Improved approximation algorithms for the k-path partition problem
The k -path partition problem (kPP), defined on a graph G = ( V , E ) , is a well-known NP-hard problem when k ≥ 3 . The goal of the kPP is to find a minimum collection of vertex-disjoint paths to cover all the vertices in G such that the number of vertices on each path is no more than k . In this p...
Saved in:
Published in | Journal of global optimization Vol. 90; no. 4; pp. 983 - 1006 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The
k
-path partition problem (kPP), defined on a graph
G
=
(
V
,
E
)
, is a well-known NP-hard problem when
k
≥
3
. The goal of the kPP is to find a minimum collection of vertex-disjoint paths to cover all the vertices in
G
such that the number of vertices on each path is no more than
k
. In this paper, we give two approximation algorithms for the kPP. The first one, called Algorithm 1, uses an algorithm for the (0,1)-weighted maximum traveling salesman problem as a subroutine. When
G
is undirected, the approximation ratio of Algorithm 1 is
k
+
12
7
-
6
7
k
, which improves on the previous best-known approximation algorithm for every
k
≥
7
. When
G
is directed, Algorithm 1 is a
k
+
6
4
-
3
4
k
-approximation algorithm, which improves the existing best available approximation algorithm for every
k
≥
10
. Our second algorithm, i.e. Algorithm 2, is a local search algorithm tailored for the kPP in undirected graphs with small
k
. Algorithm 2 improves on the approximation ratios of the best available algorithm for every
k
=
4
,
5
,
6
. Combined with Algorithms 1 and 2, we have improved the approximation ratio for the kPP in undirected graphs for each
k
≥
4
as well as the approximation ratio for the kPP in directed graphs for each
k
≥
10
. As for the negative side, we show that for any
ϵ
>
0
it is NP-hard to approximate the kPP (with
k
being part of the input) within the ratio
O
(
k
1
-
ϵ
)
, which implies that Algorithm 1 is asymptotically optimal. |
---|---|
AbstractList | The k-path partition problem (kPP), defined on a graph G=(V,E), is a well-known NP-hard problem when k≥3. The goal of the kPP is to find a minimum collection of vertex-disjoint paths to cover all the vertices in G such that the number of vertices on each path is no more than k. In this paper, we give two approximation algorithms for the kPP. The first one, called Algorithm 1, uses an algorithm for the (0,1)-weighted maximum traveling salesman problem as a subroutine. When G is undirected, the approximation ratio of Algorithm 1 is k+127-67k, which improves on the previous best-known approximation algorithm for every k≥7. When G is directed, Algorithm 1 is a k+64-34k-approximation algorithm, which improves the existing best available approximation algorithm for every k≥10. Our second algorithm, i.e. Algorithm 2, is a local search algorithm tailored for the kPP in undirected graphs with small k. Algorithm 2 improves on the approximation ratios of the best available algorithm for every k=4,5,6. Combined with Algorithms 1 and 2, we have improved the approximation ratio for the kPP in undirected graphs for each k≥4 as well as the approximation ratio for the kPP in directed graphs for each k≥10. As for the negative side, we show that for any ϵ>0 it is NP-hard to approximate the kPP (with k being part of the input) within the ratio O(k1-ϵ), which implies that Algorithm 1 is asymptotically optimal. The k -path partition problem (kPP), defined on a graph G = ( V , E ) , is a well-known NP-hard problem when k ≥ 3 . The goal of the kPP is to find a minimum collection of vertex-disjoint paths to cover all the vertices in G such that the number of vertices on each path is no more than k . In this paper, we give two approximation algorithms for the kPP. The first one, called Algorithm 1, uses an algorithm for the (0,1)-weighted maximum traveling salesman problem as a subroutine. When G is undirected, the approximation ratio of Algorithm 1 is k + 12 7 - 6 7 k , which improves on the previous best-known approximation algorithm for every k ≥ 7 . When G is directed, Algorithm 1 is a k + 6 4 - 3 4 k -approximation algorithm, which improves the existing best available approximation algorithm for every k ≥ 10 . Our second algorithm, i.e. Algorithm 2, is a local search algorithm tailored for the kPP in undirected graphs with small k . Algorithm 2 improves on the approximation ratios of the best available algorithm for every k = 4 , 5 , 6 . Combined with Algorithms 1 and 2, we have improved the approximation ratio for the kPP in undirected graphs for each k ≥ 4 as well as the approximation ratio for the kPP in directed graphs for each k ≥ 10 . As for the negative side, we show that for any ϵ > 0 it is NP-hard to approximate the kPP (with k being part of the input) within the ratio O ( k 1 - ϵ ) , which implies that Algorithm 1 is asymptotically optimal. |
Author | Li, Shiming Yu, Wei Liu, Zhaohui |
Author_xml | – sequence: 1 givenname: Shiming surname: Li fullname: Li, Shiming organization: School of Mathematics, East China University of Science and Technology – sequence: 2 givenname: Wei orcidid: 0000-0002-6127-1264 surname: Yu fullname: Yu, Wei email: yuwei@ecust.edu.cn organization: School of Mathematics, East China University of Science and Technology – sequence: 3 givenname: Zhaohui surname: Liu fullname: Liu, Zhaohui organization: School of Mathematics, East China University of Science and Technology |
BookMark | eNp9kDtPAzEQhC0UJJLAH6A6idqwts-vEiIekSLRQG05iZ1cyJ0P20Hw7zE5JDqq3eKbmd2ZoFEXOofQJYFrAiBvEgGlFQZaYyA1VVieoDHhkmGqiRihMWjKMQcgZ2iS0g4AtOJ0jO7mbR_Dh1tXti_LZ9Pa3ISusvtNiE3etqnyIVZ566o33Nu8rXobc3NkCr_cu_YcnXq7T-7id07R68P9y-wJL54f57PbBV5RCRkrkFx4pbh0jHpR14JxzZkUttxLKLHOWa7VmngnlVqrpfdWcFU7Jqle8ppN0dXgW3LfDy5lswuH2JVIw4peEQFaFIoO1CqGlKLzpo_lqfhlCJifrszQlSldmWNXRhYRG0SpwN3GxT_rf1TfidBtRg |
Cites_doi | 10.1007/s10878-022-00915-5 10.1007/978-1-4684-2001-2_9 10.3390/e22010073 10.1007/BF02523689 10.1016/j.orl.2006.12.004 10.1007/s00224-017-9818-1 10.1007/s11590-023-01989-8 10.1016/S0304-3975(02)00577-7 10.1016/S0166-218X(97)00012-7 10.1016/j.ic.2024.105150 10.1016/j.ejor.2018.06.002 10.1007/s10878-018-00372-z 10.1007/s10107-004-0505-z 10.1287/moor.18.1.1 10.1080/00207549108930121 10.1016/j.endm.2018.05.009 10.1007/978-3-319-59250-3_15 10.1007/978-3-540-27821-4_6 10.1145/1109557.1109627 10.1007/978-3-030-97099-4_2 10.1145/800133.804353 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s10898-024-01428-7 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Sciences (General) Computer Science |
EISSN | 1573-2916 |
EndPage | 1006 |
ExternalDocumentID | 10_1007_s10898_024_01428_7 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12371317 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -52 -57 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 8FD ABRTQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c270t-80756f8857e32f64463595376a428121aeea598d1fe788d8bffa6584e3729b543 |
IEDL.DBID | U2A |
ISSN | 0925-5001 |
IngestDate | Sat Aug 16 22:23:45 EDT 2025 Tue Jul 01 00:53:03 EDT 2025 Fri Feb 21 02:37:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Maximum traveling salesman problem Path partition problem Local search Approximation algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-80756f8857e32f64463595376a428121aeea598d1fe788d8bffa6584e3729b543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6127-1264 |
PQID | 3121816096 |
PQPubID | 29930 |
PageCount | 24 |
ParticipantIDs | proquest_journals_3121816096 crossref_primary_10_1007_s10898_024_01428_7 springer_journals_10_1007_s10898_024_01428_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241200 2024-12-00 20241201 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
PublicationTitle | Journal of global optimization |
PublicationTitleAbbrev | J Glob Optim |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | CR2 Goldberg, Karzanov (CR11) 2004; 100 CR4 CR3 Korpelainen (CR15) 2018; 67 Zhang, Wang, Han, Yu, Zhu (CR24) 2020; 22 Chen, Goebel, Lin, Su, Xu, Zhang (CR7) 2019; 38 CR8 Karp, Miller, Thatcher (CR13) 1972 Letchford, Salazar-Gonzalez (CR16) 2019; 272 CR9 Monnot, Toulouse (CR18) 2007; 35 Garey, Johnson (CR10) 1979 CR14 Papadimitriou, Yannakakis (CR20) 1993; 18 Chen, Chen, Kennedy, Lin, Xu, Zhang (CR5) 2024; 297 Paluch (CR19) 2018; 62 Yan, Chang, Hedetiemi, Hedetniemi (CR23) 1997; 78 Askin, Cresswell, Goldberg, Vakharia (CR1) 1991; 29 Karger, Motwani, Ramkumar (CR12) 1997; 18 Li, Yu, Liu (CR17) 2024; 18 Steiner (CR21) 2000; 147 Chen, Goebel, Lin, Liu, Su, Tong, Xu, Zhang (CR6) 2022; 44 Steiner (CR22) 2003; 290 Y Chen (1428_CR6) 2022; 44 RG Askin (1428_CR1) 1991; 29 1428_CR8 S Li (1428_CR17) 2024; 18 K Paluch (1428_CR19) 2018; 62 Y Chen (1428_CR5) 2024; 297 1428_CR9 AV Goldberg (1428_CR11) 2004; 100 RM Karp (1428_CR13) 1972 Y Chen (1428_CR7) 2019; 38 MR Garey (1428_CR10) 1979 N Korpelainen (1428_CR15) 2018; 67 G Steiner (1428_CR21) 2000; 147 D Karger (1428_CR12) 1997; 18 G Steiner (1428_CR22) 2003; 290 CH Papadimitriou (1428_CR20) 1993; 18 W Zhang (1428_CR24) 2020; 22 J Monnot (1428_CR18) 2007; 35 AN Letchford (1428_CR16) 2019; 272 J Yan (1428_CR23) 1997; 78 1428_CR2 1428_CR4 1428_CR3 1428_CR14 |
References_xml | – volume: 44 start-page: 3595 year: 2022 end-page: 3610 ident: CR6 article-title: A local search 4/3-approximation algorithm for the minimum 3-path partition problem publication-title: J. Comb. Optim. doi: 10.1007/s10878-022-00915-5 – volume: 147 start-page: 89 year: 2000 end-page: 96 ident: CR21 article-title: On the -th path partition problem in cographs publication-title: Congr. Numer. – start-page: 85 year: 1972 end-page: 103 ident: CR13 article-title: Reducibility among combinatorial problems publication-title: Complexity of Computer Computations doi: 10.1007/978-1-4684-2001-2_9 – volume: 22 start-page: 0 issue: 1 year: 2020 end-page: 73 ident: CR24 article-title: An image encryption algorithm based on random Hamiltonian path publication-title: Entropy doi: 10.3390/e22010073 – ident: CR3 – ident: CR4 – ident: CR14 – ident: CR2 – volume: 18 start-page: 82 year: 1997 end-page: 98 ident: CR12 article-title: On approximating the longest path in a graph publication-title: Algorithmica doi: 10.1007/BF02523689 – volume: 35 start-page: 677 issue: 5 year: 2007 end-page: 684 ident: CR18 article-title: The path partition problem and related problems in bipartite graphs publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2006.12.004 – volume: 62 start-page: 319 year: 2018 end-page: 336 ident: CR19 article-title: Maximum ATSP with weights zero and one via half-edges publication-title: Theory Comput. Syst. doi: 10.1007/s00224-017-9818-1 – ident: CR9 – volume: 18 start-page: 279 year: 2024 end-page: 290 ident: CR17 article-title: A local search algorithm for the -path partition problem publication-title: Optim. Lett. doi: 10.1007/s11590-023-01989-8 – volume: 290 start-page: 2147 issue: 3 year: 2003 end-page: 2155 ident: CR22 article-title: On the -path partition of graphs publication-title: Theoret. Comput. Sci. doi: 10.1016/S0304-3975(02)00577-7 – ident: CR8 – year: 1979 ident: CR10 publication-title: Computers and Intractability: A Guide to the Theory of NP-completeness – volume: 78 start-page: 227 issue: 1 year: 1997 end-page: 233 ident: CR23 article-title: -path partitions in trees publication-title: Discret. Appl. Math. doi: 10.1016/S0166-218X(97)00012-7 – volume: 297 year: 2024 ident: CR5 article-title: Approximating the directed path partition problems publication-title: Inf. Comput. doi: 10.1016/j.ic.2024.105150 – volume: 272 start-page: 24 year: 2019 end-page: 31 ident: CR16 article-title: The capacitated vehicle routing problem: stronger bounds in pseudo-polynomial time publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2018.06.002 – volume: 38 start-page: 150 issue: 1 year: 2019 end-page: 164 ident: CR7 article-title: An improved approximation algorithm for the minimum 3-path partition problem publication-title: J. Comb. Optim. doi: 10.1007/s10878-018-00372-z – volume: 100 start-page: 537 issue: 3 year: 2004 end-page: 568 ident: CR11 article-title: Maximum skew-symmetric flows and matchings publication-title: Math. Program. doi: 10.1007/s10107-004-0505-z – volume: 18 start-page: 1 issue: 1 year: 1993 end-page: 11 ident: CR20 article-title: The traveling salesman problem with distance one and two publication-title: Math. Oper. Res. doi: 10.1287/moor.18.1.1 – volume: 29 start-page: 1081 issue: 6 year: 1991 end-page: 1100 ident: CR1 article-title: A hamiltonian path approach to reordering the part-machine matrix for cellular manufacturing publication-title: Int. J. Prod. Res. doi: 10.1080/00207549108930121 – volume: 67 start-page: 49 year: 2018 end-page: 56 ident: CR15 article-title: A boundary class for the k-path partition problem publication-title: Electron. Notes Discrete Math doi: 10.1016/j.endm.2018.05.009 – volume: 18 start-page: 1 issue: 1 year: 1993 ident: 1428_CR20 publication-title: Math. Oper. Res. doi: 10.1287/moor.18.1.1 – ident: 1428_CR9 doi: 10.1007/978-3-319-59250-3_15 – ident: 1428_CR3 doi: 10.1007/978-3-540-27821-4_6 – volume: 38 start-page: 150 issue: 1 year: 2019 ident: 1428_CR7 publication-title: J. Comb. Optim. doi: 10.1007/s10878-018-00372-z – volume: 272 start-page: 24 year: 2019 ident: 1428_CR16 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2018.06.002 – volume: 18 start-page: 279 year: 2024 ident: 1428_CR17 publication-title: Optim. Lett. doi: 10.1007/s11590-023-01989-8 – ident: 1428_CR8 – volume: 44 start-page: 3595 year: 2022 ident: 1428_CR6 publication-title: J. Comb. Optim. doi: 10.1007/s10878-022-00915-5 – volume: 78 start-page: 227 issue: 1 year: 1997 ident: 1428_CR23 publication-title: Discret. Appl. Math. doi: 10.1016/S0166-218X(97)00012-7 – volume: 100 start-page: 537 issue: 3 year: 2004 ident: 1428_CR11 publication-title: Math. Program. doi: 10.1007/s10107-004-0505-z – volume: 62 start-page: 319 year: 2018 ident: 1428_CR19 publication-title: Theory Comput. Syst. doi: 10.1007/s00224-017-9818-1 – volume: 22 start-page: 0 issue: 1 year: 2020 ident: 1428_CR24 publication-title: Entropy doi: 10.3390/e22010073 – volume: 147 start-page: 89 year: 2000 ident: 1428_CR21 publication-title: Congr. Numer. – ident: 1428_CR2 doi: 10.1145/1109557.1109627 – volume: 297 year: 2024 ident: 1428_CR5 publication-title: Inf. Comput. doi: 10.1016/j.ic.2024.105150 – ident: 1428_CR4 doi: 10.1007/978-3-030-97099-4_2 – volume: 67 start-page: 49 year: 2018 ident: 1428_CR15 publication-title: Electron. Notes Discrete Math doi: 10.1016/j.endm.2018.05.009 – ident: 1428_CR14 doi: 10.1145/800133.804353 – volume: 290 start-page: 2147 issue: 3 year: 2003 ident: 1428_CR22 publication-title: Theoret. Comput. Sci. doi: 10.1016/S0304-3975(02)00577-7 – volume-title: Computers and Intractability: A Guide to the Theory of NP-completeness year: 1979 ident: 1428_CR10 – start-page: 85 volume-title: Complexity of Computer Computations year: 1972 ident: 1428_CR13 doi: 10.1007/978-1-4684-2001-2_9 – volume: 35 start-page: 677 issue: 5 year: 2007 ident: 1428_CR18 publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2006.12.004 – volume: 29 start-page: 1081 issue: 6 year: 1991 ident: 1428_CR1 publication-title: Int. J. Prod. Res. doi: 10.1080/00207549108930121 – volume: 18 start-page: 82 year: 1997 ident: 1428_CR12 publication-title: Algorithmica doi: 10.1007/BF02523689 |
SSID | ssj0009852 |
Score | 2.4064467 |
Snippet | The
k
-path partition problem (kPP), defined on a graph
G
=
(
V
,
E
)
, is a well-known NP-hard problem when
k
≥
3
. The goal of the kPP is to find a minimum... The k-path partition problem (kPP), defined on a graph G=(V,E), is a well-known NP-hard problem when k≥3. The goal of the kPP is to find a minimum collection... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 983 |
SubjectTerms | Algorithms Apexes Approximation Computer Science Graph theory Graphs Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Real Functions Search algorithms Traveling salesman problem |
Title | Improved approximation algorithms for the k-path partition problem |
URI | https://link.springer.com/article/10.1007/s10898-024-01428-7 https://www.proquest.com/docview/3121816096 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT8IwFH5RuOhBBTWiaHrwoNEl0K1bdwQDEg2cJMHT0rFWiQqEzcSf72vXOTR68LQse-nh9b2-r2u_7wGct0LOaCCpE3u-cjyFmR6GijpUKizogYgV1dzh4cgfjL27CZtYUlha3HYvjiTNSr1GduOaDkb1rQkEzU6wCVWm9-4YxWPaKaV2uemz0wopcxiuwpYq8_sY38tRiTF_HIuaatPfgx0LE0knn9cabMh5HXaLFgzEZmQdttf0BPFt-CXCmtahZq1ScmHFpS_3oZv_RZAJMWriH7OcukjE69NiNcue31KCMJbgMOTF0e2KyVIHl7GxzWcOYNzvPdwMHNtHwZnSoJUZvWFfcc4C6VKFAMjXbFxcWQS6oE3bQkrBQp60lcQNccJjpYQGJlIf6cXMcw-hMl_M5REQH2sbE17gKkwuhdaxmjKa8ClVrqDMbcBV4c5omctlRKUwsnZ-hM6PjPOjoAHNwuORTZ00ctsadfi4tWrAdTEL5ee_Rzv-n_kJbFEdCOZqShMq2epdniLAyOIzqHb63e5IP28f73tnJr4-ASO9x5g |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV2xTsMwED1BGYABaAFRKOCBAQSRGidOnLEgUIG2Uyt1s5LWhgpoqyZIfD5nxyEFwcAY-eTh7PM9x_feAZw1I85oKKmT-IFyfIWRHkWKOlQqTOhhnCiqucPdXtAe-A9DNrSksLSodi-eJM1JvUR245oORnXVBIJmJ1yFNQQDXBdyDWirlNrlps9OM6LMYXgKW6rM73N8T0clxvzxLGqyzd0ObFmYSFr5ulZhRU5rsF20YCA2ImuwuaQniF_dLxHWtAZVa5WScysufbEL1_lfBDkmRk38Y5JTF0n8-jRbTLLnt5QgjCU4DXlxdLtiMteby9jY5jN7MLi77d-0HdtHwRnRsJkZveFAcc5C6VGFACjQbFw8WWJ0gUvdWMqYRXzsKokX4jFPlIo1MJH6SS9hvrcPlelsKg-ABJjbWOyHnsLgUmidqBGjYz6iyosp8-pwWbhTzHO5DFEKI2vnC3S-MM4XYR0ahceFDZ1UeK5GHQFerepwVaxCOfz3bIf_Mz-F9Xa_2xGd-97jEWxQvSlMmUoDKtniXR4j2MiSE7O3PgEu3cd7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMQAuIQgEPDCCI2jhxHmN5VOXRioFKbFbS2FABadUEiZ_P2XFoQTAwRj55ON_5Psf-vgM4aoUBo76gVux60nIlZnoYSmpRIbGg-1EsqeIO9_ped-DePLLHORa_fu1eXkkWnAal0pTmzUkim3PEt0BRw6h6QYEA2vIXYQm3Y1vF9YC2Z7K7ge650wopsxjuyIY28_sc30vTDG_-uCLVlaezAWsGMpJ2scZVWBBpDdbLdgzEZGcNVue0BfGr9yXImtWgaqwycmyEpk824bz4oyASopXFP0YFjZFEr0_j6Sh_fssIQlqC05AXS7UuJhMVaNrGNKLZgkHn6uGia5meCtaQ-q1caw97MgiYLxwqEQx5ipmLu0yELrCpHQkRsTBIbCnwcJwEsZSRAilCXe_FzHW2oZKOU7EDxMM6xyLXdyQmmkTrWA4ZTYIhlU5EmVOH09KdfFJIZ_CZSLJyPkfnc-187tehUXqcmzTKuGMrBOLhMasOZ-UqzIb_nm33f-aHsHx_2eF31_3bPVihKib0i5UGVPLpu9hH3JHHBzq0PgEY3cu3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+approximation+algorithms+for+the+k-path+partition+problem&rft.jtitle=Journal+of+global+optimization&rft.au=Li%2C+Shiming&rft.au=Yu%2C+Wei&rft.au=Liu%2C+Zhaohui&rft.date=2024-12-01&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=90&rft.issue=4&rft.spage=983&rft.epage=1006&rft_id=info:doi/10.1007%2Fs10898-024-01428-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10898_024_01428_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |