On Fractional Semilinear Nonlocal Initial Value Problem with State Dependent Delay
In this paper, we consider a class of fractional order semilinear abstract Cauchy problem with state dependent delay subject to nonlocal initial conditions, and enlarge the existence theory with two different sets of assumptions. Under the first set of assumptions, we establish the existence of Höld...
Saved in:
Published in | Differential equations and dynamical systems Vol. 32; no. 3; pp. 685 - 708 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.07.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0971-3514 0974-6870 |
DOI | 10.1007/s12591-022-00600-3 |
Cover
Loading…
Abstract | In this paper, we consider a class of fractional order semilinear abstract Cauchy problem with state dependent delay subject to nonlocal initial conditions, and enlarge the existence theory with two different sets of assumptions. Under the first set of assumptions, we establish the existence of Hölder classical solution. Since the Hölder exponent appears as an exponent on the metric function in contraction inequality, it is not suitable to use Banach contraction mapping principle. Krasnoselskii’s fixed point theorem becomes effective to overcome this situation. Under the second set of assumptions, we obtain only the existence of mild solution using Schauder’s fixed point theorem. Few examples have been provided to illustrate our results. |
---|---|
AbstractList | In this paper, we consider a class of fractional order semilinear abstract Cauchy problem with state dependent delay subject to nonlocal initial conditions, and enlarge the existence theory with two different sets of assumptions. Under the first set of assumptions, we establish the existence of Hölder classical solution. Since the Hölder exponent appears as an exponent on the metric function in contraction inequality, it is not suitable to use Banach contraction mapping principle. Krasnoselskii’s fixed point theorem becomes effective to overcome this situation. Under the second set of assumptions, we obtain only the existence of mild solution using Schauder’s fixed point theorem. Few examples have been provided to illustrate our results. |
Author | Alam, Md Mansur Dubey, Shruti |
Author_xml | – sequence: 1 givenname: Md Mansur surname: Alam fullname: Alam, Md Mansur organization: Department of Mathematics, Indian Institute of Technology Madras – sequence: 2 givenname: Shruti surname: Dubey fullname: Dubey, Shruti email: sdubey@iitm.ac.in organization: Department of Mathematics, Indian Institute of Technology Madras |
BookMark | eNp9kE9LAzEUxINUsK1-AU8LnqMvf3aTPUq1WihWrHoN6e5b3bJNarJF-u2NVvDm6Q2P3wzMjMjAeYeEnDO4ZADqKjKel4wC5xSgAKDiiAyhVJIWWsHgRzMqciZPyCjGdYJUKdWQPC1cNg226lvvbJctcdN2rUMbsgfvOl-l38y1fZvuq-12mD0Gv-pwk322_Xu27G2P2Q1u0dXo-qQ6uz8lx43tIp793jF5md4-T-7pfHE3m1zPacUV9FQza-VKykaLWvFCSyGAM2hsASh4VfOm4ZpxJrVUWEOBJdpVJbGs8xqU1mJMLg652-A_dhh7s_a7kFpEI1I9yYpcqUTxA1UFH2PAxmxDu7FhbxiY7-3MYTuTtjM_2xmRTOJgigl2bxj-ov9xfQHbaHJR |
Cites_doi | 10.1016/j.nonrwa.2005.03.014 10.1016/j.na.2006.08.003 10.1103/PhysRevE.81.051102 10.1016/j.aml.2011.03.026 10.1016/S0370-1573(00)00070-3 10.7494/OpMath.2016.36.1.123 10.1038/srep03431 10.2478/s13540-014-0191-3 10.2298/FIL1702451B 10.1017/S001309151800069X 10.4236/jamp.2018.61030 10.2183/pjab1945.46.1141 10.1155/2011/642013 10.2977/prims/1195182014 10.1007/978-3-0348-0551-3 10.1016/j.camwa.2011.02.033 10.1007/s00025-011-0142-9 10.1080/00036819008839989 10.1007/s00245-018-9477-x 10.1007/s12591-016-0290-1 10.4310/DPDE.2018.v15.n1.a2 10.1016/j.jmaa.2018.05.080 10.1016/j.nahs.2010.05.007 10.1016/j.amc.2013.09.010 10.1016/j.amc.2009.08.036 10.1016/j.na.2009.04.058 10.1016/j.jde.2016.09.008 |
ContentType | Journal Article |
Copyright | Foundation for Scientific Research and Technological Innovation 2022 Foundation for Scientific Research and Technological Innovation 2022. |
Copyright_xml | – notice: Foundation for Scientific Research and Technological Innovation 2022 – notice: Foundation for Scientific Research and Technological Innovation 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s12591-022-00600-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Computer Science |
EISSN | 0974-6870 |
EndPage | 708 |
ExternalDocumentID | 10_1007_s12591_022_00600_3 |
GrantInformation_xml | – fundername: Ministry of Human Resource Development funderid: http://dx.doi.org/10.13039/501100004541 – fundername: Science and Engineering Research Board, New Delhi grantid: MTR/2019/000437 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 1N0 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 30V 4.4 406 408 40D 40E 5VS 67Z 6NX 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABLLD ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA CAG COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HZ~ IKXTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P9R PF0 PQQKQ PT4 QOS R89 R9I ROL RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW WK8 YLTOR Z45 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c270t-81aa4b44f83d72684330210fa60e32cd2ff281214847ed06e9eabc4e9d5d07883 |
IEDL.DBID | U2A |
ISSN | 0971-3514 |
IngestDate | Fri Jul 25 10:51:16 EDT 2025 Tue Jul 01 00:57:21 EDT 2025 Fri Feb 21 02:41:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Nonlocal conditions 47D06 Analytic semigroup Primary 34K37 State dependent delay Secondary 49J27 Mild solutions Caputo fractional derivative |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-81aa4b44f83d72684330210fa60e32cd2ff281214847ed06e9eabc4e9d5d07883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3067416577 |
PQPubID | 2043992 |
PageCount | 24 |
ParticipantIDs | proquest_journals_3067416577 crossref_primary_10_1007_s12591_022_00600_3 springer_journals_10_1007_s12591_022_00600_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: Dordrecht |
PublicationSubtitle | International Journal for Theory, Real World Modelling and Simulations |
PublicationTitle | Differential equations and dynamical systems |
PublicationTitleAbbrev | Differ Equ Dyn Syst |
PublicationYear | 2024 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | Sohr, H.: The Navier-Stokes equations. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2001. An elementary functional analytic approach, [2013 reprint of the 2001 original] [MR1928881] BurlicăMDNeculaMRoşuDVrabieIIDelay Differential Evolutions Subjected to Nonlocal Initial Conditions2016Boca Raton, FLMonographs and Research Notes in Mathematics. CRC Press ChangYKKavithaVArjunanMMallika: Existence and uniqueness of mild solutions to a semilinear integrodifferential equation of fractional orderNonlinear Anal.2009711155515559256022310.1016/j.na.2009.04.058 DubeySABahugunaDExistence and regularity of solutions to nonlocal retarded differential equationsAppl. Math. Comput.2009215724132424256345510.1016/j.amc.2009.08.036 FujitaHMorimotoHOn fractional powers of the Stokes operatorProc. Japan Acad.1970461141114329675510.2183/pjab1945.46.1141 Kilbas, A. A., Srivastava, H. M., Trujillo, J. J. ; Theory and applications of fractional differential equations, volume 204 of North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam (2006) GuswantoBHSuzukiTExistence and uniqueness of mild solutions for fractional semilinear differential equationsElectron. J. Differ. Equ.201520151681163375999 Vrabie, I. I. : C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0$$\end{document}-semigroups and applications, volume 191 of North-Holland Mathematics Studies. North-Holland Publishing Co. Amsterdam (2003) Langlands, T. A. M., Henry, B. I. : Fractional chemotaxis diffusion equations. Phys. Rev. E (3) 81(5), 051102 (2010) Li, C., LI, M.: Hölder regularity for abstract fractional cauchy problems with order in (0, 1). J. Appl. Math. Phys. 6(01), 310 (2018) Agarwal, R. P., Andrade, B. de., Siracusa, G.: On fractional integro-differential equations with state-dependent delay. Comput. Math. Appl. 62(3), 1143–1149 (2011) GigaYWeak and strong solutions of the Navier-Stokes initial value problemPubl. Res. Inst. Math. Sci.198319388791072345410.2977/prims/1195182014 Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 77 (2000) FuXHuangRExistence of solutions for neutral integro-differential equations with state-dependent delayAppl. Math. Comput.2013224743759312766110.1016/j.amc.2013.09.010 WangRNXiaoTJLiangJA note on the fractional Cauchy problems with nonlocal initial conditionsAppl. Math. Lett.201124814351442279364710.1016/j.aml.2011.03.026 BelmekkiMMekhalfiKOn fractional differential equations with state-dependent delay via Kuratowski measure of noncompactnessFilomat2017312451460362885210.2298/FIL1702451B HernándezEOn abstract differential equations with state dependent non-local conditionsJ. Math. Anal. Appl.20184661408425381812410.1016/j.jmaa.2018.05.080 Hernández, E., Wu, J.: Existence, uniqueness and qualitative properties of global solutions of abstract differential equations with state-dependent delay. Proc. Edinb. Math. Soc. (2) 62(3), 771–788 (2019) SharmaMDubeySAnalysis of fractional functional differential equations of neutral type with nonlocal conditionsDiffer. Equ. Dyn. Syst.2017254499517370858110.1007/s12591-016-0290-1 GuswantoBHFractional nonlinear evolution equations with sectorial linear operatorsJ. Fract. Calc. Appl.20191012132273949597 HernándezEProkopczykALadeiraLA note on partial functional differential equations with state-dependent delayNonlinear Anal. Real World Appl.200674510519223521510.1016/j.nonrwa.2005.03.014 DarwishMANtouyasSKSemilinear functional differential equations of fractional order with state-dependent delayElectron. J. Differ. Equ.20092009381102495843 EzzinbiKFuXHilalKExistence and regularity in the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-norm for some neutral partial differential equations with nonlocal conditionsNonlinear Anal.200767516131622232330710.1016/j.na.2006.08.003 dos SantosJPCCuevasCde AndradeBExistence results for a fractional equation with state-dependent delayAdv. Differ. Equ.20112011642013115278066710.1155/2011/642013 ByszewskiLLakshmikanthamVTheorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach spaceAppl. Anal.19914011119112132110.1080/00036819008839989 DubeySSharmaMSolutions to fractional functional differential equations with nonlocal conditionsFract. Calc. Appl. Anal.2014173654673326030010.2478/s13540-014-0191-3 DuMWangZHuHMeasuring memory with the order of fractional derivativeSci. Rep.2013311310.1038/srep03431 VrabieIIA class of semilinear delay differential equations with nonlocal initial conditionsDyn. Partial Differ. Equ.20181514560374530010.4310/DPDE.2018.v15.n1.a2 ZhangXChenPFractional evolution equation nonlocal problems with noncompact semigroupsOpuscula Math.2016361123137340583310.7494/OpMath.2016.36.1.123 WangRNYangYHOn the Cauchy problems of fractional evolution equations with nonlocal initial conditionsResults Math.2013631–21530300966910.1007/s00025-011-0142-9 ZhangXHuangXLiuZThe existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delayNonlinear Anal. Hybrid Syst.201044775781268024510.1016/j.nahs.2010.05.007 HernándezEPierriMWuJC1+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1+\alpha }$$\end{document}-strict solutions and wellposedness of abstract differential equations with state dependent delayJ. Differ. Equ.2016261126856688210.1016/j.jde.2016.09.008 HernándezEWuJFernandesDExistence and uniqueness of solutions for abstract neutral differential equations with state-dependent delayAppl. Math. Optim.202081189111405840910.1007/s00245-018-9477-x E Hernández (600_CR21) 2020; 81 X Zhang (600_CR33) 2010; 4 H Fujita (600_CR13) 1970; 46 M Sharma (600_CR26) 2017; 25 RN Wang (600_CR31) 2013; 63 X Zhang (600_CR32) 2016; 36 600_CR1 II Vrabie (600_CR29) 2018; 15 SA Dubey (600_CR10) 2009; 215 K Ezzinbi (600_CR11) 2007; 67 JPC dos Santos (600_CR7) 2011; 2011 L Byszewski (600_CR4) 1991; 40 M Belmekki (600_CR2) 2017; 31 YK Chang (600_CR5) 2009; 71 BH Guswanto (600_CR16) 2015; 2015 MA Darwish (600_CR6) 2009; 2009 E Hernández (600_CR18) 2016; 261 E Hernández (600_CR17) 2018; 466 E Hernández (600_CR19) 2006; 7 M Du (600_CR8) 2013; 3 Y Giga (600_CR14) 1983; 19 MD Burlică (600_CR3) 2016 600_CR27 X Fu (600_CR12) 2013; 224 600_CR28 600_CR23 BH Guswanto (600_CR15) 2019; 10 600_CR22 600_CR25 RN Wang (600_CR30) 2011; 24 600_CR24 S Dubey (600_CR9) 2014; 17 600_CR20 |
References_xml | – reference: Hernández, E., Wu, J.: Existence, uniqueness and qualitative properties of global solutions of abstract differential equations with state-dependent delay. Proc. Edinb. Math. Soc. (2) 62(3), 771–788 (2019) – reference: DarwishMANtouyasSKSemilinear functional differential equations of fractional order with state-dependent delayElectron. J. Differ. Equ.20092009381102495843 – reference: Agarwal, R. P., Andrade, B. de., Siracusa, G.: On fractional integro-differential equations with state-dependent delay. Comput. Math. Appl. 62(3), 1143–1149 (2011) – reference: HernándezEWuJFernandesDExistence and uniqueness of solutions for abstract neutral differential equations with state-dependent delayAppl. Math. Optim.202081189111405840910.1007/s00245-018-9477-x – reference: ZhangXHuangXLiuZThe existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delayNonlinear Anal. Hybrid Syst.201044775781268024510.1016/j.nahs.2010.05.007 – reference: BelmekkiMMekhalfiKOn fractional differential equations with state-dependent delay via Kuratowski measure of noncompactnessFilomat2017312451460362885210.2298/FIL1702451B – reference: Sohr, H.: The Navier-Stokes equations. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2001. An elementary functional analytic approach, [2013 reprint of the 2001 original] [MR1928881] – reference: DuMWangZHuHMeasuring memory with the order of fractional derivativeSci. Rep.2013311310.1038/srep03431 – reference: EzzinbiKFuXHilalKExistence and regularity in the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-norm for some neutral partial differential equations with nonlocal conditionsNonlinear Anal.200767516131622232330710.1016/j.na.2006.08.003 – reference: ZhangXChenPFractional evolution equation nonlocal problems with noncompact semigroupsOpuscula Math.2016361123137340583310.7494/OpMath.2016.36.1.123 – reference: SharmaMDubeySAnalysis of fractional functional differential equations of neutral type with nonlocal conditionsDiffer. Equ. Dyn. Syst.2017254499517370858110.1007/s12591-016-0290-1 – reference: WangRNYangYHOn the Cauchy problems of fractional evolution equations with nonlocal initial conditionsResults Math.2013631–21530300966910.1007/s00025-011-0142-9 – reference: Li, C., LI, M.: Hölder regularity for abstract fractional cauchy problems with order in (0, 1). J. Appl. Math. Phys. 6(01), 310 (2018) – reference: DubeySSharmaMSolutions to fractional functional differential equations with nonlocal conditionsFract. Calc. Appl. Anal.2014173654673326030010.2478/s13540-014-0191-3 – reference: HernándezEOn abstract differential equations with state dependent non-local conditionsJ. Math. Anal. Appl.20184661408425381812410.1016/j.jmaa.2018.05.080 – reference: BurlicăMDNeculaMRoşuDVrabieIIDelay Differential Evolutions Subjected to Nonlocal Initial Conditions2016Boca Raton, FLMonographs and Research Notes in Mathematics. CRC Press – reference: Langlands, T. A. M., Henry, B. I. : Fractional chemotaxis diffusion equations. Phys. Rev. E (3) 81(5), 051102 (2010) – reference: FuXHuangRExistence of solutions for neutral integro-differential equations with state-dependent delayAppl. Math. Comput.2013224743759312766110.1016/j.amc.2013.09.010 – reference: Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 77 (2000) – reference: FujitaHMorimotoHOn fractional powers of the Stokes operatorProc. Japan Acad.1970461141114329675510.2183/pjab1945.46.1141 – reference: Vrabie, I. I. : C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0$$\end{document}-semigroups and applications, volume 191 of North-Holland Mathematics Studies. North-Holland Publishing Co. Amsterdam (2003) – reference: GigaYWeak and strong solutions of the Navier-Stokes initial value problemPubl. Res. Inst. Math. Sci.198319388791072345410.2977/prims/1195182014 – reference: Kilbas, A. A., Srivastava, H. M., Trujillo, J. J. ; Theory and applications of fractional differential equations, volume 204 of North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam (2006) – reference: DubeySABahugunaDExistence and regularity of solutions to nonlocal retarded differential equationsAppl. Math. Comput.2009215724132424256345510.1016/j.amc.2009.08.036 – reference: HernándezEProkopczykALadeiraLA note on partial functional differential equations with state-dependent delayNonlinear Anal. Real World Appl.200674510519223521510.1016/j.nonrwa.2005.03.014 – reference: HernándezEPierriMWuJC1+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1+\alpha }$$\end{document}-strict solutions and wellposedness of abstract differential equations with state dependent delayJ. Differ. Equ.2016261126856688210.1016/j.jde.2016.09.008 – reference: dos SantosJPCCuevasCde AndradeBExistence results for a fractional equation with state-dependent delayAdv. Differ. Equ.20112011642013115278066710.1155/2011/642013 – reference: ChangYKKavithaVArjunanMMallika: Existence and uniqueness of mild solutions to a semilinear integrodifferential equation of fractional orderNonlinear Anal.2009711155515559256022310.1016/j.na.2009.04.058 – reference: GuswantoBHSuzukiTExistence and uniqueness of mild solutions for fractional semilinear differential equationsElectron. J. Differ. Equ.201520151681163375999 – reference: VrabieIIA class of semilinear delay differential equations with nonlocal initial conditionsDyn. Partial Differ. Equ.20181514560374530010.4310/DPDE.2018.v15.n1.a2 – reference: WangRNXiaoTJLiangJA note on the fractional Cauchy problems with nonlocal initial conditionsAppl. Math. Lett.201124814351442279364710.1016/j.aml.2011.03.026 – reference: ByszewskiLLakshmikanthamVTheorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach spaceAppl. Anal.19914011119112132110.1080/00036819008839989 – reference: GuswantoBHFractional nonlinear evolution equations with sectorial linear operatorsJ. Fract. Calc. Appl.20191012132273949597 – volume: 2009 start-page: 1 issue: 38 year: 2009 ident: 600_CR6 publication-title: Electron. J. Differ. Equ. – volume: 7 start-page: 510 issue: 4 year: 2006 ident: 600_CR19 publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2005.03.014 – volume: 67 start-page: 1613 issue: 5 year: 2007 ident: 600_CR11 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2006.08.003 – ident: 600_CR23 doi: 10.1103/PhysRevE.81.051102 – volume: 24 start-page: 1435 issue: 8 year: 2011 ident: 600_CR30 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2011.03.026 – ident: 600_CR25 doi: 10.1016/S0370-1573(00)00070-3 – volume: 36 start-page: 123 issue: 1 year: 2016 ident: 600_CR32 publication-title: Opuscula Math. doi: 10.7494/OpMath.2016.36.1.123 – volume: 3 start-page: 1 issue: 1 year: 2013 ident: 600_CR8 publication-title: Sci. Rep. doi: 10.1038/srep03431 – volume: 17 start-page: 654 issue: 3 year: 2014 ident: 600_CR9 publication-title: Fract. Calc. Appl. Anal. doi: 10.2478/s13540-014-0191-3 – volume: 31 start-page: 451 issue: 2 year: 2017 ident: 600_CR2 publication-title: Filomat doi: 10.2298/FIL1702451B – ident: 600_CR20 doi: 10.1017/S001309151800069X – ident: 600_CR24 doi: 10.4236/jamp.2018.61030 – volume: 46 start-page: 1141 year: 1970 ident: 600_CR13 publication-title: Proc. Japan Acad. doi: 10.2183/pjab1945.46.1141 – volume: 2011 start-page: 1 issue: 642013 year: 2011 ident: 600_CR7 publication-title: Adv. Differ. Equ. doi: 10.1155/2011/642013 – volume: 19 start-page: 887 issue: 3 year: 1983 ident: 600_CR14 publication-title: Publ. Res. Inst. Math. Sci. doi: 10.2977/prims/1195182014 – ident: 600_CR27 doi: 10.1007/978-3-0348-0551-3 – ident: 600_CR1 doi: 10.1016/j.camwa.2011.02.033 – volume: 63 start-page: 15 issue: 1–2 year: 2013 ident: 600_CR31 publication-title: Results Math. doi: 10.1007/s00025-011-0142-9 – volume: 40 start-page: 11 issue: 1 year: 1991 ident: 600_CR4 publication-title: Appl. Anal. doi: 10.1080/00036819008839989 – volume: 81 start-page: 89 issue: 1 year: 2020 ident: 600_CR21 publication-title: Appl. Math. Optim. doi: 10.1007/s00245-018-9477-x – ident: 600_CR22 – volume: 25 start-page: 499 issue: 4 year: 2017 ident: 600_CR26 publication-title: Differ. Equ. Dyn. Syst. doi: 10.1007/s12591-016-0290-1 – volume: 15 start-page: 45 issue: 1 year: 2018 ident: 600_CR29 publication-title: Dyn. Partial Differ. Equ. doi: 10.4310/DPDE.2018.v15.n1.a2 – volume: 466 start-page: 408 issue: 1 year: 2018 ident: 600_CR17 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2018.05.080 – volume-title: Delay Differential Evolutions Subjected to Nonlocal Initial Conditions year: 2016 ident: 600_CR3 – volume: 4 start-page: 775 issue: 4 year: 2010 ident: 600_CR33 publication-title: Nonlinear Anal. Hybrid Syst. doi: 10.1016/j.nahs.2010.05.007 – ident: 600_CR28 – volume: 10 start-page: 213 issue: 1 year: 2019 ident: 600_CR15 publication-title: J. Fract. Calc. Appl. – volume: 224 start-page: 743 year: 2013 ident: 600_CR12 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2013.09.010 – volume: 2015 start-page: 1 issue: 168 year: 2015 ident: 600_CR16 publication-title: Electron. J. Differ. Equ. – volume: 215 start-page: 2413 issue: 7 year: 2009 ident: 600_CR10 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2009.08.036 – volume: 71 start-page: 5551 issue: 11 year: 2009 ident: 600_CR5 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2009.04.058 – volume: 261 start-page: 6856 issue: 12 year: 2016 ident: 600_CR18 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2016.09.008 |
SSID | ssj0067947 |
Score | 2.286598 |
Snippet | In this paper, we consider a class of fractional order semilinear abstract Cauchy problem with state dependent delay subject to nonlocal initial conditions,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 685 |
SubjectTerms | Boundary value problems Computer Science Engineering Existence theorems Fixed points (mathematics) Initial conditions Mathematics Mathematics and Statistics Original Research |
Title | On Fractional Semilinear Nonlocal Initial Value Problem with State Dependent Delay |
URI | https://link.springer.com/article/10.1007/s12591-022-00600-3 https://www.proquest.com/docview/3067416577 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolMoDG0RqbOc1ttBSQBQEFJUpcmJHQiopatOBf8_ZSQggGJiclzycz3ffxXffARzH6PRF7NsWOk9p8ShWls-YsjQHbuALG22mybYYucMxv5o4k6IobFFmu5dHksZSV8VuiNQx9MXgSZOIoPVYhbqDsbvW6zHtlvbXRQ0zRdKBZ5s89aJU5vc5vrujCmP-OBY13mawBRsFTCTdfF23YUWlDdgsWzCQYkc2YP0LnyDe3XySsC524P42JYN5XriAcz2o1xeNKcWcjGap8WHkUqcO4fgkpktF7vLmMkT_myUGhZLzokduhldT8b4L40H_8WxoFS0UrJh6nczybSF4xHniM-lpYhfGdJCXCLejGI0lTRKKLh5jIu4p2XFVoEQUcxVIRyJ48Nke1NJZqvaBeCzmiZD4jAZcchppohvb9amUniNtuwknpSTDt5wpI6w4kbXcQ5R7aOQesia0SmGHxa5ZhDp8QYDoeF4TTssFqF7_PdvB_z4_hDXUG55n3bagls2X6gixRRa1od4d9HojPV48X_fbRrU-AMORxUw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHNSD-Iwo6h68aQntbl9HoiAIolEweGq23W1ixGKgHPTXO9uHVaMHT31ms53dnfmmO_MNwEmARp8Hjq6h8RQa8wOpOZRKTXHgug7XUWcm0RYDqzNiV2NznCWFzfNo93xLMtHURbIbInV0fdF5UiQiqD2WoczQBzdLUG5ePvZauQa2cI4ladKurSeR6lmyzO-tfDdIBcr8sTGa2Jt2BUZ5T9Mwk-f6IvbrwfsPEsf_fsoGrGcAlDTTGbMJSzLagkpe3IFka30L1r4wFeLV9Se963wb7m4i0p6lKRHY1r18eVJolc_IYBol1pF0VVASHh_4ZCHJbVq2hqi_viTBt-Qiq74b49mEv-3AqN0anne0rDiDFhh2I9YcnXPmMxY6VNiKMoZS5T6G3GpIagTCCEMDwQN6W8yWomFJV3I_YNIVpkBY4tBdKEXTSO4BsWnAQi7wnuEywQxfUejolmMIYZtC16twmo-Q95pycHgF27ISpYei9BJRerQKtXwQvWw9zj3lGCH0NG27Cmf5mBSP_25t_3-vH8NKZ3jd9_rdQe8AVg1EQGlsbw1K8WwhDxHBxP5RNmE_AAFA4hY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaIwYAcuEHFmmR9HCfGtPEYEzC0W5U2qYQ0umnrDvx7nLSlA8GBU5_ywUnsz4n9GeA8QqcvIs-20HlKi4eRsjzGlKU5cH1P2GgzTbZF3-kO-e2oOVqq4jfZ7sWRZFbToFmakvRqKuOrsvANUTuGwRhIaUIRtCSrsIbm2NZJXUPaKmyxg7PNFEz7rm1y1vOymd9lfHdNJd78cURqPE9nB7ZyyEha2RjvwopKqrBdtGMg-eqswuYStyA-PXwRss734OkxIZ1ZVsSAsp7V-5vGl2JG-pPE-DPS02lEeH0V44Uig6zRDNH7tMQgUtLO--WmeDcWH_sw7Ny8XHetvJ2CFVG3kVqeLQQPOY89Jl1N8sKYDvhi4TQUo5GkcUzR3WN8xF0lG47ylQgjrnzZlAgkPHYAlWSSqEMgLot4LCS-oz6XnIaa9MZ2PCql25S2XYOLQpPBNGPNCEp-ZK33APUeGL0HrAb1QtlBvoLmgQ5lECw2XbcGl8UAlJ__lnb0v9_PYH3Q7gT3vf7dMWxQhCxZMm4dKulsoU4QcqThqZlVn6fwyWs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Fractional+Semilinear+Nonlocal+Initial+Value+Problem+with+State+Dependent+Delay&rft.jtitle=Differential+equations+and+dynamical+systems&rft.au=Alam%2C+Md+Mansur&rft.au=Dubey%2C+Shruti&rft.date=2024-07-01&rft.pub=Springer+India&rft.issn=0971-3514&rft.eissn=0974-6870&rft.volume=32&rft.issue=3&rft.spage=685&rft.epage=708&rft_id=info:doi/10.1007%2Fs12591-022-00600-3&rft.externalDocID=10_1007_s12591_022_00600_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0971-3514&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0971-3514&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0971-3514&client=summon |