Minimal-energy finite-time control of omni-directional mobile robots subject to actuators faults Minimal-energy finite-time control of omni-directional mobile robots subject to actuators faults

In this paper, we deal with optimal finite-time trajectory tracking by the omni-directional mobile robots (ODMRs) under: uncertain kinematics and dynamics, the actuator failure, undesirable forces/torques exerted on the mobile platform and unknown friction forces originating from joints directly dri...

Full description

Saved in:
Bibliographic Details
Published inNonlinear dynamics Vol. 113; no. 9; pp. 10061 - 10087
Main Authors Galicki, Mirosław, Banaszkiewicz, Marek, Węgrzyn, Marek
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.05.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we deal with optimal finite-time trajectory tracking by the omni-directional mobile robots (ODMRs) under: uncertain kinematics and dynamics, the actuator failure, undesirable forces/torques exerted on the mobile platform and unknown friction forces originating from joints directly driven by the actuators. Based on the suitably defined task space non-singular terminal sliding manifold (TSM) and the Lyapunov stability theory, we propose a class of new fault tolerant estimated generalized Jacobian controllers, which seem to be effective in counteracting the unstructured forces/torques. On account of the fact, that the omni-directional mobile robot is a redundant one, a useful criterion function reflecting an energy consumption or L 2 norm of controls - torques, has been utilized in our approach to temporarily optimally track a desired trajectory. The performance of the proposed control law is demonstrated by computer simulations conducted on a four mecanum wheels mobile robot (FMWMR) in conditions of unexpected actuator failure. Additionally, numerical comparisons are also provided with other representative control laws, found in the literature.
AbstractList In this paper, we deal with optimal finite-time trajectory tracking by the omni-directional mobile robots (ODMRs) under: uncertain kinematics and dynamics, the actuator failure, undesirable forces/torques exerted on the mobile platform and unknown friction forces originating from joints directly driven by the actuators. Based on the suitably defined task space non-singular terminal sliding manifold (TSM) and the Lyapunov stability theory, we propose a class of new fault tolerant estimated generalized Jacobian controllers, which seem to be effective in counteracting the unstructured forces/torques. On account of the fact, that the omni-directional mobile robot is a redundant one, a useful criterion function reflecting an energy consumption or L 2 norm of controls - torques, has been utilized in our approach to temporarily optimally track a desired trajectory. The performance of the proposed control law is demonstrated by computer simulations conducted on a four mecanum wheels mobile robot (FMWMR) in conditions of unexpected actuator failure. Additionally, numerical comparisons are also provided with other representative control laws, found in the literature.
In this paper, we deal with optimal finite-time trajectory tracking by the omni-directional mobile robots (ODMRs) under: uncertain kinematics and dynamics, the actuator failure, undesirable forces/torques exerted on the mobile platform and unknown friction forces originating from joints directly driven by the actuators. Based on the suitably defined task space non-singular terminal sliding manifold (TSM) and the Lyapunov stability theory, we propose a class of new fault tolerant estimated generalized Jacobian controllers, which seem to be effective in counteracting the unstructured forces/torques. On account of the fact, that the omni-directional mobile robot is a redundant one, a useful criterion function reflecting an energy consumption or L2 norm of controls - torques, has been utilized in our approach to temporarily optimally track a desired trajectory. The performance of the proposed control law is demonstrated by computer simulations conducted on a four mecanum wheels mobile robot (FMWMR) in conditions of unexpected actuator failure. Additionally, numerical comparisons are also provided with other representative control laws, found in the literature.
Author Banaszkiewicz, Marek
Galicki, Mirosław
Węgrzyn, Marek
Author_xml – sequence: 1
  givenname: Mirosław
  orcidid: 0000-0001-7934-8058
  surname: Galicki
  fullname: Galicki, Mirosław
  email: mgalicki@cbk.waw.pl
  organization: Space Research Centre PAS (CBK PAN), (Branch)
– sequence: 2
  givenname: Marek
  orcidid: 0000-0003-0445-1717
  surname: Banaszkiewicz
  fullname: Banaszkiewicz, Marek
  organization: Space Research Centre PAS (CBK PAN), (Branch)
– sequence: 3
  givenname: Marek
  orcidid: 0000-0002-9048-9334
  surname: Węgrzyn
  fullname: Węgrzyn, Marek
  organization: Space Research Centre PAS (CBK PAN), (Branch)
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz9F8bDaboxS_oOJFobe4H5OyZTepSfbQf29qBW-eZob3fYaZd4FmzjtA6JrRW0apuouMUcUI5QXJTamJOkNzJpUgvNSbGZpTnSWq6eYCLWLcUUoFp9Ucfb72rh_rgYCDsD1gm8cEJPUj4Na7FPyAvcV-dD3p-gBt6r2rBzz6ph8AB9_4FHGcml2WcPK4btNUJx8itvU0pHiJzm09RLj6rUv08fjwvnom67enl9X9mrRc0URUU_CWAy-7opYglVVWsFZ3oIWgQjKApuad7pjUllEtKw1loRvJSm6rUlZiiW5Oe_fBf00Qk9n5KeRToxFMHYFK8eziJ1cbfIwBrNmH_H44GEbNMUlzStLkJM1PkkZlSJygmM1uC-Fv9T_UN4o4eUQ
Cites_doi 10.1002/rnc.6486
10.1007/s11071-023-08990-x
10.1109/IROS.2016.7759824
10.1109/TCMC.2016.2555307
10.1109/ROBOT.2007.364064
10.1049/ip-cta:20020110
10.1007/978-1-84628-642-1
10.1007/s11071-023-08767-2
10.1016/j.jfranklin.2020.11.002
10.1016/S0921-8890(02)00274-9
10.1109/TIE.2012.2189534
10.1080/0020717031000099029
10.1080/00207179.2010.501385
10.1109/TII.2016.2590338
10.1007/s11071-024-09675-9
10.1016/j.neunet.2010.08.011
10.1201/9781498701822
10.1016/S0005-1098(99)00177-6
10.1109/TSMC.2017.2648826
10.1007/s11071-021-07182-9
10.1007/s11071-015-2324-6
10.1109/87.987075
10.1016/j.sysconle.2008.09.004
10.1007/978-3-319-62896-7_13
10.1002/rnc.3591
10.1109/TCMC.2016.2557220
10.1002/acs.2451
10.1109/STA.2017.8314837
10.1177/02783640122067408
10.1016/0005-1098(94)E0050-R
10.1007/s11071-023-08355-4
10.1016/j.automatica.2014.10.089
10.1007/s11071-022-08184-x
10.1016/B978-0-12-417049-0.00005-5
10.1002/rnc.723
10.1109/TSMC.2017.2782246
10.1016/j.rcim.2010.06.017
10.1177/0037549717741192
10.1163/1568553053020269
10.1109/MCS.2007.904659
10.1139/tcsme-2013-0030
10.1016/S0005-1098(03)00219-X
10.1016/j.automatica.2007.10.034
10.1109/TIE.2018.2798571
10.1007/s11071-017-3623-x
10.1016/j.ymssp.2020.107128
10.1109/TAC.2002.805672
10.1017/S0263574721001338
10.1007/978-3-662-47943-8
10.1007/978-3-642-22164-4-15
10.1137/22M1471171
10.1080/00207179.2018.1468928
10.1016/j.ifacol.2018.09.680
10.1002/rnc.7466
10.1016/j.jfranklin.2013.08.027
10.1109/70.631234
10.1109/ICUAS.2014.6842251
10.1109/TAC.2011.2173424
10.1016/j.automatica.2010.09.006
10.1007/978-3-642-84379-2
10.1007/s11071-016-3179-1
10.1016/j.cja.2018.04.008
10.1016/j.mechmachtheory.2021.104550
10.1109/ROBOT.1985.1087234
10.1007/s11071-011-0167-3
10.4236/ica.2013.42021
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. May 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. May 2025
DBID AAYXX
CITATION
DOI 10.1007/s11071-024-10769-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1573-269X
EndPage 10087
ExternalDocumentID 10_1007_s11071_024_10769_7
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PHGZT
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z8Z
ZMTXR
~A9
~EX
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
CITATION
PHGZM
PQGLB
ID FETCH-LOGICAL-c270t-7b42c2e26d4a5e57f7f31c9de9330351eeba2d9d159f109589e649b5162f86583
IEDL.DBID U2A
ISSN 0924-090X
IngestDate Fri Jul 25 11:08:37 EDT 2025
Tue Aug 05 12:09:22 EDT 2025
Fri Mar 21 01:12:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Omni-directional mobile robot
Lyapunov stability
Temporarily optimal finite-time trajectory tracking
Actuator failure
Fault tolerant control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-7b42c2e26d4a5e57f7f31c9de9330351eeba2d9d159f109589e649b5162f86583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0445-1717
0000-0001-7934-8058
0000-0002-9048-9334
PQID 3179589872
PQPubID 2043746
PageCount 27
ParticipantIDs proquest_journals_3179589872
crossref_primary_10_1007_s11071_024_10769_7
springer_journals_10_1007_s11071_024_10769_7
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References 10769_CR21
10769_CR20
X Tang (10769_CR24) 2003; 39
10769_CR26
10769_CR68
Y Cao (10769_CR29) 2018
10769_CR67
PK Wong (10769_CR9) 2023; 111
SR Sahoo (10769_CR36) 2017
M Galicki (10769_CR45) 2024
A Levant (10769_CR61) 2012; 57
C Edwards (10769_CR6) 1998
SM Fazeli (10769_CR15) 2023; 111
W Li (10769_CR42) 2023; 61
M Galicki (10769_CR63) 2015; 51
M Van (10769_CR12) 2016
V Perderau (10769_CR53) 2002; 41
10769_CR62
C Gang (10769_CR5) 2018; 31
B Siciliano (10769_CR55) 2009
10769_CR52
10769_CR59
10769_CR58
M Blanke (10769_CR1) 2016
M Defoort (10769_CR33) 2011; 412
I Eski (10769_CR51) 2011; 27
TJ Harris (10769_CR2) 1999; 38
CP Tan (10769_CR48) 2003; 13
V Mata (10769_CR65) 2005; 19
Z Sun (10769_CR40) 2021; 147
J Swevers (10769_CR56) 2007; 27
JD English (10769_CR4) 2001; 20
A Freddi (10769_CR22) 2018; 51–24
M Van (10769_CR50) 2016; 12
S Wen (10769_CR14) 2017
A Izadbakhsh (10769_CR75) 2017; 89
C-H Xie (10769_CR28) 2016; 83
YM Zhang (10769_CR49) 2002; 149
10769_CR46
Y Shtessel (10769_CR25) 2002; 10
LM Capisani (10769_CR3) 2012; 59
M Van (10769_CR13) 2018
F Plestan (10769_CR70) 2010; 83
Jo-A Ting (10769_CR66) 2011; 24
L-C Lin (10769_CR41) 2013; 4
H Alwi (10769_CR19) 2008; 44
IV Girsanov (10769_CR54) 2012
D Zhang (10769_CR73) 2018
L Fridman (10769_CR31) 2002; 47
M Galicki (10769_CR44) 2022
M Fateh (10769_CR74) 2012; 67
F Lin (10769_CR17) 2023; 111
C Edwards (10769_CR47) 2000; 36
W Khalil (10769_CR57) 2002
10769_CR35
W Wang (10769_CR23) 2010; 46
M Defoort (10769_CR32) 2009; 58
10769_CR38
M Galicki (10769_CR34) 2016; 27
Y YaChao (10769_CR39) 2013; 37
W Yang (10769_CR16) 2024
N Xu (10769_CR18) 2023; 111
B Brogliato (10769_CR69) 1995; 31
A Chamseddine (10769_CR27) 2015; 29
VI Utkin (10769_CR7) 1992
M Galicki (10769_CR30) 2022; 167
M Van (10769_CR10) 2021; 358
V Alakshendra (10769_CR37) 2017; 87
A Levant (10769_CR60) 2003; 76
J Swevers (10769_CR64) 1997; 13
Y Wang (10769_CR8) 2022; 108
M Van (10769_CR11) 2016
M Galicki (10769_CR43) 2020
10769_CR72
S Mondal (10769_CR71) 2014; 351
References_xml – year: 2022
  ident: 10769_CR44
  publication-title: Int. J. Robust Nonlinear Control.
  doi: 10.1002/rnc.6486
– volume: 111
  start-page: 21747
  year: 2023
  ident: 10769_CR18
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08990-x
– ident: 10769_CR38
  doi: 10.1109/IROS.2016.7759824
– year: 2016
  ident: 10769_CR11
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCMC.2016.2555307
– ident: 10769_CR59
  doi: 10.1109/ROBOT.2007.364064
– ident: 10769_CR21
– volume: 149
  start-page: 95
  year: 2002
  ident: 10769_CR49
  publication-title: IEE Proc. Control. Theory Appl.
  doi: 10.1049/ip-cta:20020110
– ident: 10769_CR58
  doi: 10.1007/978-1-84628-642-1
– volume: 111
  start-page: 17205
  year: 2023
  ident: 10769_CR17
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08767-2
– volume-title: Robotics: modelling, planning and control
  year: 2009
  ident: 10769_CR55
  doi: 10.1007/978-1-84628-642-1
– volume: 358
  start-page: 699
  year: 2021
  ident: 10769_CR10
  publication-title: J. the Franklin Institute
  doi: 10.1016/j.jfranklin.2020.11.002
– volume: 41
  start-page: 41
  year: 2002
  ident: 10769_CR53
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/S0921-8890(02)00274-9
– volume: 59
  start-page: 3979
  issue: 10
  year: 2012
  ident: 10769_CR3
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2189534
– volume: 76
  start-page: 924
  issue: 9–10
  year: 2003
  ident: 10769_CR60
  publication-title: Int. J. Control
  doi: 10.1080/0020717031000099029
– volume: 83
  start-page: 1907
  issue: 9
  year: 2010
  ident: 10769_CR70
  publication-title: Int. J. Control
  doi: 10.1080/00207179.2010.501385
– volume: 12
  start-page: 1998
  issue: 6
  year: 2016
  ident: 10769_CR50
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2016.2590338
– year: 2024
  ident: 10769_CR16
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-024-09675-9
– volume: 24
  start-page: 99
  issue: 1
  year: 2011
  ident: 10769_CR66
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2010.08.011
– ident: 10769_CR67
– volume-title: Sliding mode control: Theory and Application
  year: 1998
  ident: 10769_CR6
  doi: 10.1201/9781498701822
– volume: 36
  start-page: 541
  year: 2000
  ident: 10769_CR47
  publication-title: Automatica
  doi: 10.1016/S0005-1098(99)00177-6
– year: 2017
  ident: 10769_CR14
  publication-title: IEEE Trans. Sys. Man. Cybern. Syst.
  doi: 10.1109/TSMC.2017.2648826
– volume: 108
  start-page: 207
  year: 2022
  ident: 10769_CR8
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-07182-9
– volume: 83
  start-page: 269
  year: 2016
  ident: 10769_CR28
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-015-2324-6
– volume: 10
  start-page: 288
  issue: 2
  year: 2002
  ident: 10769_CR25
  publication-title: IEEE Trans. Contr. Systems Technology
  doi: 10.1109/87.987075
– volume: 58
  start-page: 102
  issue: 2
  year: 2009
  ident: 10769_CR32
  publication-title: Syst. Control Lett.
  doi: 10.1016/j.sysconle.2008.09.004
– ident: 10769_CR20
  doi: 10.1007/978-3-319-62896-7_13
– volume: 27
  start-page: 639
  year: 2016
  ident: 10769_CR34
  publication-title: Int. J. Robust Non-Linear Control
  doi: 10.1002/rnc.3591
– year: 2016
  ident: 10769_CR12
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCMC.2016.2557220
– volume: 29
  start-page: 1
  year: 2015
  ident: 10769_CR27
  publication-title: Int. J. Adapt. Control Signal Process.
  doi: 10.1002/acs.2451
– ident: 10769_CR35
  doi: 10.1109/STA.2017.8314837
– volume: 38
  start-page: 2063
  issue: 12
  year: 1999
  ident: 10769_CR2
  publication-title: Automatica
– volume: 20
  start-page: 287
  issue: 4
  year: 2001
  ident: 10769_CR4
  publication-title: Int. J. Rob. Res.
  doi: 10.1177/02783640122067408
– volume: 31
  start-page: 145
  year: 1995
  ident: 10769_CR69
  publication-title: Automatica
  doi: 10.1016/0005-1098(94)E0050-R
– volume: 111
  start-page: 10113
  year: 2023
  ident: 10769_CR9
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08355-4
– volume: 51
  start-page: 49
  year: 2015
  ident: 10769_CR63
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.10.089
– volume-title: Lectures on mathematical theory of extremum problems
  year: 2012
  ident: 10769_CR54
– ident: 10769_CR68
– volume: 111
  start-page: 6335
  year: 2023
  ident: 10769_CR15
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-08184-x
– ident: 10769_CR46
  doi: 10.1016/B978-0-12-417049-0.00005-5
– volume: 13
  start-page: 443
  year: 2003
  ident: 10769_CR48
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.723
– year: 2018
  ident: 10769_CR13
  publication-title: IEEE Trans. Sys. Man Cybern. Syst.
  doi: 10.1109/TSMC.2017.2782246
– volume: 27
  start-page: 115
  year: 2011
  ident: 10769_CR51
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2010.06.017
– year: 2017
  ident: 10769_CR36
  publication-title: Simulation
  doi: 10.1177/0037549717741192
– volume: 19
  start-page: 101
  issue: 1
  year: 2005
  ident: 10769_CR65
  publication-title: J. Adv. Robot.
  doi: 10.1163/1568553053020269
– volume: 27
  start-page: 58
  issue: 5
  year: 2007
  ident: 10769_CR56
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/MCS.2007.904659
– volume: 37
  start-page: 405
  issue: 3
  year: 2013
  ident: 10769_CR39
  publication-title: Trans. Can. Soc. Mech. Eng.
  doi: 10.1139/tcsme-2013-0030
– volume-title: Dyn. Control.
  year: 2020
  ident: 10769_CR43
– volume: 39
  start-page: 1975
  year: 2003
  ident: 10769_CR24
  publication-title: Automatica
  doi: 10.1016/S0005-1098(03)00219-X
– volume: 44
  start-page: 1859
  year: 2008
  ident: 10769_CR19
  publication-title: Automatica
  doi: 10.1016/j.automatica.2007.10.034
– volume-title: Adaptive sliding mode fault tolerant coordination control for four wheel independently driven electric vehicles
  year: 2018
  ident: 10769_CR73
  doi: 10.1109/TIE.2018.2798571
– volume: 89
  start-page: 2753
  year: 2017
  ident: 10769_CR75
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-017-3623-x
– volume: 147
  year: 2021
  ident: 10769_CR40
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107128
– volume: 47
  start-page: 2079
  issue: 12
  year: 2002
  ident: 10769_CR31
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2002.805672
– ident: 10769_CR72
  doi: 10.1017/S0263574721001338
– volume-title: Diagnosis and fault-tolerant control
  year: 2016
  ident: 10769_CR1
  doi: 10.1007/978-3-662-47943-8
– volume: 412
  start-page: 409
  year: 2011
  ident: 10769_CR33
  publication-title: Lect. Notes Control. Inf. Sci. Book Ser. (LNCIS)
  doi: 10.1007/978-3-642-22164-4-15
– volume: 61
  start-page: 1187
  issue: 3
  year: 2023
  ident: 10769_CR42
  publication-title: SIAM J. Control. Optim.
  doi: 10.1137/22M1471171
– year: 2018
  ident: 10769_CR29
  publication-title: Int. J. Control
  doi: 10.1080/00207179.2018.1468928
– volume: 51–24
  start-page: 886
  year: 2018
  ident: 10769_CR22
  publication-title: IFAC PapersOnLine
  doi: 10.1016/j.ifacol.2018.09.680
– year: 2024
  ident: 10769_CR45
  publication-title: Int. J. Robust and Nonlinear Control
  doi: 10.1002/rnc.7466
– volume: 351
  start-page: 2356
  year: 2014
  ident: 10769_CR71
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2013.08.027
– volume: 13
  start-page: 730
  issue: 5
  year: 1997
  ident: 10769_CR64
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.631234
– ident: 10769_CR26
  doi: 10.1109/ICUAS.2014.6842251
– volume: 57
  start-page: 1076
  issue: 4
  year: 2012
  ident: 10769_CR61
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2011.2173424
– volume: 46
  start-page: 2082
  year: 2010
  ident: 10769_CR23
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.09.006
– volume-title: Sliding Modes in Control and Optimization
  year: 1992
  ident: 10769_CR7
  doi: 10.1007/978-3-642-84379-2
– volume: 87
  start-page: 2147
  issue: 4
  year: 2017
  ident: 10769_CR37
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-3179-1
– ident: 10769_CR62
– volume: 31
  start-page: 2290
  issue: 12
  year: 2018
  ident: 10769_CR5
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2018.04.008
– volume: 167
  year: 2022
  ident: 10769_CR30
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2021.104550
– volume-title: Modeling, identification & control of robots
  year: 2002
  ident: 10769_CR57
– ident: 10769_CR52
  doi: 10.1109/ROBOT.1985.1087234
– volume: 67
  start-page: 2549
  year: 2012
  ident: 10769_CR74
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-011-0167-3
– volume: 4
  start-page: 166
  issue: 2
  year: 2013
  ident: 10769_CR41
  publication-title: Intell. Control. Autom.
  doi: 10.4236/ica.2013.42021
SSID ssj0003208
Score 2.432781
Snippet In this paper, we deal with optimal finite-time trajectory tracking by the omni-directional mobile robots (ODMRs) under: uncertain kinematics and dynamics, the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 10061
SubjectTerms Actuator failure
Applications of Nonlinear Dynamics and Chaos Theory
Classical Mechanics
Control
Control theory
Dynamical Systems
Energy consumption
Fault tolerance
Kinematics
Physics
Physics and Astronomy
Robot control
Robot dynamics
Statistical Physics and Dynamical Systems
Task space
Torque
Trajectory optimization
Vibration
Subtitle Minimal-energy finite-time control of omni-directional mobile robots subject to actuators faults
Title Minimal-energy finite-time control of omni-directional mobile robots subject to actuators faults
URI https://link.springer.com/article/10.1007/s11071-024-10769-7
https://www.proquest.com/docview/3179589872
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_ohqAHP6bidI4cvGmgTT_SHodsDmWeHMxTbdoEClsra_f_-5K1VkUPntOEkvfy3u99A9xIVAHCdhUNGQ-p66eKikBKmiBzxCIQvqN0RHf27E_n7uPCW9RFYWWT7d6EJI2kbovd0FJB05e5KDq4H1K-C11P2-7IxXM2-pS_DjNz6Cy0LLQXYlGXyvx-xnd11GLMH2FRo20mx3BYw0Qy2tL1BHZk3oOjGjKS-kGWPTj40k-wB3smnzMpT-FtluXZKl5SaWr7iMo0tqR6kjyps9NJoUixyjO61WrGJUhWhUAxQdaFKKqSlBuh3TSkKkisC030ZB6i4s2yKs9gPhm_3E9pPUyBJoxbFeXCZQmTzE_d2JMeV1w5dhKmUns0HM-WUsQsDVOEN8pG3BWE0ndD4dk-UwHCFOccOnmRywsg0mKpkzIep07iWorHYYKmri1xs-8hYunDbXOn0fu2Z0bUdkfWFIiQApGhQMT7MGiuParfTxkhqtG_EHDWh7uGFO3y36dd_u_zK9hneqCvyWAcQKdab-Q1ooxKDKE7enh9Gg8Nc30An1HKRw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BEQIGHgVEoYAHNrDUOA8nY4WoCrSdWqlbiBNbitQmqEn_P2c3IYBgYE5iRT777rvHdwdwJ9EECMtRNGA8oI6XKCp8KWmMhyMSvvBspTO644k3nDkvc3dekcKKutq9TkkaTd2Q3dBTQdeXOag6uBdQvg07CAZ8Xcg1Y_1P_WszM4euh56FjkLMK6rM72t8N0cNxvyRFjXWZnAMhxVMJP2NXE9gS2ZtOKogI6kuZNGGgy_9BNuwa-o54-IU3sZpli6jBZWG20dUqrEl1ZPkSVWdTnJF8mWW0o1VMyFBsswFqgmyykVeFqRYCx2mIWVOIk000ZN5iIrWi7I4g9ngafo4pNUwBRoz3ispFw6LmWRe4kSudLniyrbiIJE6omG7lpQiYkmQILxRFuIuP5CeEwjX8pjyEabY59DK8kxeAJE9ltgJ41Fix05P8SiI0dW1JH7suYhYOnBf72n4vumZETbdkbUEQpRAaCQQ8g50620Pq_tThIhq9C_4nHXgoRZF8_jv1S7_9_ot7A2n41E4ep68XsE-08N9TTVjF1rlai2vEXGU4sYcsA_yQ8um
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4CAQHHgPEYEAO3CBamz7SHhEw8Zw4MGm30jSJNGlrp7X7_zhZxwaCA-e2URU79mfHnw1wqdAFCNfXNGY8pn4oNRWRUjRD5UhFJEJPmxvd12740POf-kF_icVvq93nV5IzToPp0pRX7bHU7QXxDaMWDIOZj2aEhzHlq7CO5tg1et1jN1-22GN2Jp2DUYbJSPRr2szva3x3TQu8-eOK1Hqezh7s1JCR3MxkvA8rKm_Abg0fSX04ywZsL_UWbMCGre3MygP4eB3kg1E6pMry_IgeGJxJzVR5Uleqk0KTYpQP6MzD2fQgGRUCTQaZFKKoSlJOhUnZkKogqSGdmCk9RKfTYVUeQq9z_377QOvBCjRj3KkoFz7LmGKh9NNABVxz7blZLJXJbniBq5RImYwlQh3tIgaLYhX6sQjckOkIIYt3BGt5katjIMph0pOMp9LLfEfzNM4w7HUVfhwGiF6acDXf02Q865-RLDolGwkkKIHESiDhTWjNtz2pz1KZIMIxvxBx1oTruSgWj_9e7eR_r1_A5ttdJ3l57D6fwhYzc35tYWML1qrJVJ0h-KjEudWvT_Snz-I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimal-energy+finite-time+control+of+omni-directional+mobile+robots+subject+to+actuators+faults&rft.jtitle=Nonlinear+dynamics&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=113&rft.issue=9&rft.spage=10061&rft.epage=10087&rft_id=info:doi/10.1007%2Fs11071-024-10769-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon