On Fractional Semilinear Nonlocal Initial Value Problem with State Dependent Delay

In this paper, we consider a class of fractional order semilinear abstract Cauchy problem with state dependent delay subject to nonlocal initial conditions, and enlarge the existence theory with two different sets of assumptions. Under the first set of assumptions, we establish the existence of Höld...

Full description

Saved in:
Bibliographic Details
Published inDifferential equations and dynamical systems Vol. 32; no. 3; pp. 685 - 708
Main Authors Alam, Md Mansur, Dubey, Shruti
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.07.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0971-3514
0974-6870
DOI10.1007/s12591-022-00600-3

Cover

Loading…
Abstract In this paper, we consider a class of fractional order semilinear abstract Cauchy problem with state dependent delay subject to nonlocal initial conditions, and enlarge the existence theory with two different sets of assumptions. Under the first set of assumptions, we establish the existence of Hölder classical solution. Since the Hölder exponent appears as an exponent on the metric function in contraction inequality, it is not suitable to use Banach contraction mapping principle. Krasnoselskii’s fixed point theorem becomes effective to overcome this situation. Under the second set of assumptions, we obtain only the existence of mild solution using Schauder’s fixed point theorem. Few examples have been provided to illustrate our results.
AbstractList In this paper, we consider a class of fractional order semilinear abstract Cauchy problem with state dependent delay subject to nonlocal initial conditions, and enlarge the existence theory with two different sets of assumptions. Under the first set of assumptions, we establish the existence of Hölder classical solution. Since the Hölder exponent appears as an exponent on the metric function in contraction inequality, it is not suitable to use Banach contraction mapping principle. Krasnoselskii’s fixed point theorem becomes effective to overcome this situation. Under the second set of assumptions, we obtain only the existence of mild solution using Schauder’s fixed point theorem. Few examples have been provided to illustrate our results.
Author Alam, Md Mansur
Dubey, Shruti
Author_xml – sequence: 1
  givenname: Md Mansur
  surname: Alam
  fullname: Alam, Md Mansur
  organization: Department of Mathematics, Indian Institute of Technology Madras
– sequence: 2
  givenname: Shruti
  surname: Dubey
  fullname: Dubey, Shruti
  email: sdubey@iitm.ac.in
  organization: Department of Mathematics, Indian Institute of Technology Madras
BookMark eNp9kE9LAzEUxINUsK1-AU8LnqMvf3aTPUq1WihWrHoN6e5b3bJNarJF-u2NVvDm6Q2P3wzMjMjAeYeEnDO4ZADqKjKel4wC5xSgAKDiiAyhVJIWWsHgRzMqciZPyCjGdYJUKdWQPC1cNg226lvvbJctcdN2rUMbsgfvOl-l38y1fZvuq-12mD0Gv-pwk322_Xu27G2P2Q1u0dXo-qQ6uz8lx43tIp793jF5md4-T-7pfHE3m1zPacUV9FQza-VKykaLWvFCSyGAM2hsASh4VfOm4ZpxJrVUWEOBJdpVJbGs8xqU1mJMLg652-A_dhh7s_a7kFpEI1I9yYpcqUTxA1UFH2PAxmxDu7FhbxiY7-3MYTuTtjM_2xmRTOJgigl2bxj-ov9xfQHbaHJR
Cites_doi 10.1016/j.nonrwa.2005.03.014
10.1016/j.na.2006.08.003
10.1103/PhysRevE.81.051102
10.1016/j.aml.2011.03.026
10.1016/S0370-1573(00)00070-3
10.7494/OpMath.2016.36.1.123
10.1038/srep03431
10.2478/s13540-014-0191-3
10.2298/FIL1702451B
10.1017/S001309151800069X
10.4236/jamp.2018.61030
10.2183/pjab1945.46.1141
10.1155/2011/642013
10.2977/prims/1195182014
10.1007/978-3-0348-0551-3
10.1016/j.camwa.2011.02.033
10.1007/s00025-011-0142-9
10.1080/00036819008839989
10.1007/s00245-018-9477-x
10.1007/s12591-016-0290-1
10.4310/DPDE.2018.v15.n1.a2
10.1016/j.jmaa.2018.05.080
10.1016/j.nahs.2010.05.007
10.1016/j.amc.2013.09.010
10.1016/j.amc.2009.08.036
10.1016/j.na.2009.04.058
10.1016/j.jde.2016.09.008
ContentType Journal Article
Copyright Foundation for Scientific Research and Technological Innovation 2022
Foundation for Scientific Research and Technological Innovation 2022.
Copyright_xml – notice: Foundation for Scientific Research and Technological Innovation 2022
– notice: Foundation for Scientific Research and Technological Innovation 2022.
DBID AAYXX
CITATION
DOI 10.1007/s12591-022-00600-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 0974-6870
EndPage 708
ExternalDocumentID 10_1007_s12591_022_00600_3
GrantInformation_xml – fundername: Ministry of Human Resource Development
  funderid: http://dx.doi.org/10.13039/501100004541
– fundername: Science and Engineering Research Board, New Delhi
  grantid: MTR/2019/000437
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
4.4
406
408
40D
40E
5VS
67Z
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABLLD
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9R
PF0
PQQKQ
PT4
QOS
R89
R9I
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
WK8
YLTOR
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c270t-81aa4b44f83d72684330210fa60e32cd2ff281214847ed06e9eabc4e9d5d07883
IEDL.DBID U2A
ISSN 0971-3514
IngestDate Fri Jul 25 10:51:16 EDT 2025
Tue Jul 01 00:57:21 EDT 2025
Fri Feb 21 02:41:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Nonlocal conditions
47D06
Analytic semigroup
Primary 34K37
State dependent delay
Secondary 49J27
Mild solutions
Caputo fractional derivative
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-81aa4b44f83d72684330210fa60e32cd2ff281214847ed06e9eabc4e9d5d07883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3067416577
PQPubID 2043992
PageCount 24
ParticipantIDs proquest_journals_3067416577
crossref_primary_10_1007_s12591_022_00600_3
springer_journals_10_1007_s12591_022_00600_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Dordrecht
PublicationSubtitle International Journal for Theory, Real World Modelling and Simulations
PublicationTitle Differential equations and dynamical systems
PublicationTitleAbbrev Differ Equ Dyn Syst
PublicationYear 2024
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References Sohr, H.: The Navier-Stokes equations. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2001. An elementary functional analytic approach, [2013 reprint of the 2001 original] [MR1928881]
BurlicăMDNeculaMRoşuDVrabieIIDelay Differential Evolutions Subjected to Nonlocal Initial Conditions2016Boca Raton, FLMonographs and Research Notes in Mathematics. CRC Press
ChangYKKavithaVArjunanMMallika: Existence and uniqueness of mild solutions to a semilinear integrodifferential equation of fractional orderNonlinear Anal.2009711155515559256022310.1016/j.na.2009.04.058
DubeySABahugunaDExistence and regularity of solutions to nonlocal retarded differential equationsAppl. Math. Comput.2009215724132424256345510.1016/j.amc.2009.08.036
FujitaHMorimotoHOn fractional powers of the Stokes operatorProc. Japan Acad.1970461141114329675510.2183/pjab1945.46.1141
Kilbas, A. A., Srivastava, H. M., Trujillo, J. J. ; Theory and applications of fractional differential equations, volume 204 of North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam (2006)
GuswantoBHSuzukiTExistence and uniqueness of mild solutions for fractional semilinear differential equationsElectron. J. Differ. Equ.201520151681163375999
Vrabie, I. I. : C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0$$\end{document}-semigroups and applications, volume 191 of North-Holland Mathematics Studies. North-Holland Publishing Co. Amsterdam (2003)
Langlands, T. A. M., Henry, B. I. : Fractional chemotaxis diffusion equations. Phys. Rev. E (3) 81(5), 051102 (2010)
Li, C., LI, M.: Hölder regularity for abstract fractional cauchy problems with order in (0, 1). J. Appl. Math. Phys. 6(01), 310 (2018)
Agarwal, R. P., Andrade, B. de., Siracusa, G.: On fractional integro-differential equations with state-dependent delay. Comput. Math. Appl. 62(3), 1143–1149 (2011)
GigaYWeak and strong solutions of the Navier-Stokes initial value problemPubl. Res. Inst. Math. Sci.198319388791072345410.2977/prims/1195182014
Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 77 (2000)
FuXHuangRExistence of solutions for neutral integro-differential equations with state-dependent delayAppl. Math. Comput.2013224743759312766110.1016/j.amc.2013.09.010
WangRNXiaoTJLiangJA note on the fractional Cauchy problems with nonlocal initial conditionsAppl. Math. Lett.201124814351442279364710.1016/j.aml.2011.03.026
BelmekkiMMekhalfiKOn fractional differential equations with state-dependent delay via Kuratowski measure of noncompactnessFilomat2017312451460362885210.2298/FIL1702451B
HernándezEOn abstract differential equations with state dependent non-local conditionsJ. Math. Anal. Appl.20184661408425381812410.1016/j.jmaa.2018.05.080
Hernández, E., Wu, J.: Existence, uniqueness and qualitative properties of global solutions of abstract differential equations with state-dependent delay. Proc. Edinb. Math. Soc. (2) 62(3), 771–788 (2019)
SharmaMDubeySAnalysis of fractional functional differential equations of neutral type with nonlocal conditionsDiffer. Equ. Dyn. Syst.2017254499517370858110.1007/s12591-016-0290-1
GuswantoBHFractional nonlinear evolution equations with sectorial linear operatorsJ. Fract. Calc. Appl.20191012132273949597
HernándezEProkopczykALadeiraLA note on partial functional differential equations with state-dependent delayNonlinear Anal. Real World Appl.200674510519223521510.1016/j.nonrwa.2005.03.014
DarwishMANtouyasSKSemilinear functional differential equations of fractional order with state-dependent delayElectron. J. Differ. Equ.20092009381102495843
EzzinbiKFuXHilalKExistence and regularity in the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-norm for some neutral partial differential equations with nonlocal conditionsNonlinear Anal.200767516131622232330710.1016/j.na.2006.08.003
dos SantosJPCCuevasCde AndradeBExistence results for a fractional equation with state-dependent delayAdv. Differ. Equ.20112011642013115278066710.1155/2011/642013
ByszewskiLLakshmikanthamVTheorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach spaceAppl. Anal.19914011119112132110.1080/00036819008839989
DubeySSharmaMSolutions to fractional functional differential equations with nonlocal conditionsFract. Calc. Appl. Anal.2014173654673326030010.2478/s13540-014-0191-3
DuMWangZHuHMeasuring memory with the order of fractional derivativeSci. Rep.2013311310.1038/srep03431
VrabieIIA class of semilinear delay differential equations with nonlocal initial conditionsDyn. Partial Differ. Equ.20181514560374530010.4310/DPDE.2018.v15.n1.a2
ZhangXChenPFractional evolution equation nonlocal problems with noncompact semigroupsOpuscula Math.2016361123137340583310.7494/OpMath.2016.36.1.123
WangRNYangYHOn the Cauchy problems of fractional evolution equations with nonlocal initial conditionsResults Math.2013631–21530300966910.1007/s00025-011-0142-9
ZhangXHuangXLiuZThe existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delayNonlinear Anal. Hybrid Syst.201044775781268024510.1016/j.nahs.2010.05.007
HernándezEPierriMWuJC1+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1+\alpha }$$\end{document}-strict solutions and wellposedness of abstract differential equations with state dependent delayJ. Differ. Equ.2016261126856688210.1016/j.jde.2016.09.008
HernándezEWuJFernandesDExistence and uniqueness of solutions for abstract neutral differential equations with state-dependent delayAppl. Math. Optim.202081189111405840910.1007/s00245-018-9477-x
E Hernández (600_CR21) 2020; 81
X Zhang (600_CR33) 2010; 4
H Fujita (600_CR13) 1970; 46
M Sharma (600_CR26) 2017; 25
RN Wang (600_CR31) 2013; 63
X Zhang (600_CR32) 2016; 36
600_CR1
II Vrabie (600_CR29) 2018; 15
SA Dubey (600_CR10) 2009; 215
K Ezzinbi (600_CR11) 2007; 67
JPC dos Santos (600_CR7) 2011; 2011
L Byszewski (600_CR4) 1991; 40
M Belmekki (600_CR2) 2017; 31
YK Chang (600_CR5) 2009; 71
BH Guswanto (600_CR16) 2015; 2015
MA Darwish (600_CR6) 2009; 2009
E Hernández (600_CR18) 2016; 261
E Hernández (600_CR17) 2018; 466
E Hernández (600_CR19) 2006; 7
M Du (600_CR8) 2013; 3
Y Giga (600_CR14) 1983; 19
MD Burlică (600_CR3) 2016
600_CR27
X Fu (600_CR12) 2013; 224
600_CR28
600_CR23
BH Guswanto (600_CR15) 2019; 10
600_CR22
600_CR25
RN Wang (600_CR30) 2011; 24
600_CR24
S Dubey (600_CR9) 2014; 17
600_CR20
References_xml – reference: Hernández, E., Wu, J.: Existence, uniqueness and qualitative properties of global solutions of abstract differential equations with state-dependent delay. Proc. Edinb. Math. Soc. (2) 62(3), 771–788 (2019)
– reference: DarwishMANtouyasSKSemilinear functional differential equations of fractional order with state-dependent delayElectron. J. Differ. Equ.20092009381102495843
– reference: Agarwal, R. P., Andrade, B. de., Siracusa, G.: On fractional integro-differential equations with state-dependent delay. Comput. Math. Appl. 62(3), 1143–1149 (2011)
– reference: HernándezEWuJFernandesDExistence and uniqueness of solutions for abstract neutral differential equations with state-dependent delayAppl. Math. Optim.202081189111405840910.1007/s00245-018-9477-x
– reference: ZhangXHuangXLiuZThe existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delayNonlinear Anal. Hybrid Syst.201044775781268024510.1016/j.nahs.2010.05.007
– reference: BelmekkiMMekhalfiKOn fractional differential equations with state-dependent delay via Kuratowski measure of noncompactnessFilomat2017312451460362885210.2298/FIL1702451B
– reference: Sohr, H.: The Navier-Stokes equations. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2001. An elementary functional analytic approach, [2013 reprint of the 2001 original] [MR1928881]
– reference: DuMWangZHuHMeasuring memory with the order of fractional derivativeSci. Rep.2013311310.1038/srep03431
– reference: EzzinbiKFuXHilalKExistence and regularity in the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}-norm for some neutral partial differential equations with nonlocal conditionsNonlinear Anal.200767516131622232330710.1016/j.na.2006.08.003
– reference: ZhangXChenPFractional evolution equation nonlocal problems with noncompact semigroupsOpuscula Math.2016361123137340583310.7494/OpMath.2016.36.1.123
– reference: SharmaMDubeySAnalysis of fractional functional differential equations of neutral type with nonlocal conditionsDiffer. Equ. Dyn. Syst.2017254499517370858110.1007/s12591-016-0290-1
– reference: WangRNYangYHOn the Cauchy problems of fractional evolution equations with nonlocal initial conditionsResults Math.2013631–21530300966910.1007/s00025-011-0142-9
– reference: Li, C., LI, M.: Hölder regularity for abstract fractional cauchy problems with order in (0, 1). J. Appl. Math. Phys. 6(01), 310 (2018)
– reference: DubeySSharmaMSolutions to fractional functional differential equations with nonlocal conditionsFract. Calc. Appl. Anal.2014173654673326030010.2478/s13540-014-0191-3
– reference: HernándezEOn abstract differential equations with state dependent non-local conditionsJ. Math. Anal. Appl.20184661408425381812410.1016/j.jmaa.2018.05.080
– reference: BurlicăMDNeculaMRoşuDVrabieIIDelay Differential Evolutions Subjected to Nonlocal Initial Conditions2016Boca Raton, FLMonographs and Research Notes in Mathematics. CRC Press
– reference: Langlands, T. A. M., Henry, B. I. : Fractional chemotaxis diffusion equations. Phys. Rev. E (3) 81(5), 051102 (2010)
– reference: FuXHuangRExistence of solutions for neutral integro-differential equations with state-dependent delayAppl. Math. Comput.2013224743759312766110.1016/j.amc.2013.09.010
– reference: Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 77 (2000)
– reference: FujitaHMorimotoHOn fractional powers of the Stokes operatorProc. Japan Acad.1970461141114329675510.2183/pjab1945.46.1141
– reference: Vrabie, I. I. : C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0$$\end{document}-semigroups and applications, volume 191 of North-Holland Mathematics Studies. North-Holland Publishing Co. Amsterdam (2003)
– reference: GigaYWeak and strong solutions of the Navier-Stokes initial value problemPubl. Res. Inst. Math. Sci.198319388791072345410.2977/prims/1195182014
– reference: Kilbas, A. A., Srivastava, H. M., Trujillo, J. J. ; Theory and applications of fractional differential equations, volume 204 of North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam (2006)
– reference: DubeySABahugunaDExistence and regularity of solutions to nonlocal retarded differential equationsAppl. Math. Comput.2009215724132424256345510.1016/j.amc.2009.08.036
– reference: HernándezEProkopczykALadeiraLA note on partial functional differential equations with state-dependent delayNonlinear Anal. Real World Appl.200674510519223521510.1016/j.nonrwa.2005.03.014
– reference: HernándezEPierriMWuJC1+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1+\alpha }$$\end{document}-strict solutions and wellposedness of abstract differential equations with state dependent delayJ. Differ. Equ.2016261126856688210.1016/j.jde.2016.09.008
– reference: dos SantosJPCCuevasCde AndradeBExistence results for a fractional equation with state-dependent delayAdv. Differ. Equ.20112011642013115278066710.1155/2011/642013
– reference: ChangYKKavithaVArjunanMMallika: Existence and uniqueness of mild solutions to a semilinear integrodifferential equation of fractional orderNonlinear Anal.2009711155515559256022310.1016/j.na.2009.04.058
– reference: GuswantoBHSuzukiTExistence and uniqueness of mild solutions for fractional semilinear differential equationsElectron. J. Differ. Equ.201520151681163375999
– reference: VrabieIIA class of semilinear delay differential equations with nonlocal initial conditionsDyn. Partial Differ. Equ.20181514560374530010.4310/DPDE.2018.v15.n1.a2
– reference: WangRNXiaoTJLiangJA note on the fractional Cauchy problems with nonlocal initial conditionsAppl. Math. Lett.201124814351442279364710.1016/j.aml.2011.03.026
– reference: ByszewskiLLakshmikanthamVTheorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach spaceAppl. Anal.19914011119112132110.1080/00036819008839989
– reference: GuswantoBHFractional nonlinear evolution equations with sectorial linear operatorsJ. Fract. Calc. Appl.20191012132273949597
– volume: 2009
  start-page: 1
  issue: 38
  year: 2009
  ident: 600_CR6
  publication-title: Electron. J. Differ. Equ.
– volume: 7
  start-page: 510
  issue: 4
  year: 2006
  ident: 600_CR19
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2005.03.014
– volume: 67
  start-page: 1613
  issue: 5
  year: 2007
  ident: 600_CR11
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2006.08.003
– ident: 600_CR23
  doi: 10.1103/PhysRevE.81.051102
– volume: 24
  start-page: 1435
  issue: 8
  year: 2011
  ident: 600_CR30
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2011.03.026
– ident: 600_CR25
  doi: 10.1016/S0370-1573(00)00070-3
– volume: 36
  start-page: 123
  issue: 1
  year: 2016
  ident: 600_CR32
  publication-title: Opuscula Math.
  doi: 10.7494/OpMath.2016.36.1.123
– volume: 3
  start-page: 1
  issue: 1
  year: 2013
  ident: 600_CR8
  publication-title: Sci. Rep.
  doi: 10.1038/srep03431
– volume: 17
  start-page: 654
  issue: 3
  year: 2014
  ident: 600_CR9
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.2478/s13540-014-0191-3
– volume: 31
  start-page: 451
  issue: 2
  year: 2017
  ident: 600_CR2
  publication-title: Filomat
  doi: 10.2298/FIL1702451B
– ident: 600_CR20
  doi: 10.1017/S001309151800069X
– ident: 600_CR24
  doi: 10.4236/jamp.2018.61030
– volume: 46
  start-page: 1141
  year: 1970
  ident: 600_CR13
  publication-title: Proc. Japan Acad.
  doi: 10.2183/pjab1945.46.1141
– volume: 2011
  start-page: 1
  issue: 642013
  year: 2011
  ident: 600_CR7
  publication-title: Adv. Differ. Equ.
  doi: 10.1155/2011/642013
– volume: 19
  start-page: 887
  issue: 3
  year: 1983
  ident: 600_CR14
  publication-title: Publ. Res. Inst. Math. Sci.
  doi: 10.2977/prims/1195182014
– ident: 600_CR27
  doi: 10.1007/978-3-0348-0551-3
– ident: 600_CR1
  doi: 10.1016/j.camwa.2011.02.033
– volume: 63
  start-page: 15
  issue: 1–2
  year: 2013
  ident: 600_CR31
  publication-title: Results Math.
  doi: 10.1007/s00025-011-0142-9
– volume: 40
  start-page: 11
  issue: 1
  year: 1991
  ident: 600_CR4
  publication-title: Appl. Anal.
  doi: 10.1080/00036819008839989
– volume: 81
  start-page: 89
  issue: 1
  year: 2020
  ident: 600_CR21
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-018-9477-x
– ident: 600_CR22
– volume: 25
  start-page: 499
  issue: 4
  year: 2017
  ident: 600_CR26
  publication-title: Differ. Equ. Dyn. Syst.
  doi: 10.1007/s12591-016-0290-1
– volume: 15
  start-page: 45
  issue: 1
  year: 2018
  ident: 600_CR29
  publication-title: Dyn. Partial Differ. Equ.
  doi: 10.4310/DPDE.2018.v15.n1.a2
– volume: 466
  start-page: 408
  issue: 1
  year: 2018
  ident: 600_CR17
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2018.05.080
– volume-title: Delay Differential Evolutions Subjected to Nonlocal Initial Conditions
  year: 2016
  ident: 600_CR3
– volume: 4
  start-page: 775
  issue: 4
  year: 2010
  ident: 600_CR33
  publication-title: Nonlinear Anal. Hybrid Syst.
  doi: 10.1016/j.nahs.2010.05.007
– ident: 600_CR28
– volume: 10
  start-page: 213
  issue: 1
  year: 2019
  ident: 600_CR15
  publication-title: J. Fract. Calc. Appl.
– volume: 224
  start-page: 743
  year: 2013
  ident: 600_CR12
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2013.09.010
– volume: 2015
  start-page: 1
  issue: 168
  year: 2015
  ident: 600_CR16
  publication-title: Electron. J. Differ. Equ.
– volume: 215
  start-page: 2413
  issue: 7
  year: 2009
  ident: 600_CR10
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.08.036
– volume: 71
  start-page: 5551
  issue: 11
  year: 2009
  ident: 600_CR5
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2009.04.058
– volume: 261
  start-page: 6856
  issue: 12
  year: 2016
  ident: 600_CR18
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2016.09.008
SSID ssj0067947
Score 2.286598
Snippet In this paper, we consider a class of fractional order semilinear abstract Cauchy problem with state dependent delay subject to nonlocal initial conditions,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 685
SubjectTerms Boundary value problems
Computer Science
Engineering
Existence theorems
Fixed points (mathematics)
Initial conditions
Mathematics
Mathematics and Statistics
Original Research
Title On Fractional Semilinear Nonlocal Initial Value Problem with State Dependent Delay
URI https://link.springer.com/article/10.1007/s12591-022-00600-3
https://www.proquest.com/docview/3067416577
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAo4AolMoDG0RqbOc1ttBSQBQEFJUpcmJHQiopatOBf8_ZSQggGJiclzycz3ffxXffARzH6PRF7NsWOk9p8ShWls-YsjQHbuALG22mybYYucMxv5o4k6IobFFmu5dHksZSV8VuiNQx9MXgSZOIoPVYhbqDsbvW6zHtlvbXRQ0zRdKBZ5s89aJU5vc5vrujCmP-OBY13mawBRsFTCTdfF23YUWlDdgsWzCQYkc2YP0LnyDe3XySsC524P42JYN5XriAcz2o1xeNKcWcjGap8WHkUqcO4fgkpktF7vLmMkT_myUGhZLzokduhldT8b4L40H_8WxoFS0UrJh6nczybSF4xHniM-lpYhfGdJCXCLejGI0lTRKKLh5jIu4p2XFVoEQUcxVIRyJ48Nke1NJZqvaBeCzmiZD4jAZcchppohvb9amUniNtuwknpSTDt5wpI6w4kbXcQ5R7aOQesia0SmGHxa5ZhDp8QYDoeF4TTssFqF7_PdvB_z4_hDXUG55n3bagls2X6gixRRa1od4d9HojPV48X_fbRrU-AMORxUw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHNSD-Iwo6h68aQntbl9HoiAIolEweGq23W1ixGKgHPTXO9uHVaMHT31ms53dnfmmO_MNwEmARp8Hjq6h8RQa8wOpOZRKTXHgug7XUWcm0RYDqzNiV2NznCWFzfNo93xLMtHURbIbInV0fdF5UiQiqD2WoczQBzdLUG5ePvZauQa2cI4ladKurSeR6lmyzO-tfDdIBcr8sTGa2Jt2BUZ5T9Mwk-f6IvbrwfsPEsf_fsoGrGcAlDTTGbMJSzLagkpe3IFka30L1r4wFeLV9Se963wb7m4i0p6lKRHY1r18eVJolc_IYBol1pF0VVASHh_4ZCHJbVq2hqi_viTBt-Qiq74b49mEv-3AqN0anne0rDiDFhh2I9YcnXPmMxY6VNiKMoZS5T6G3GpIagTCCEMDwQN6W8yWomFJV3I_YNIVpkBY4tBdKEXTSO4BsWnAQi7wnuEywQxfUejolmMIYZtC16twmo-Q95pycHgF27ISpYei9BJRerQKtXwQvWw9zj3lGCH0NG27Cmf5mBSP_25t_3-vH8NKZ3jd9_rdQe8AVg1EQGlsbw1K8WwhDxHBxP5RNmE_AAFA4hY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOPAaIwYAcuEHFmmR9HCfGtPEYEzC0W5U2qYQ0umnrDvx7nLSlA8GBU5_ywUnsz4n9GeA8QqcvIs-20HlKi4eRsjzGlKU5cH1P2GgzTbZF3-kO-e2oOVqq4jfZ7sWRZFbToFmakvRqKuOrsvANUTuGwRhIaUIRtCSrsIbm2NZJXUPaKmyxg7PNFEz7rm1y1vOymd9lfHdNJd78cURqPE9nB7ZyyEha2RjvwopKqrBdtGMg-eqswuYStyA-PXwRss734OkxIZ1ZVsSAsp7V-5vGl2JG-pPE-DPS02lEeH0V44Uig6zRDNH7tMQgUtLO--WmeDcWH_sw7Ny8XHetvJ2CFVG3kVqeLQQPOY89Jl1N8sKYDvhi4TQUo5GkcUzR3WN8xF0lG47ylQgjrnzZlAgkPHYAlWSSqEMgLot4LCS-oz6XnIaa9MZ2PCql25S2XYOLQpPBNGPNCEp-ZK33APUeGL0HrAb1QtlBvoLmgQ5lECw2XbcGl8UAlJ__lnb0v9_PYH3Q7gT3vf7dMWxQhCxZMm4dKulsoU4QcqThqZlVn6fwyWs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Fractional+Semilinear+Nonlocal+Initial+Value+Problem+with+State+Dependent+Delay&rft.jtitle=Differential+equations+and+dynamical+systems&rft.au=Alam%2C+Md+Mansur&rft.au=Dubey%2C+Shruti&rft.date=2024-07-01&rft.pub=Springer+India&rft.issn=0971-3514&rft.eissn=0974-6870&rft.volume=32&rft.issue=3&rft.spage=685&rft.epage=708&rft_id=info:doi/10.1007%2Fs12591-022-00600-3&rft.externalDocID=10_1007_s12591_022_00600_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0971-3514&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0971-3514&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0971-3514&client=summon