoBDBEK3XsIBQAoSghFFEX9RrcRO0MuSCUO9n-kIRddNlg2Xb_be3of8PP0PrTzUA83o0fjtEGccUn5VlJD3WKt3d7AtlDoU7LCfIJfa65gQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequence+submodular+maximization+meets+streaming&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Yang%2C+Ruiqi&rft.au=Xu+Dachuan&rft.au=Guo+Longkun&rft.au=Zhang%2C+Dongmei&rft.date=2021-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=41&rft.issue=1&rft.spage=43&rft.epage=55&rft_id=info:doi/10.1007%2Fs10878-020-00662-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon