Minimal-energy finite-time control of omni-directional mobile robots subject to actuators faults Minimal-energy finite-time control of omni-directional mobile robots subject to actuators faults
In this paper, we deal with optimal finite-time trajectory tracking by the omni-directional mobile robots (ODMRs) under: uncertain kinematics and dynamics, the actuator failure, undesirable forces/torques exerted on the mobile platform and unknown friction forces originating from joints directly dri...
Saved in:
Published in | Nonlinear dynamics Vol. 113; no. 9; pp. 10061 - 10087 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.05.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we deal with optimal finite-time trajectory tracking by the omni-directional mobile robots (ODMRs) under: uncertain kinematics and dynamics, the actuator failure, undesirable forces/torques exerted on the mobile platform and unknown friction forces originating from joints directly driven by the actuators. Based on the suitably defined task space non-singular terminal sliding manifold (TSM) and the Lyapunov stability theory, we propose a class of new fault tolerant estimated generalized Jacobian controllers, which seem to be effective in counteracting the unstructured forces/torques. On account of the fact, that the omni-directional mobile robot is a redundant one, a useful criterion function reflecting an energy consumption or
L
2
norm of controls - torques, has been utilized in our approach to
temporarily
optimally track a desired trajectory. The performance of the proposed control law is demonstrated by computer simulations conducted on a four mecanum wheels mobile robot (FMWMR) in conditions of unexpected actuator failure. Additionally, numerical comparisons are also provided with other representative control laws, found in the literature. |
---|---|
AbstractList | In this paper, we deal with optimal finite-time trajectory tracking by the omni-directional mobile robots (ODMRs) under: uncertain kinematics and dynamics, the actuator failure, undesirable forces/torques exerted on the mobile platform and unknown friction forces originating from joints directly driven by the actuators. Based on the suitably defined task space non-singular terminal sliding manifold (TSM) and the Lyapunov stability theory, we propose a class of new fault tolerant estimated generalized Jacobian controllers, which seem to be effective in counteracting the unstructured forces/torques. On account of the fact, that the omni-directional mobile robot is a redundant one, a useful criterion function reflecting an energy consumption or
L
2
norm of controls - torques, has been utilized in our approach to
temporarily
optimally track a desired trajectory. The performance of the proposed control law is demonstrated by computer simulations conducted on a four mecanum wheels mobile robot (FMWMR) in conditions of unexpected actuator failure. Additionally, numerical comparisons are also provided with other representative control laws, found in the literature. In this paper, we deal with optimal finite-time trajectory tracking by the omni-directional mobile robots (ODMRs) under: uncertain kinematics and dynamics, the actuator failure, undesirable forces/torques exerted on the mobile platform and unknown friction forces originating from joints directly driven by the actuators. Based on the suitably defined task space non-singular terminal sliding manifold (TSM) and the Lyapunov stability theory, we propose a class of new fault tolerant estimated generalized Jacobian controllers, which seem to be effective in counteracting the unstructured forces/torques. On account of the fact, that the omni-directional mobile robot is a redundant one, a useful criterion function reflecting an energy consumption or L2 norm of controls - torques, has been utilized in our approach to temporarily optimally track a desired trajectory. The performance of the proposed control law is demonstrated by computer simulations conducted on a four mecanum wheels mobile robot (FMWMR) in conditions of unexpected actuator failure. Additionally, numerical comparisons are also provided with other representative control laws, found in the literature. |
Author | Banaszkiewicz, Marek Galicki, Mirosław Węgrzyn, Marek |
Author_xml | – sequence: 1 givenname: Mirosław orcidid: 0000-0001-7934-8058 surname: Galicki fullname: Galicki, Mirosław email: mgalicki@cbk.waw.pl organization: Space Research Centre PAS (CBK PAN), (Branch) – sequence: 2 givenname: Marek orcidid: 0000-0003-0445-1717 surname: Banaszkiewicz fullname: Banaszkiewicz, Marek organization: Space Research Centre PAS (CBK PAN), (Branch) – sequence: 3 givenname: Marek orcidid: 0000-0002-9048-9334 surname: Węgrzyn fullname: Węgrzyn, Marek organization: Space Research Centre PAS (CBK PAN), (Branch) |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz9F8bDaboxS_oOJFobe4H5OyZTepSfbQf29qBW-eZob3fYaZd4FmzjtA6JrRW0apuouMUcUI5QXJTamJOkNzJpUgvNSbGZpTnSWq6eYCLWLcUUoFp9Ucfb72rh_rgYCDsD1gm8cEJPUj4Na7FPyAvcV-dD3p-gBt6r2rBzz6ph8AB9_4FHGcml2WcPK4btNUJx8itvU0pHiJzm09RLj6rUv08fjwvnom67enl9X9mrRc0URUU_CWAy-7opYglVVWsFZ3oIWgQjKApuad7pjUllEtKw1loRvJSm6rUlZiiW5Oe_fBf00Qk9n5KeRToxFMHYFK8eziJ1cbfIwBrNmH_H44GEbNMUlzStLkJM1PkkZlSJygmM1uC-Fv9T_UN4o4eUQ |
Cites_doi | 10.1002/rnc.6486 10.1007/s11071-023-08990-x 10.1109/IROS.2016.7759824 10.1109/TCMC.2016.2555307 10.1109/ROBOT.2007.364064 10.1049/ip-cta:20020110 10.1007/978-1-84628-642-1 10.1007/s11071-023-08767-2 10.1016/j.jfranklin.2020.11.002 10.1016/S0921-8890(02)00274-9 10.1109/TIE.2012.2189534 10.1080/0020717031000099029 10.1080/00207179.2010.501385 10.1109/TII.2016.2590338 10.1007/s11071-024-09675-9 10.1016/j.neunet.2010.08.011 10.1201/9781498701822 10.1016/S0005-1098(99)00177-6 10.1109/TSMC.2017.2648826 10.1007/s11071-021-07182-9 10.1007/s11071-015-2324-6 10.1109/87.987075 10.1016/j.sysconle.2008.09.004 10.1007/978-3-319-62896-7_13 10.1002/rnc.3591 10.1109/TCMC.2016.2557220 10.1002/acs.2451 10.1109/STA.2017.8314837 10.1177/02783640122067408 10.1016/0005-1098(94)E0050-R 10.1007/s11071-023-08355-4 10.1016/j.automatica.2014.10.089 10.1007/s11071-022-08184-x 10.1016/B978-0-12-417049-0.00005-5 10.1002/rnc.723 10.1109/TSMC.2017.2782246 10.1016/j.rcim.2010.06.017 10.1177/0037549717741192 10.1163/1568553053020269 10.1109/MCS.2007.904659 10.1139/tcsme-2013-0030 10.1016/S0005-1098(03)00219-X 10.1016/j.automatica.2007.10.034 10.1109/TIE.2018.2798571 10.1007/s11071-017-3623-x 10.1016/j.ymssp.2020.107128 10.1109/TAC.2002.805672 10.1017/S0263574721001338 10.1007/978-3-662-47943-8 10.1007/978-3-642-22164-4-15 10.1137/22M1471171 10.1080/00207179.2018.1468928 10.1016/j.ifacol.2018.09.680 10.1002/rnc.7466 10.1016/j.jfranklin.2013.08.027 10.1109/70.631234 10.1109/ICUAS.2014.6842251 10.1109/TAC.2011.2173424 10.1016/j.automatica.2010.09.006 10.1007/978-3-642-84379-2 10.1007/s11071-016-3179-1 10.1016/j.cja.2018.04.008 10.1016/j.mechmachtheory.2021.104550 10.1109/ROBOT.1985.1087234 10.1007/s11071-011-0167-3 10.4236/ica.2013.42021 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. May 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. May 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11071-024-10769-7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1573-269X |
EndPage | 10087 |
ExternalDocumentID | 10_1007_s11071_024_10769_7 |
GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PHGZT PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z8Z ZMTXR ~A9 ~EX AAYXX ABBRH ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR CITATION PHGZM PQGLB |
ID | FETCH-LOGICAL-c270t-7b42c2e26d4a5e57f7f31c9de9330351eeba2d9d159f109589e649b5162f86583 |
IEDL.DBID | U2A |
ISSN | 0924-090X |
IngestDate | Fri Jul 25 11:08:37 EDT 2025 Tue Aug 05 12:09:22 EDT 2025 Fri Mar 21 01:12:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Omni-directional mobile robot Lyapunov stability Temporarily optimal finite-time trajectory tracking Actuator failure Fault tolerant control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-7b42c2e26d4a5e57f7f31c9de9330351eeba2d9d159f109589e649b5162f86583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0445-1717 0000-0001-7934-8058 0000-0002-9048-9334 |
PQID | 3179589872 |
PQPubID | 2043746 |
PageCount | 27 |
ParticipantIDs | proquest_journals_3179589872 crossref_primary_10_1007_s11071_024_10769_7 springer_journals_10_1007_s11071_024_10769_7 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems |
PublicationTitle | Nonlinear dynamics |
PublicationTitleAbbrev | Nonlinear Dyn |
PublicationYear | 2025 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | 10769_CR21 10769_CR20 X Tang (10769_CR24) 2003; 39 10769_CR26 10769_CR68 Y Cao (10769_CR29) 2018 10769_CR67 PK Wong (10769_CR9) 2023; 111 SR Sahoo (10769_CR36) 2017 M Galicki (10769_CR45) 2024 A Levant (10769_CR61) 2012; 57 C Edwards (10769_CR6) 1998 SM Fazeli (10769_CR15) 2023; 111 W Li (10769_CR42) 2023; 61 M Galicki (10769_CR63) 2015; 51 M Van (10769_CR12) 2016 V Perderau (10769_CR53) 2002; 41 10769_CR62 C Gang (10769_CR5) 2018; 31 B Siciliano (10769_CR55) 2009 10769_CR52 10769_CR59 10769_CR58 M Blanke (10769_CR1) 2016 M Defoort (10769_CR33) 2011; 412 I Eski (10769_CR51) 2011; 27 TJ Harris (10769_CR2) 1999; 38 CP Tan (10769_CR48) 2003; 13 V Mata (10769_CR65) 2005; 19 Z Sun (10769_CR40) 2021; 147 J Swevers (10769_CR56) 2007; 27 JD English (10769_CR4) 2001; 20 A Freddi (10769_CR22) 2018; 51–24 M Van (10769_CR50) 2016; 12 S Wen (10769_CR14) 2017 A Izadbakhsh (10769_CR75) 2017; 89 C-H Xie (10769_CR28) 2016; 83 YM Zhang (10769_CR49) 2002; 149 10769_CR46 Y Shtessel (10769_CR25) 2002; 10 LM Capisani (10769_CR3) 2012; 59 M Van (10769_CR13) 2018 F Plestan (10769_CR70) 2010; 83 Jo-A Ting (10769_CR66) 2011; 24 L-C Lin (10769_CR41) 2013; 4 H Alwi (10769_CR19) 2008; 44 IV Girsanov (10769_CR54) 2012 D Zhang (10769_CR73) 2018 L Fridman (10769_CR31) 2002; 47 M Galicki (10769_CR44) 2022 M Fateh (10769_CR74) 2012; 67 F Lin (10769_CR17) 2023; 111 C Edwards (10769_CR47) 2000; 36 W Khalil (10769_CR57) 2002 10769_CR35 W Wang (10769_CR23) 2010; 46 M Defoort (10769_CR32) 2009; 58 10769_CR38 M Galicki (10769_CR34) 2016; 27 Y YaChao (10769_CR39) 2013; 37 W Yang (10769_CR16) 2024 N Xu (10769_CR18) 2023; 111 B Brogliato (10769_CR69) 1995; 31 A Chamseddine (10769_CR27) 2015; 29 VI Utkin (10769_CR7) 1992 M Galicki (10769_CR30) 2022; 167 M Van (10769_CR10) 2021; 358 V Alakshendra (10769_CR37) 2017; 87 A Levant (10769_CR60) 2003; 76 J Swevers (10769_CR64) 1997; 13 Y Wang (10769_CR8) 2022; 108 M Van (10769_CR11) 2016 M Galicki (10769_CR43) 2020 10769_CR72 S Mondal (10769_CR71) 2014; 351 |
References_xml | – year: 2022 ident: 10769_CR44 publication-title: Int. J. Robust Nonlinear Control. doi: 10.1002/rnc.6486 – volume: 111 start-page: 21747 year: 2023 ident: 10769_CR18 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-023-08990-x – ident: 10769_CR38 doi: 10.1109/IROS.2016.7759824 – year: 2016 ident: 10769_CR11 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCMC.2016.2555307 – ident: 10769_CR59 doi: 10.1109/ROBOT.2007.364064 – ident: 10769_CR21 – volume: 149 start-page: 95 year: 2002 ident: 10769_CR49 publication-title: IEE Proc. Control. Theory Appl. doi: 10.1049/ip-cta:20020110 – ident: 10769_CR58 doi: 10.1007/978-1-84628-642-1 – volume: 111 start-page: 17205 year: 2023 ident: 10769_CR17 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-023-08767-2 – volume-title: Robotics: modelling, planning and control year: 2009 ident: 10769_CR55 doi: 10.1007/978-1-84628-642-1 – volume: 358 start-page: 699 year: 2021 ident: 10769_CR10 publication-title: J. the Franklin Institute doi: 10.1016/j.jfranklin.2020.11.002 – volume: 41 start-page: 41 year: 2002 ident: 10769_CR53 publication-title: Robot. Auton. Syst. doi: 10.1016/S0921-8890(02)00274-9 – volume: 59 start-page: 3979 issue: 10 year: 2012 ident: 10769_CR3 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2012.2189534 – volume: 76 start-page: 924 issue: 9–10 year: 2003 ident: 10769_CR60 publication-title: Int. J. Control doi: 10.1080/0020717031000099029 – volume: 83 start-page: 1907 issue: 9 year: 2010 ident: 10769_CR70 publication-title: Int. J. Control doi: 10.1080/00207179.2010.501385 – volume: 12 start-page: 1998 issue: 6 year: 2016 ident: 10769_CR50 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2016.2590338 – year: 2024 ident: 10769_CR16 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-024-09675-9 – volume: 24 start-page: 99 issue: 1 year: 2011 ident: 10769_CR66 publication-title: Neural Netw. doi: 10.1016/j.neunet.2010.08.011 – ident: 10769_CR67 – volume-title: Sliding mode control: Theory and Application year: 1998 ident: 10769_CR6 doi: 10.1201/9781498701822 – volume: 36 start-page: 541 year: 2000 ident: 10769_CR47 publication-title: Automatica doi: 10.1016/S0005-1098(99)00177-6 – year: 2017 ident: 10769_CR14 publication-title: IEEE Trans. Sys. Man. Cybern. Syst. doi: 10.1109/TSMC.2017.2648826 – volume: 108 start-page: 207 year: 2022 ident: 10769_CR8 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-07182-9 – volume: 83 start-page: 269 year: 2016 ident: 10769_CR28 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-015-2324-6 – volume: 10 start-page: 288 issue: 2 year: 2002 ident: 10769_CR25 publication-title: IEEE Trans. Contr. Systems Technology doi: 10.1109/87.987075 – volume: 58 start-page: 102 issue: 2 year: 2009 ident: 10769_CR32 publication-title: Syst. Control Lett. doi: 10.1016/j.sysconle.2008.09.004 – ident: 10769_CR20 doi: 10.1007/978-3-319-62896-7_13 – volume: 27 start-page: 639 year: 2016 ident: 10769_CR34 publication-title: Int. J. Robust Non-Linear Control doi: 10.1002/rnc.3591 – year: 2016 ident: 10769_CR12 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCMC.2016.2557220 – volume: 29 start-page: 1 year: 2015 ident: 10769_CR27 publication-title: Int. J. Adapt. Control Signal Process. doi: 10.1002/acs.2451 – ident: 10769_CR35 doi: 10.1109/STA.2017.8314837 – volume: 38 start-page: 2063 issue: 12 year: 1999 ident: 10769_CR2 publication-title: Automatica – volume: 20 start-page: 287 issue: 4 year: 2001 ident: 10769_CR4 publication-title: Int. J. Rob. Res. doi: 10.1177/02783640122067408 – volume: 31 start-page: 145 year: 1995 ident: 10769_CR69 publication-title: Automatica doi: 10.1016/0005-1098(94)E0050-R – volume: 111 start-page: 10113 year: 2023 ident: 10769_CR9 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-023-08355-4 – volume: 51 start-page: 49 year: 2015 ident: 10769_CR63 publication-title: Automatica doi: 10.1016/j.automatica.2014.10.089 – volume-title: Lectures on mathematical theory of extremum problems year: 2012 ident: 10769_CR54 – ident: 10769_CR68 – volume: 111 start-page: 6335 year: 2023 ident: 10769_CR15 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-08184-x – ident: 10769_CR46 doi: 10.1016/B978-0-12-417049-0.00005-5 – volume: 13 start-page: 443 year: 2003 ident: 10769_CR48 publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.723 – year: 2018 ident: 10769_CR13 publication-title: IEEE Trans. Sys. Man Cybern. Syst. doi: 10.1109/TSMC.2017.2782246 – volume: 27 start-page: 115 year: 2011 ident: 10769_CR51 publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2010.06.017 – year: 2017 ident: 10769_CR36 publication-title: Simulation doi: 10.1177/0037549717741192 – volume: 19 start-page: 101 issue: 1 year: 2005 ident: 10769_CR65 publication-title: J. Adv. Robot. doi: 10.1163/1568553053020269 – volume: 27 start-page: 58 issue: 5 year: 2007 ident: 10769_CR56 publication-title: IEEE Control Syst. Mag. doi: 10.1109/MCS.2007.904659 – volume: 37 start-page: 405 issue: 3 year: 2013 ident: 10769_CR39 publication-title: Trans. Can. Soc. Mech. Eng. doi: 10.1139/tcsme-2013-0030 – volume-title: Dyn. Control. year: 2020 ident: 10769_CR43 – volume: 39 start-page: 1975 year: 2003 ident: 10769_CR24 publication-title: Automatica doi: 10.1016/S0005-1098(03)00219-X – volume: 44 start-page: 1859 year: 2008 ident: 10769_CR19 publication-title: Automatica doi: 10.1016/j.automatica.2007.10.034 – volume-title: Adaptive sliding mode fault tolerant coordination control for four wheel independently driven electric vehicles year: 2018 ident: 10769_CR73 doi: 10.1109/TIE.2018.2798571 – volume: 89 start-page: 2753 year: 2017 ident: 10769_CR75 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-017-3623-x – volume: 147 year: 2021 ident: 10769_CR40 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107128 – volume: 47 start-page: 2079 issue: 12 year: 2002 ident: 10769_CR31 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2002.805672 – ident: 10769_CR72 doi: 10.1017/S0263574721001338 – volume-title: Diagnosis and fault-tolerant control year: 2016 ident: 10769_CR1 doi: 10.1007/978-3-662-47943-8 – volume: 412 start-page: 409 year: 2011 ident: 10769_CR33 publication-title: Lect. Notes Control. Inf. Sci. Book Ser. (LNCIS) doi: 10.1007/978-3-642-22164-4-15 – volume: 61 start-page: 1187 issue: 3 year: 2023 ident: 10769_CR42 publication-title: SIAM J. Control. Optim. doi: 10.1137/22M1471171 – year: 2018 ident: 10769_CR29 publication-title: Int. J. Control doi: 10.1080/00207179.2018.1468928 – volume: 51–24 start-page: 886 year: 2018 ident: 10769_CR22 publication-title: IFAC PapersOnLine doi: 10.1016/j.ifacol.2018.09.680 – year: 2024 ident: 10769_CR45 publication-title: Int. J. Robust and Nonlinear Control doi: 10.1002/rnc.7466 – volume: 351 start-page: 2356 year: 2014 ident: 10769_CR71 publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2013.08.027 – volume: 13 start-page: 730 issue: 5 year: 1997 ident: 10769_CR64 publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.631234 – ident: 10769_CR26 doi: 10.1109/ICUAS.2014.6842251 – volume: 57 start-page: 1076 issue: 4 year: 2012 ident: 10769_CR61 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2011.2173424 – volume: 46 start-page: 2082 year: 2010 ident: 10769_CR23 publication-title: Automatica doi: 10.1016/j.automatica.2010.09.006 – volume-title: Sliding Modes in Control and Optimization year: 1992 ident: 10769_CR7 doi: 10.1007/978-3-642-84379-2 – volume: 87 start-page: 2147 issue: 4 year: 2017 ident: 10769_CR37 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-3179-1 – ident: 10769_CR62 – volume: 31 start-page: 2290 issue: 12 year: 2018 ident: 10769_CR5 publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2018.04.008 – volume: 167 year: 2022 ident: 10769_CR30 publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2021.104550 – volume-title: Modeling, identification & control of robots year: 2002 ident: 10769_CR57 – ident: 10769_CR52 doi: 10.1109/ROBOT.1985.1087234 – volume: 67 start-page: 2549 year: 2012 ident: 10769_CR74 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-011-0167-3 – volume: 4 start-page: 166 issue: 2 year: 2013 ident: 10769_CR41 publication-title: Intell. Control. Autom. doi: 10.4236/ica.2013.42021 |
SSID | ssj0003208 |
Score | 2.432781 |
Snippet | In this paper, we deal with optimal finite-time trajectory tracking by the omni-directional mobile robots (ODMRs) under: uncertain kinematics and dynamics, the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 10061 |
SubjectTerms | Actuator failure Applications of Nonlinear Dynamics and Chaos Theory Classical Mechanics Control Control theory Dynamical Systems Energy consumption Fault tolerance Kinematics Physics Physics and Astronomy Robot control Robot dynamics Statistical Physics and Dynamical Systems Task space Torque Trajectory optimization Vibration |
Subtitle | Minimal-energy finite-time control of omni-directional mobile robots subject to actuators faults |
Title | Minimal-energy finite-time control of omni-directional mobile robots subject to actuators faults |
URI | https://link.springer.com/article/10.1007/s11071-024-10769-7 https://www.proquest.com/docview/3179589872 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_ohqAHP6bidI4cvGmgTT_SHodsDmWeHMxTbdoEClsra_f_-5K1VkUPntOEkvfy3u99A9xIVAHCdhUNGQ-p66eKikBKmiBzxCIQvqN0RHf27E_n7uPCW9RFYWWT7d6EJI2kbovd0FJB05e5KDq4H1K-C11P2-7IxXM2-pS_DjNz6Cy0LLQXYlGXyvx-xnd11GLMH2FRo20mx3BYw0Qy2tL1BHZk3oOjGjKS-kGWPTj40k-wB3smnzMpT-FtluXZKl5SaWr7iMo0tqR6kjyps9NJoUixyjO61WrGJUhWhUAxQdaFKKqSlBuh3TSkKkisC030ZB6i4s2yKs9gPhm_3E9pPUyBJoxbFeXCZQmTzE_d2JMeV1w5dhKmUns0HM-WUsQsDVOEN8pG3BWE0ndD4dk-UwHCFOccOnmRywsg0mKpkzIep07iWorHYYKmri1xs-8hYunDbXOn0fu2Z0bUdkfWFIiQApGhQMT7MGiuParfTxkhqtG_EHDWh7uGFO3y36dd_u_zK9hneqCvyWAcQKdab-Q1ooxKDKE7enh9Gg8Nc30An1HKRw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BEQIGHgVEoYAHNrDUOA8nY4WoCrSdWqlbiBNbitQmqEn_P2c3IYBgYE5iRT777rvHdwdwJ9EECMtRNGA8oI6XKCp8KWmMhyMSvvBspTO644k3nDkvc3dekcKKutq9TkkaTd2Q3dBTQdeXOag6uBdQvg07CAZ8Xcg1Y_1P_WszM4euh56FjkLMK6rM72t8N0cNxvyRFjXWZnAMhxVMJP2NXE9gS2ZtOKogI6kuZNGGgy_9BNuwa-o54-IU3sZpli6jBZWG20dUqrEl1ZPkSVWdTnJF8mWW0o1VMyFBsswFqgmyykVeFqRYCx2mIWVOIk000ZN5iIrWi7I4g9ngafo4pNUwBRoz3ispFw6LmWRe4kSudLniyrbiIJE6omG7lpQiYkmQILxRFuIuP5CeEwjX8pjyEabY59DK8kxeAJE9ltgJ41Fix05P8SiI0dW1JH7suYhYOnBf72n4vumZETbdkbUEQpRAaCQQ8g50620Pq_tThIhq9C_4nHXgoRZF8_jv1S7_9_ot7A2n41E4ep68XsE-08N9TTVjF1rlai2vEXGU4sYcsA_yQ8um |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4CAQHHgPEYEAO3CBamz7SHhEw8Zw4MGm30jSJNGlrp7X7_zhZxwaCA-e2URU79mfHnw1wqdAFCNfXNGY8pn4oNRWRUjRD5UhFJEJPmxvd12740POf-kF_icVvq93nV5IzToPp0pRX7bHU7QXxDaMWDIOZj2aEhzHlq7CO5tg1et1jN1-22GN2Jp2DUYbJSPRr2szva3x3TQu8-eOK1Hqezh7s1JCR3MxkvA8rKm_Abg0fSX04ywZsL_UWbMCGre3MygP4eB3kg1E6pMry_IgeGJxJzVR5Uleqk0KTYpQP6MzD2fQgGRUCTQaZFKKoSlJOhUnZkKogqSGdmCk9RKfTYVUeQq9z_377QOvBCjRj3KkoFz7LmGKh9NNABVxz7blZLJXJbniBq5RImYwlQh3tIgaLYhX6sQjckOkIIYt3BGt5katjIMph0pOMp9LLfEfzNM4w7HUVfhwGiF6acDXf02Q865-RLDolGwkkKIHESiDhTWjNtz2pz1KZIMIxvxBx1oTruSgWj_9e7eR_r1_A5ttdJ3l57D6fwhYzc35tYWML1qrJVJ0h-KjEudWvT_Snz-I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimal-energy+finite-time+control+of+omni-directional+mobile+robots+subject+to+actuators+faults&rft.jtitle=Nonlinear+dynamics&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=113&rft.issue=9&rft.spage=10061&rft.epage=10087&rft_id=info:doi/10.1007%2Fs11071-024-10769-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |