Significant reduction of cell invasiveness in nanoneedle insertion into a living cell with an electron-beam-deposited probe: impacts of probe geometry, speed and vibration

Intracellular probing of living cells using atomic force microscopy (AFM) has advanced significantly, but it requires specially designed nanoprobes to achieve precision and minimize damage. The development of focused ion beam (FIB)-milled nanoprobes enabled this progress, allowing researchers to fab...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 17; no. 12; pp. 7342 - 735
Main Authors Alam, Mohammad Shahidul, Penedo, Marcos, Ichikawa, Takehiko, Hosain, Mohammad Mubarak, Matsumoto, Kyosuke, Miyazawa, Keisuke, Fukuma, Takeshi
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 24.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intracellular probing of living cells using atomic force microscopy (AFM) has advanced significantly, but it requires specially designed nanoprobes to achieve precision and minimize damage. The development of focused ion beam (FIB)-milled nanoprobes enabled this progress, allowing researchers to fabricate long, sharp probes that penetrate cell membranes with reduced force. Although these FIB-milled probes have been crucial in accessing the intracellular environment, they still cause considerable membrane deformation, limiting their effectiveness in detailed measurements. In response, we developed electron beam deposited (EBD) carbon nanoprobes with varying diameters to further reduce penetration force and resulting cell disturbance. Our study reveals that, for probes of the same diameter, EBD carbon nanoprobes inflict significantly less membrane deformation than FIB-milled ones, due to their sharper tip apex. Additionally, reducing the diameter of the EBD nanoprobes further decreased the penetration force and minimized cell disturbance. We also observed that, at similar speeds, EBD nanoprobes consistently caused less damage, emphasizing the importance of both tip geometry and penetration speed in reducing the impact on cells. Oscillating the cantilever during penetration further reduced friction with the membrane, significantly reducing damage. These findings advance the precision and gentleness of intracellular AFM measurements, offering improved methods for studying cellular mechanics while preserving cell viability. This study highlights the importance of probe geometry, speed and vibration in minimizing cellular disturbance during the insertion of an electron-beam-deposited nanoprobe into living cells.
AbstractList Intracellular probing of living cells using atomic force microscopy (AFM) has advanced significantly, but it requires specially designed nanoprobes to achieve precision and minimize damage. The development of focused ion beam (FIB)-milled nanoprobes enabled this progress, allowing researchers to fabricate long, sharp probes that penetrate cell membranes with reduced force. Although these FIB-milled probes have been crucial in accessing the intracellular environment, they still cause considerable membrane deformation, limiting their effectiveness in detailed measurements. In response, we developed electron beam deposited (EBD) carbon nanoprobes with varying diameters to further reduce penetration force and resulting cell disturbance. Our study reveals that, for probes of the same diameter, EBD carbon nanoprobes inflict significantly less membrane deformation than FIB-milled ones, due to their sharper tip apex. Additionally, reducing the diameter of the EBD nanoprobes further decreased the penetration force and minimized cell disturbance. We also observed that, at similar speeds, EBD nanoprobes consistently caused less damage, emphasizing the importance of both tip geometry and penetration speed in reducing the impact on cells. Oscillating the cantilever during penetration further reduced friction with the membrane, significantly reducing damage. These findings advance the precision and gentleness of intracellular AFM measurements, offering improved methods for studying cellular mechanics while preserving cell viability.
Intracellular probing of living cells using atomic force microscopy (AFM) has advanced significantly, but it requires specially designed nanoprobes to achieve precision and minimize damage. The development of focused ion beam (FIB)-milled nanoprobes enabled this progress, allowing researchers to fabricate long, sharp probes that penetrate cell membranes with reduced force. Although these FIB-milled probes have been crucial in accessing the intracellular environment, they still cause considerable membrane deformation, limiting their effectiveness in detailed measurements. In response, we developed electron beam deposited (EBD) carbon nanoprobes with varying diameters to further reduce penetration force and resulting cell disturbance. Our study reveals that, for probes of the same diameter, EBD carbon nanoprobes inflict significantly less membrane deformation than FIB-milled ones, due to their sharper tip apex. Additionally, reducing the diameter of the EBD nanoprobes further decreased the penetration force and minimized cell disturbance. We also observed that, at similar speeds, EBD nanoprobes consistently caused less damage, emphasizing the importance of both tip geometry and penetration speed in reducing the impact on cells. Oscillating the cantilever during penetration further reduced friction with the membrane, significantly reducing damage. These findings advance the precision and gentleness of intracellular AFM measurements, offering improved methods for studying cellular mechanics while preserving cell viability. This study highlights the importance of probe geometry, speed and vibration in minimizing cellular disturbance during the insertion of an electron-beam-deposited nanoprobe into living cells.
Intracellular probing of living cells using atomic force microscopy (AFM) has advanced significantly, but it requires specially designed nanoprobes to achieve precision and minimize damage. The development of focused ion beam (FIB)-milled nanoprobes enabled this progress, allowing researchers to fabricate long, sharp probes that penetrate cell membranes with reduced force. Although these FIB-milled probes have been crucial in accessing the intracellular environment, they still cause considerable membrane deformation, limiting their effectiveness in detailed measurements. In response, we developed electron beam deposited (EBD) carbon nanoprobes with varying diameters to further reduce penetration force and resulting cell disturbance. Our study reveals that, for probes of the same diameter, EBD carbon nanoprobes inflict significantly less membrane deformation than FIB-milled ones, due to their sharper tip apex. Additionally, reducing the diameter of the EBD nanoprobes further decreased the penetration force and minimized cell disturbance. We also observed that, at similar speeds, EBD nanoprobes consistently caused less damage, emphasizing the importance of both tip geometry and penetration speed in reducing the impact on cells. Oscillating the cantilever during penetration further reduced friction with the membrane, significantly reducing damage. These findings advance the precision and gentleness of intracellular AFM measurements, offering improved methods for studying cellular mechanics while preserving cell viability.Intracellular probing of living cells using atomic force microscopy (AFM) has advanced significantly, but it requires specially designed nanoprobes to achieve precision and minimize damage. The development of focused ion beam (FIB)-milled nanoprobes enabled this progress, allowing researchers to fabricate long, sharp probes that penetrate cell membranes with reduced force. Although these FIB-milled probes have been crucial in accessing the intracellular environment, they still cause considerable membrane deformation, limiting their effectiveness in detailed measurements. In response, we developed electron beam deposited (EBD) carbon nanoprobes with varying diameters to further reduce penetration force and resulting cell disturbance. Our study reveals that, for probes of the same diameter, EBD carbon nanoprobes inflict significantly less membrane deformation than FIB-milled ones, due to their sharper tip apex. Additionally, reducing the diameter of the EBD nanoprobes further decreased the penetration force and minimized cell disturbance. We also observed that, at similar speeds, EBD nanoprobes consistently caused less damage, emphasizing the importance of both tip geometry and penetration speed in reducing the impact on cells. Oscillating the cantilever during penetration further reduced friction with the membrane, significantly reducing damage. These findings advance the precision and gentleness of intracellular AFM measurements, offering improved methods for studying cellular mechanics while preserving cell viability.
Author Hosain, Mohammad Mubarak
Alam, Mohammad Shahidul
Miyazawa, Keisuke
Ichikawa, Takehiko
Penedo, Marcos
Matsumoto, Kyosuke
Fukuma, Takeshi
AuthorAffiliation Kanazawa University
Division of Nano Life Science
Laboratory for Bio and Nanoinstrumentation
Institute for Bioengineering
École Polytechnique Fédérale de Lausanne
Nano Life Science Institute (WPI-NanoLSI)
Faculty of Frontier Engineering
AuthorAffiliation_xml – name: Kanazawa University
– name: Faculty of Frontier Engineering
– name: Nano Life Science Institute (WPI-NanoLSI)
– name: Division of Nano Life Science
– name: École Polytechnique Fédérale de Lausanne
– name: Laboratory for Bio and Nanoinstrumentation
– name: Institute for Bioengineering
Author_xml – sequence: 1
  givenname: Mohammad Shahidul
  surname: Alam
  fullname: Alam, Mohammad Shahidul
– sequence: 2
  givenname: Marcos
  surname: Penedo
  fullname: Penedo, Marcos
– sequence: 3
  givenname: Takehiko
  surname: Ichikawa
  fullname: Ichikawa, Takehiko
– sequence: 4
  givenname: Mohammad Mubarak
  surname: Hosain
  fullname: Hosain, Mohammad Mubarak
– sequence: 5
  givenname: Kyosuke
  surname: Matsumoto
  fullname: Matsumoto, Kyosuke
– sequence: 6
  givenname: Keisuke
  surname: Miyazawa
  fullname: Miyazawa, Keisuke
– sequence: 7
  givenname: Takeshi
  surname: Fukuma
  fullname: Fukuma, Takeshi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39992642$$D View this record in MEDLINE/PubMed
BookMark eNpdkkuPFCEUhYkZ4zx0415D4mZiLL0FFHS5MzPjI5lo4mNdoeBWy6QKaoBuM7_JPynVPbaJCwKXfJxzbw6n5MgHj4Q8reF1Dbx9Y4WPIESr8AE5YSCg4lyxo8NZimNymtINgGy55I_IMW_blknBTsjvb27t3eCM9plGtBuTXfA0DNTgOFLntzq5LXpMqRTU68Ub7YilShh3sPM5UE1Ht3V-vX_3y-WfVHuKI5ocg6961FNlcQ7JZbR0jqHHt9RNszY5LXa7G7rGMGGOd69omotNkbB06_qoF6PH5OGgx4RP7vcz8uP91feLj9X1lw-fLt5dV4YpyJUybGgMY1ryVikuV9DAoE0jlNQri4CNtbqRhgGquiwOjezFACuoVc-w5WfkfK9berrdYMrd5NIylvYYNqnjtQKmpKhVQV_8h96ETfSlu0KtQDaNgEXw-T216Se03RzdpONd9zeGArzcAyaGlCIOB6SGbsm4uxSfv-4yvirwsz0ckzlw__4A_wNHAqTg
Cites_doi 10.1038/micronano.2015.20
10.1038/nprot.2012.047
10.1016/j.mtla.2022.101555
10.1021/acs.langmuir.8b01262
10.1002/smll.202006699
10.1016/j.bpj.2014.09.023
10.1038/nnano.2007.388
10.1016/j.bios.2004.07.020
10.1016/j.xpro.2023.102468
10.1016/j.bbamem.2013.03.011
10.1016/j.micron.2022.103293
10.1038/ncomms14787
10.1186/1477-3155-1-2
10.1038/s42254-024-00707-2
10.1002/smtd.202400287
10.1016/j.ultramic.2004.01.014
10.1679/aohc.72.261
10.1016/j.bios.2012.06.044
10.1021/nn500553z
10.1021/la026382z
10.1038/nature09450
10.1186/s12951-016-0226-5
10.1111/cmi.13324
10.1126/sciadv.abj4990
10.1016/j.jbiosc.2013.06.019
10.1016/j.bbrc.2005.04.059
10.1038/s41598-021-87319-3
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d4nr04497e
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 735
ExternalDocumentID 39992642
10_1039_D4NR04497E
d4nr04497e
Genre Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c270t-7c2f5c22a63977368050fac5476a8de0e5dda56c20e710e73056b4f08017b2e93
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 15:45:54 EDT 2025
Mon Jun 30 12:07:13 EDT 2025
Thu May 15 23:25:24 EDT 2025
Tue Jul 01 05:19:03 EDT 2025
Tue May 27 12:12:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c270t-7c2f5c22a63977368050fac5476a8de0e5dda56c20e710e73056b4f08017b2e93
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d4nr04497e
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0000-5026-9874
0009-0002-1707-1481
0000-0002-5012-8040
0000-0002-2936-7354
0000-0002-2438-5502
0000-0002-6931-7757
0000-0001-8971-6002
PMID 39992642
PQID 3180655409
PQPubID 2047485
PageCount 9
ParticipantIDs proquest_miscellaneous_3170276417
crossref_primary_10_1039_D4NR04497E
rsc_primary_d4nr04497e
pubmed_primary_39992642
proquest_journals_3180655409
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-24
PublicationDateYYYYMMDD 2025-03-24
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-24
  day: 24
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Uehara (D4NR04497E/cit9/1) 2004; 100
Silberberg (D4NR04497E/cit11/1) 2013; 40
Silberberg (D4NR04497E/cit12/1) 2014; 117
Shibata (D4NR04497E/cit23/1) 2015; 5
Angle (D4NR04497E/cit25/1) 2014; 107
Massey (D4NR04497E/cit5/1) 2024; 6
Penedo (D4NR04497E/cit20/1) 2021; 11
Hu (D4NR04497E/cit1/1) 2022; 159
Kodera (D4NR04497E/cit7/1) 2010; 468
Lv (D4NR04497E/cit26/1) 2018; 34
Kawamura (D4NR04497E/cit21/1) 2016; 14
Liu (D4NR04497E/cit14/1) 2014; 8
Liu (D4NR04497E/cit10/1) 2015; 1
Uchihashi (D4NR04497E/cit22/1) 2012; 7
McCreery (D4NR04497E/cit15/1) 2021; 17
Schneider (D4NR04497E/cit24/1) 2003; 19
Alam (D4NR04497E/cit28/1) 2024
Osada (D4NR04497E/cit8/1) 2003; 1
Levillain (D4NR04497E/cit4/1) 2022; 25
Moeendarbary (D4NR04497E/cit3/1) 2017; 8
Ichikawa (D4NR04497E/cit17/1) 2023; 4
Obataya (D4NR04497E/cit18/1) 2005; 20
Han (D4NR04497E/cit19/1) 2009; 72
Liu (D4NR04497E/cit27/1) 2013; 1828
Cross (D4NR04497E/cit6/1) 2007; 2
Penedo (D4NR04497E/cit16/1) 2021; 7
Han (D4NR04497E/cit13/1) 2005; 332
Dufrêne (D4NR04497E/cit2/1) 2021; 23
References_xml – volume: 1
  start-page: 1
  year: 2015
  ident: D4NR04497E/cit10/1
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/micronano.2015.20
– volume: 7
  start-page: 1193
  year: 2012
  ident: D4NR04497E/cit22/1
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.047
– volume: 25
  start-page: 101555
  year: 2022
  ident: D4NR04497E/cit4/1
  publication-title: Materialia
  doi: 10.1016/j.mtla.2022.101555
– volume: 34
  start-page: 7681
  year: 2018
  ident: D4NR04497E/cit26/1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b01262
– volume: 17
  start-page: 2006699
  year: 2021
  ident: D4NR04497E/cit15/1
  publication-title: Small
  doi: 10.1002/smll.202006699
– volume: 107
  start-page: 2091
  year: 2014
  ident: D4NR04497E/cit25/1
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2014.09.023
– volume: 2
  start-page: 780
  year: 2007
  ident: D4NR04497E/cit6/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.388
– volume: 5
  start-page: 1
  year: 2015
  ident: D4NR04497E/cit23/1
  publication-title: Sci. Rep.
– volume: 20
  start-page: 1652
  year: 2005
  ident: D4NR04497E/cit18/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2004.07.020
– volume: 4
  start-page: 102468
  year: 2023
  ident: D4NR04497E/cit17/1
  publication-title: STAR Protoc.
  doi: 10.1016/j.xpro.2023.102468
– volume: 1828
  start-page: 1667
  year: 2013
  ident: D4NR04497E/cit27/1
  publication-title: Biochim. Biophys. Acta, Biomembr.
  doi: 10.1016/j.bbamem.2013.03.011
– volume: 159
  start-page: 103293
  year: 2022
  ident: D4NR04497E/cit1/1
  publication-title: Micron
  doi: 10.1016/j.micron.2022.103293
– volume: 8
  start-page: 14787
  year: 2017
  ident: D4NR04497E/cit3/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14787
– volume: 1
  start-page: 1
  year: 2003
  ident: D4NR04497E/cit8/1
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-1-2
– volume: 6
  start-page: 269
  year: 2024
  ident: D4NR04497E/cit5/1
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-024-00707-2
– start-page: 2400287
  year: 2024
  ident: D4NR04497E/cit28/1
  publication-title: Small Methods
  doi: 10.1002/smtd.202400287
– volume: 100
  start-page: 197
  year: 2004
  ident: D4NR04497E/cit9/1
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2004.01.014
– volume: 72
  start-page: 261
  year: 2009
  ident: D4NR04497E/cit19/1
  publication-title: Arch. Histol. Cytol.
  doi: 10.1679/aohc.72.261
– volume: 40
  start-page: 3
  year: 2013
  ident: D4NR04497E/cit11/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2012.06.044
– volume: 8
  start-page: 3821
  year: 2014
  ident: D4NR04497E/cit14/1
  publication-title: ACS Nano
  doi: 10.1021/nn500553z
– volume: 19
  start-page: 1899
  year: 2003
  ident: D4NR04497E/cit24/1
  publication-title: Langmuir
  doi: 10.1021/la026382z
– volume: 468
  start-page: 72
  year: 2010
  ident: D4NR04497E/cit7/1
  publication-title: Nature
  doi: 10.1038/nature09450
– volume: 14
  start-page: 1
  year: 2016
  ident: D4NR04497E/cit21/1
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-016-0226-5
– volume: 23
  start-page: e13324
  year: 2021
  ident: D4NR04497E/cit2/1
  publication-title: Cell. Microbiol.
  doi: 10.1111/cmi.13324
– volume: 7
  start-page: eabj4990
  year: 2021
  ident: D4NR04497E/cit16/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abj4990
– volume: 117
  start-page: 107
  year: 2014
  ident: D4NR04497E/cit12/1
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2013.06.019
– volume: 332
  start-page: 633
  year: 2005
  ident: D4NR04497E/cit13/1
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2005.04.059
– volume: 11
  start-page: 7756
  year: 2021
  ident: D4NR04497E/cit20/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-87319-3
SSID ssj0069363
Score 2.4589357
Snippet Intracellular probing of living cells using atomic force microscopy (AFM) has advanced significantly, but it requires specially designed nanoprobes to achieve...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 7342
SubjectTerms Animals
Atomic force microscopy
Carbon
Carbon - chemistry
Cell Membrane - chemistry
Cell Membrane - metabolism
Cell membranes
Damage
Deformation effects
Diameters
Electron beams
Electrons
Humans
Ion beams
Microscopy, Atomic Force
Nanotechnology - instrumentation
Vibration
Title Significant reduction of cell invasiveness in nanoneedle insertion into a living cell with an electron-beam-deposited probe: impacts of probe geometry, speed and vibration
URI https://www.ncbi.nlm.nih.gov/pubmed/39992642
https://www.proquest.com/docview/3180655409
https://www.proquest.com/docview/3170276417
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWW9gIHxFdhoSAjuIUUr53EDbcChQJqhaAVva2c2OlG202q_SgSf4kfwV9jxk6cVKUScIk2zsbZZN6O34tnxoQ81yNmRsJkoYoMCBRh0jA1uGQY04CYkQGVYaN8D5K9o-jjcXw8GPzqRS2tltlW_uOPeSX_Y1VoA7tiluw_WNZ3Cg3wGewLW7AwbP_Kxl_LkwpDfeDpBHOswdrSP3wdH5TVuVq0zqysgkqB1IfB6hTrhOAkvAtzBPKpgtPSvliw5zXpbkG7Qk6YGTULtbHxXQbLCtSZzWh3GZY2FsS2BSemnpmlm5hfnMGl7NTEOSpyb_-GCINXrxeAjw5xDTT364mazZTGUtKTUndxi5_hRnTd5BfltdcCH_JJOVXfLQk-VFMDe7UHa71QrkiC73Z_hfMr0_7bDh5juJdLsnZOkWMEpBCu8vmW6bfJi15d9tHLez5aClfPqxnvpSuXcmkoYQIrseqomrMoSqXpBkwfxtgdvEbWOegUcLTrO59ev__WkoEkFXYxP_-z2wq5In3ZnX2RE10SOkB75u1yNJb2HN4iNxu9Qncc-G6TganukBu9KpZ3yc8eDKmHIa0LinCifRjCDu1gSD0MKcKQKupg6M5DGFJV0StgSC3kXtEGhHg520JbEL6gFoLQhaYegvfI0bvdwzd7YbMGSJhzyZahzHkR55wrnICWItlmMStUHkcyUdvaMBNrreIk58wAVzYSFXEWFaCDRjLjJhUbZA3v6gGhmVDAXvNC4sr3BVMqVgXXPAWSa3SRxkPyrLXC-MyVehnbEA2Rjt9GB1-srXaHZLM10LhxBYsxDIxA5UH8pEPy1B8GR43PS1WmXuF3JOMyiUZySO47w_rLgEpIQZnwIdkAS_vmDiEPrzrwiFzv_iabZG05X5nHQJOX2ZMGir8ByNPGlg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Significant+reduction+of+cell+invasiveness+in+nanoneedle+insertion+into+a+living+cell+with+an+electron-beam-deposited+probe%3A+impacts+of+probe+geometry%2C+speed+and+vibration&rft.jtitle=Nanoscale&rft.au=Alam%2C+Mohammad+Shahidul&rft.au=Penedo%2C+Marcos&rft.au=Ichikawa%2C+Takehiko&rft.au=Hosain%2C+Mohammad+Mubarak&rft.date=2025-03-24&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=17&rft.issue=12&rft.spage=7342&rft.epage=735&rft_id=info:doi/10.1039%2Fd4nr04497e&rft.externalDocID=d4nr04497e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon