Improved approximation algorithms for the k-path partition problem

The k -path partition problem (kPP), defined on a graph G = ( V , E ) , is a well-known NP-hard problem when k ≥ 3 . The goal of the kPP is to find a minimum collection of vertex-disjoint paths to cover all the vertices in G such that the number of vertices on each path is no more than k . In this p...

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 90; no. 4; pp. 983 - 1006
Main Authors Li, Shiming, Yu, Wei, Liu, Zhaohui
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The k -path partition problem (kPP), defined on a graph G = ( V , E ) , is a well-known NP-hard problem when k ≥ 3 . The goal of the kPP is to find a minimum collection of vertex-disjoint paths to cover all the vertices in G such that the number of vertices on each path is no more than k . In this paper, we give two approximation algorithms for the kPP. The first one, called Algorithm 1, uses an algorithm for the (0,1)-weighted maximum traveling salesman problem as a subroutine. When G is undirected, the approximation ratio of Algorithm 1 is k + 12 7 - 6 7 k , which improves on the previous best-known approximation algorithm for every k ≥ 7 . When G is directed, Algorithm 1 is a k + 6 4 - 3 4 k -approximation algorithm, which improves the existing best available approximation algorithm for every k ≥ 10 . Our second algorithm, i.e. Algorithm 2, is a local search algorithm tailored for the kPP in undirected graphs with small k . Algorithm 2 improves on the approximation ratios of the best available algorithm for every k = 4 , 5 , 6 . Combined with Algorithms 1 and 2, we have improved the approximation ratio for the kPP in undirected graphs for each k ≥ 4 as well as the approximation ratio for the kPP in directed graphs for each k ≥ 10 . As for the negative side, we show that for any ϵ > 0 it is NP-hard to approximate the kPP (with k being part of the input) within the ratio O ( k 1 - ϵ ) , which implies that Algorithm 1 is asymptotically optimal.
AbstractList The k-path partition problem (kPP), defined on a graph G=(V,E), is a well-known NP-hard problem when k≥3. The goal of the kPP is to find a minimum collection of vertex-disjoint paths to cover all the vertices in G such that the number of vertices on each path is no more than k. In this paper, we give two approximation algorithms for the kPP. The first one, called Algorithm 1, uses an algorithm for the (0,1)-weighted maximum traveling salesman problem as a subroutine. When G is undirected, the approximation ratio of Algorithm 1 is k+127-67k, which improves on the previous best-known approximation algorithm for every k≥7. When G is directed, Algorithm 1 is a k+64-34k-approximation algorithm, which improves the existing best available approximation algorithm for every k≥10. Our second algorithm, i.e. Algorithm 2, is a local search algorithm tailored for the kPP in undirected graphs with small k. Algorithm 2 improves on the approximation ratios of the best available algorithm for every k=4,5,6. Combined with Algorithms 1 and 2, we have improved the approximation ratio for the kPP in undirected graphs for each k≥4 as well as the approximation ratio for the kPP in directed graphs for each k≥10. As for the negative side, we show that for any ϵ>0 it is NP-hard to approximate the kPP (with k being part of the input) within the ratio O(k1-ϵ), which implies that Algorithm 1 is asymptotically optimal.
The k -path partition problem (kPP), defined on a graph G = ( V , E ) , is a well-known NP-hard problem when k ≥ 3 . The goal of the kPP is to find a minimum collection of vertex-disjoint paths to cover all the vertices in G such that the number of vertices on each path is no more than k . In this paper, we give two approximation algorithms for the kPP. The first one, called Algorithm 1, uses an algorithm for the (0,1)-weighted maximum traveling salesman problem as a subroutine. When G is undirected, the approximation ratio of Algorithm 1 is k + 12 7 - 6 7 k , which improves on the previous best-known approximation algorithm for every k ≥ 7 . When G is directed, Algorithm 1 is a k + 6 4 - 3 4 k -approximation algorithm, which improves the existing best available approximation algorithm for every k ≥ 10 . Our second algorithm, i.e. Algorithm 2, is a local search algorithm tailored for the kPP in undirected graphs with small k . Algorithm 2 improves on the approximation ratios of the best available algorithm for every k = 4 , 5 , 6 . Combined with Algorithms 1 and 2, we have improved the approximation ratio for the kPP in undirected graphs for each k ≥ 4 as well as the approximation ratio for the kPP in directed graphs for each k ≥ 10 . As for the negative side, we show that for any ϵ > 0 it is NP-hard to approximate the kPP (with k being part of the input) within the ratio O ( k 1 - ϵ ) , which implies that Algorithm 1 is asymptotically optimal.
Author Li, Shiming
Yu, Wei
Liu, Zhaohui
Author_xml – sequence: 1
  givenname: Shiming
  surname: Li
  fullname: Li, Shiming
  organization: School of Mathematics, East China University of Science and Technology
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-6127-1264
  surname: Yu
  fullname: Yu, Wei
  email: yuwei@ecust.edu.cn
  organization: School of Mathematics, East China University of Science and Technology
– sequence: 3
  givenname: Zhaohui
  surname: Liu
  fullname: Liu, Zhaohui
  organization: School of Mathematics, East China University of Science and Technology
BookMark eNp9kDtPAzEQhC0UJJLAH6A6idqwts-vEiIekSLRQG05iZ1cyJ0P20Hw7zE5JDqq3eKbmd2ZoFEXOofQJYFrAiBvEgGlFQZaYyA1VVieoDHhkmGqiRihMWjKMQcgZ2iS0g4AtOJ0jO7mbR_Dh1tXti_LZ9Pa3ISusvtNiE3etqnyIVZ566o33Nu8rXobc3NkCr_cu_YcnXq7T-7id07R68P9y-wJL54f57PbBV5RCRkrkFx4pbh0jHpR14JxzZkUttxLKLHOWa7VmngnlVqrpfdWcFU7Jqle8ppN0dXgW3LfDy5lswuH2JVIw4peEQFaFIoO1CqGlKLzpo_lqfhlCJifrszQlSldmWNXRhYRG0SpwN3GxT_rf1TfidBtRg
Cites_doi 10.1007/s10878-022-00915-5
10.1007/978-1-4684-2001-2_9
10.3390/e22010073
10.1007/BF02523689
10.1016/j.orl.2006.12.004
10.1007/s00224-017-9818-1
10.1007/s11590-023-01989-8
10.1016/S0304-3975(02)00577-7
10.1016/S0166-218X(97)00012-7
10.1016/j.ic.2024.105150
10.1016/j.ejor.2018.06.002
10.1007/s10878-018-00372-z
10.1007/s10107-004-0505-z
10.1287/moor.18.1.1
10.1080/00207549108930121
10.1016/j.endm.2018.05.009
10.1007/978-3-319-59250-3_15
10.1007/978-3-540-27821-4_6
10.1145/1109557.1109627
10.1007/978-3-030-97099-4_2
10.1145/800133.804353
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10898-024-01428-7
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 1006
ExternalDocumentID 10_1007_s10898_024_01428_7
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12371317
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c270t-80756f8857e32f64463595376a428121aeea598d1fe788d8bffa6584e3729b543
IEDL.DBID U2A
ISSN 0925-5001
IngestDate Sat Aug 16 22:23:45 EDT 2025
Tue Jul 01 00:53:03 EDT 2025
Fri Feb 21 02:37:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Maximum traveling salesman problem
Path partition problem
Local search
Approximation algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-80756f8857e32f64463595376a428121aeea598d1fe788d8bffa6584e3729b543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6127-1264
PQID 3121816096
PQPubID 29930
PageCount 24
ParticipantIDs proquest_journals_3121816096
crossref_primary_10_1007_s10898_024_01428_7
springer_journals_10_1007_s10898_024_01428_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR2
Goldberg, Karzanov (CR11) 2004; 100
CR4
CR3
Korpelainen (CR15) 2018; 67
Zhang, Wang, Han, Yu, Zhu (CR24) 2020; 22
Chen, Goebel, Lin, Su, Xu, Zhang (CR7) 2019; 38
CR8
Karp, Miller, Thatcher (CR13) 1972
Letchford, Salazar-Gonzalez (CR16) 2019; 272
CR9
Monnot, Toulouse (CR18) 2007; 35
Garey, Johnson (CR10) 1979
CR14
Papadimitriou, Yannakakis (CR20) 1993; 18
Chen, Chen, Kennedy, Lin, Xu, Zhang (CR5) 2024; 297
Paluch (CR19) 2018; 62
Yan, Chang, Hedetiemi, Hedetniemi (CR23) 1997; 78
Askin, Cresswell, Goldberg, Vakharia (CR1) 1991; 29
Karger, Motwani, Ramkumar (CR12) 1997; 18
Li, Yu, Liu (CR17) 2024; 18
Steiner (CR21) 2000; 147
Chen, Goebel, Lin, Liu, Su, Tong, Xu, Zhang (CR6) 2022; 44
Steiner (CR22) 2003; 290
Y Chen (1428_CR6) 2022; 44
RG Askin (1428_CR1) 1991; 29
1428_CR8
S Li (1428_CR17) 2024; 18
K Paluch (1428_CR19) 2018; 62
Y Chen (1428_CR5) 2024; 297
1428_CR9
AV Goldberg (1428_CR11) 2004; 100
RM Karp (1428_CR13) 1972
Y Chen (1428_CR7) 2019; 38
MR Garey (1428_CR10) 1979
N Korpelainen (1428_CR15) 2018; 67
G Steiner (1428_CR21) 2000; 147
D Karger (1428_CR12) 1997; 18
G Steiner (1428_CR22) 2003; 290
CH Papadimitriou (1428_CR20) 1993; 18
W Zhang (1428_CR24) 2020; 22
J Monnot (1428_CR18) 2007; 35
AN Letchford (1428_CR16) 2019; 272
J Yan (1428_CR23) 1997; 78
1428_CR2
1428_CR4
1428_CR3
1428_CR14
References_xml – volume: 44
  start-page: 3595
  year: 2022
  end-page: 3610
  ident: CR6
  article-title: A local search 4/3-approximation algorithm for the minimum 3-path partition problem
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-022-00915-5
– volume: 147
  start-page: 89
  year: 2000
  end-page: 96
  ident: CR21
  article-title: On the -th path partition problem in cographs
  publication-title: Congr. Numer.
– start-page: 85
  year: 1972
  end-page: 103
  ident: CR13
  article-title: Reducibility among combinatorial problems
  publication-title: Complexity of Computer Computations
  doi: 10.1007/978-1-4684-2001-2_9
– volume: 22
  start-page: 0
  issue: 1
  year: 2020
  end-page: 73
  ident: CR24
  article-title: An image encryption algorithm based on random Hamiltonian path
  publication-title: Entropy
  doi: 10.3390/e22010073
– ident: CR3
– ident: CR4
– ident: CR14
– ident: CR2
– volume: 18
  start-page: 82
  year: 1997
  end-page: 98
  ident: CR12
  article-title: On approximating the longest path in a graph
  publication-title: Algorithmica
  doi: 10.1007/BF02523689
– volume: 35
  start-page: 677
  issue: 5
  year: 2007
  end-page: 684
  ident: CR18
  article-title: The path partition problem and related problems in bipartite graphs
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2006.12.004
– volume: 62
  start-page: 319
  year: 2018
  end-page: 336
  ident: CR19
  article-title: Maximum ATSP with weights zero and one via half-edges
  publication-title: Theory Comput. Syst.
  doi: 10.1007/s00224-017-9818-1
– ident: CR9
– volume: 18
  start-page: 279
  year: 2024
  end-page: 290
  ident: CR17
  article-title: A local search algorithm for the -path partition problem
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-023-01989-8
– volume: 290
  start-page: 2147
  issue: 3
  year: 2003
  end-page: 2155
  ident: CR22
  article-title: On the -path partition of graphs
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/S0304-3975(02)00577-7
– ident: CR8
– year: 1979
  ident: CR10
  publication-title: Computers and Intractability: A Guide to the Theory of NP-completeness
– volume: 78
  start-page: 227
  issue: 1
  year: 1997
  end-page: 233
  ident: CR23
  article-title: -path partitions in trees
  publication-title: Discret. Appl. Math.
  doi: 10.1016/S0166-218X(97)00012-7
– volume: 297
  year: 2024
  ident: CR5
  article-title: Approximating the directed path partition problems
  publication-title: Inf. Comput.
  doi: 10.1016/j.ic.2024.105150
– volume: 272
  start-page: 24
  year: 2019
  end-page: 31
  ident: CR16
  article-title: The capacitated vehicle routing problem: stronger bounds in pseudo-polynomial time
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2018.06.002
– volume: 38
  start-page: 150
  issue: 1
  year: 2019
  end-page: 164
  ident: CR7
  article-title: An improved approximation algorithm for the minimum 3-path partition problem
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-018-00372-z
– volume: 100
  start-page: 537
  issue: 3
  year: 2004
  end-page: 568
  ident: CR11
  article-title: Maximum skew-symmetric flows and matchings
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0505-z
– volume: 18
  start-page: 1
  issue: 1
  year: 1993
  end-page: 11
  ident: CR20
  article-title: The traveling salesman problem with distance one and two
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.18.1.1
– volume: 29
  start-page: 1081
  issue: 6
  year: 1991
  end-page: 1100
  ident: CR1
  article-title: A hamiltonian path approach to reordering the part-machine matrix for cellular manufacturing
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207549108930121
– volume: 67
  start-page: 49
  year: 2018
  end-page: 56
  ident: CR15
  article-title: A boundary class for the k-path partition problem
  publication-title: Electron. Notes Discrete Math
  doi: 10.1016/j.endm.2018.05.009
– volume: 18
  start-page: 1
  issue: 1
  year: 1993
  ident: 1428_CR20
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.18.1.1
– ident: 1428_CR9
  doi: 10.1007/978-3-319-59250-3_15
– ident: 1428_CR3
  doi: 10.1007/978-3-540-27821-4_6
– volume: 38
  start-page: 150
  issue: 1
  year: 2019
  ident: 1428_CR7
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-018-00372-z
– volume: 272
  start-page: 24
  year: 2019
  ident: 1428_CR16
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2018.06.002
– volume: 18
  start-page: 279
  year: 2024
  ident: 1428_CR17
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-023-01989-8
– ident: 1428_CR8
– volume: 44
  start-page: 3595
  year: 2022
  ident: 1428_CR6
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-022-00915-5
– volume: 78
  start-page: 227
  issue: 1
  year: 1997
  ident: 1428_CR23
  publication-title: Discret. Appl. Math.
  doi: 10.1016/S0166-218X(97)00012-7
– volume: 100
  start-page: 537
  issue: 3
  year: 2004
  ident: 1428_CR11
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0505-z
– volume: 62
  start-page: 319
  year: 2018
  ident: 1428_CR19
  publication-title: Theory Comput. Syst.
  doi: 10.1007/s00224-017-9818-1
– volume: 22
  start-page: 0
  issue: 1
  year: 2020
  ident: 1428_CR24
  publication-title: Entropy
  doi: 10.3390/e22010073
– volume: 147
  start-page: 89
  year: 2000
  ident: 1428_CR21
  publication-title: Congr. Numer.
– ident: 1428_CR2
  doi: 10.1145/1109557.1109627
– volume: 297
  year: 2024
  ident: 1428_CR5
  publication-title: Inf. Comput.
  doi: 10.1016/j.ic.2024.105150
– ident: 1428_CR4
  doi: 10.1007/978-3-030-97099-4_2
– volume: 67
  start-page: 49
  year: 2018
  ident: 1428_CR15
  publication-title: Electron. Notes Discrete Math
  doi: 10.1016/j.endm.2018.05.009
– ident: 1428_CR14
  doi: 10.1145/800133.804353
– volume: 290
  start-page: 2147
  issue: 3
  year: 2003
  ident: 1428_CR22
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/S0304-3975(02)00577-7
– volume-title: Computers and Intractability: A Guide to the Theory of NP-completeness
  year: 1979
  ident: 1428_CR10
– start-page: 85
  volume-title: Complexity of Computer Computations
  year: 1972
  ident: 1428_CR13
  doi: 10.1007/978-1-4684-2001-2_9
– volume: 35
  start-page: 677
  issue: 5
  year: 2007
  ident: 1428_CR18
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2006.12.004
– volume: 29
  start-page: 1081
  issue: 6
  year: 1991
  ident: 1428_CR1
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207549108930121
– volume: 18
  start-page: 82
  year: 1997
  ident: 1428_CR12
  publication-title: Algorithmica
  doi: 10.1007/BF02523689
SSID ssj0009852
Score 2.4064467
Snippet The k -path partition problem (kPP), defined on a graph G = ( V , E ) , is a well-known NP-hard problem when k ≥ 3 . The goal of the kPP is to find a minimum...
The k-path partition problem (kPP), defined on a graph G=(V,E), is a well-known NP-hard problem when k≥3. The goal of the kPP is to find a minimum collection...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 983
SubjectTerms Algorithms
Apexes
Approximation
Computer Science
Graph theory
Graphs
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Real Functions
Search algorithms
Traveling salesman problem
Title Improved approximation algorithms for the k-path partition problem
URI https://link.springer.com/article/10.1007/s10898-024-01428-7
https://www.proquest.com/docview/3121816096
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT8IwFH5RuOhBBTWiaHrwoNEl0K1bdwQDEg2cJMHT0rFWiQqEzcSf72vXOTR68LQse-nh9b2-r2u_7wGct0LOaCCpE3u-cjyFmR6GijpUKizogYgV1dzh4cgfjL27CZtYUlha3HYvjiTNSr1GduOaDkb1rQkEzU6wCVWm9-4YxWPaKaV2uemz0wopcxiuwpYq8_sY38tRiTF_HIuaatPfgx0LE0knn9cabMh5HXaLFgzEZmQdttf0BPFt-CXCmtahZq1ScmHFpS_3oZv_RZAJMWriH7OcukjE69NiNcue31KCMJbgMOTF0e2KyVIHl7GxzWcOYNzvPdwMHNtHwZnSoJUZvWFfcc4C6VKFAMjXbFxcWQS6oE3bQkrBQp60lcQNccJjpYQGJlIf6cXMcw-hMl_M5REQH2sbE17gKkwuhdaxmjKa8ClVrqDMbcBV4c5omctlRKUwsnZ-hM6PjPOjoAHNwuORTZ00ctsadfi4tWrAdTEL5ee_Rzv-n_kJbFEdCOZqShMq2epdniLAyOIzqHb63e5IP28f73tnJr4-ASO9x5g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV2xTsMwED1BGYABaAFRKOCBAQSRGidOnLEgUIG2Uyt1s5LWhgpoqyZIfD5nxyEFwcAY-eTh7PM9x_feAZw1I85oKKmT-IFyfIWRHkWKOlQqTOhhnCiqucPdXtAe-A9DNrSksLSodi-eJM1JvUR245oORnXVBIJmJ1yFNQQDXBdyDWirlNrlps9OM6LMYXgKW6rM73N8T0clxvzxLGqyzd0ObFmYSFr5ulZhRU5rsF20YCA2ImuwuaQniF_dLxHWtAZVa5WScysufbEL1_lfBDkmRk38Y5JTF0n8-jRbTLLnt5QgjCU4DXlxdLtiMteby9jY5jN7MLi77d-0HdtHwRnRsJkZveFAcc5C6VGFACjQbFw8WWJ0gUvdWMqYRXzsKokX4jFPlIo1MJH6SS9hvrcPlelsKg-ABJjbWOyHnsLgUmidqBGjYz6iyosp8-pwWbhTzHO5DFEKI2vnC3S-MM4XYR0ahceFDZ1UeK5GHQFerepwVaxCOfz3bIf_Mz-F9Xa_2xGd-97jEWxQvSlMmUoDKtniXR4j2MiSE7O3PgEu3cd7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMQAuIQgEPDCCI2jhxHmN5VOXRioFKbFbS2FABadUEiZ_P2XFoQTAwRj55ON_5Psf-vgM4aoUBo76gVux60nIlZnoYSmpRIbGg-1EsqeIO9_ped-DePLLHORa_fu1eXkkWnAal0pTmzUkim3PEt0BRw6h6QYEA2vIXYQm3Y1vF9YC2Z7K7ge650wopsxjuyIY28_sc30vTDG_-uCLVlaezAWsGMpJ2scZVWBBpDdbLdgzEZGcNVue0BfGr9yXImtWgaqwycmyEpk824bz4oyASopXFP0YFjZFEr0_j6Sh_fssIQlqC05AXS7UuJhMVaNrGNKLZgkHn6uGia5meCtaQ-q1caw97MgiYLxwqEQx5ipmLu0yELrCpHQkRsTBIbCnwcJwEsZSRAilCXe_FzHW2oZKOU7EDxMM6xyLXdyQmmkTrWA4ZTYIhlU5EmVOH09KdfFJIZ_CZSLJyPkfnc-187tehUXqcmzTKuGMrBOLhMasOZ-UqzIb_nm33f-aHsHx_2eF31_3bPVihKib0i5UGVPLpu9hH3JHHBzq0PgEY3cu3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+approximation+algorithms+for+the+k-path+partition+problem&rft.jtitle=Journal+of+global+optimization&rft.au=Li%2C+Shiming&rft.au=Yu%2C+Wei&rft.au=Liu%2C+Zhaohui&rft.date=2024-12-01&rft.issn=0925-5001&rft.eissn=1573-2916&rft.volume=90&rft.issue=4&rft.spage=983&rft.epage=1006&rft_id=info:doi/10.1007%2Fs10898-024-01428-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10898_024_01428_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon