Differentially private approximate aggregation based on feature selection
Privacy-preserving data aggregation is an important problem that has attracted extensive study. The state-of-the-art techniques for solving this problem is differential privacy, which offers a strong privacy guarantee without making strong assumptions about the attacker. However, existing solutions...
Saved in:
Published in | Journal of combinatorial optimization Vol. 41; no. 2; pp. 318 - 327 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Privacy-preserving data aggregation is an important problem that has attracted extensive study. The state-of-the-art techniques for solving this problem is differential privacy, which offers a strong privacy guarantee without making strong assumptions about the attacker. However, existing solutions cannot effectively query data aggregation from high-dimensional datasets under differential privacy guarantee. Particularly, when the input dataset contains large number of dimensions, existing solutions must inject large scale of noise into returned aggregates. To address the above issue, this paper proposes an algorithm for querying differentially private approximate aggregates from high-dimensional datasets. Given a dataset
D
, our algorithm first develops a
ε
′
-differentially private feature selection method that is based on a data sampling process over a kd-tree, which allows us to obtain a differentially private low-dimensional dataset with representative instances. After that, our algorithm samples independent samples from the kd-tree aiming at obtaining
(
α
′
,
δ
′
)
-approximate aggregates. Finally, a model is proposed to determine the relevance between privacy and utility budgets such that the final aggregate still satisfies the accuracy requirements specified by data consumers. Intuitively, the proposed algorithm circumvents the dilemma of both dimensionality and the height threshold of kd-tree, as it samples a low-dimensional dataset
S
and queries aggregates from
S
, instead of the kd-tree. Satisfying user-specified privacy and utility budgets after multiple-stages approximation is significantly challenging, and we presents a novel model to determine the parameters’ relevance. |
---|---|
AbstractList | Privacy-preserving data aggregation is an important problem that has attracted extensive study. The state-of-the-art techniques for solving this problem is differential privacy, which offers a strong privacy guarantee without making strong assumptions about the attacker. However, existing solutions cannot effectively query data aggregation from high-dimensional datasets under differential privacy guarantee. Particularly, when the input dataset contains large number of dimensions, existing solutions must inject large scale of noise into returned aggregates. To address the above issue, this paper proposes an algorithm for querying differentially private approximate aggregates from high-dimensional datasets. Given a dataset
D
, our algorithm first develops a
ε
′
-differentially private feature selection method that is based on a data sampling process over a kd-tree, which allows us to obtain a differentially private low-dimensional dataset with representative instances. After that, our algorithm samples independent samples from the kd-tree aiming at obtaining
(
α
′
,
δ
′
)
-approximate aggregates. Finally, a model is proposed to determine the relevance between privacy and utility budgets such that the final aggregate still satisfies the accuracy requirements specified by data consumers. Intuitively, the proposed algorithm circumvents the dilemma of both dimensionality and the height threshold of kd-tree, as it samples a low-dimensional dataset
S
and queries aggregates from
S
, instead of the kd-tree. Satisfying user-specified privacy and utility budgets after multiple-stages approximation is significantly challenging, and we presents a novel model to determine the parameters’ relevance. Privacy-preserving data aggregation is an important problem that has attracted extensive study. The state-of-the-art techniques for solving this problem is differential privacy, which offers a strong privacy guarantee without making strong assumptions about the attacker. However, existing solutions cannot effectively query data aggregation from high-dimensional datasets under differential privacy guarantee. Particularly, when the input dataset contains large number of dimensions, existing solutions must inject large scale of noise into returned aggregates. To address the above issue, this paper proposes an algorithm for querying differentially private approximate aggregates from high-dimensional datasets. Given a dataset D, our algorithm first develops a ε′-differentially private feature selection method that is based on a data sampling process over a kd-tree, which allows us to obtain a differentially private low-dimensional dataset with representative instances. After that, our algorithm samples independent samples from the kd-tree aiming at obtaining (α′,δ′)-approximate aggregates. Finally, a model is proposed to determine the relevance between privacy and utility budgets such that the final aggregate still satisfies the accuracy requirements specified by data consumers. Intuitively, the proposed algorithm circumvents the dilemma of both dimensionality and the height threshold of kd-tree, as it samples a low-dimensional dataset S and queries aggregates from S, instead of the kd-tree. Satisfying user-specified privacy and utility budgets after multiple-stages approximation is significantly challenging, and we presents a novel model to determine the parameters’ relevance. |
Author | Huang, Yan He, Zaobo Zhang, Hanzhou Sai, Akshita Maradapu Vera Venkata seo, Daehee Han, Qilong |
Author_xml | – sequence: 1 givenname: Zaobo surname: He fullname: He, Zaobo email: hez26@miamioh.edu organization: Miami University – sequence: 2 givenname: Akshita Maradapu Vera Venkata surname: Sai fullname: Sai, Akshita Maradapu Vera Venkata organization: Miami University – sequence: 3 givenname: Yan surname: Huang fullname: Huang, Yan organization: Miami University – sequence: 4 givenname: Daehee surname: seo fullname: seo, Daehee organization: Miami University – sequence: 5 givenname: Hanzhou surname: Zhang fullname: Zhang, Hanzhou organization: Miami University – sequence: 6 givenname: Qilong surname: Han fullname: Han, Qilong organization: Miami University |
BookMark | eNp9UE1PwzAMjRBIbIM_wKkS54Cdtml6RONr0iQucI7S1Kk6de1IOsT-PdmKxI2Tn-X3nu03Z-f90BNjNwh3CFDcBwRVKA4COICUkuMZm2FepFwoJc8jTpXgsoT8ks1D2ABAxNmMrR5b58hTP7am6w7JzrdfZqTE7HZ--G63J9w0nhoztkOfVCZQnUTgyIx7T0mgjuxxdMUunOkCXf_WBft4fnpfvvL128tq-bDmVhQw8qLCTGXWVCBTqHInDEKeOipyQIpNAbUVrlbSSlFawDJHW5U1UYlATtl0wW4n33jg557CqDfD3vdxpRaZkkoKzGRkiYll_RCCJ6fjZ1vjDxpBHyPTU2Q6RqZPkWmMonQShUjuG_J_1v-ofgAryHEX |
Cites_doi | 10.26599/BDMA.2019.9020019 10.26599/BDMA.2018.9020016 10.1109/TII.2019.2911697 10.1109/JIOT.2017.2679483 10.1016/j.tcs.2015.07.056 10.26599/TST.2018.9010002 10.1109/TNSE.2018.2830307 10.1109/TVT.2017.2738018 10.1137/090756090 10.1145/355744.355745 10.1109/TVT.2016.2585591 10.26599/BDMA.2019.9020003 10.26599/BDMA.2019.9020004 10.1109/JSAC.2020.2980802 10.26599/TST.2018.9010037 10.26599/TST.2018.9010124 10.1145/3134428 10.1109/ICDCS.2019.00023 10.1145/2857705.2857708 10.1145/2882903.2882928 10.1109/FOCS.2007.66 10.1007/11787006_1 10.1109/TFUZZ.2019.2958295 10.1007/11681878_14 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2021 Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10878-020-00666-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1573-2886 |
EndPage | 327 |
ExternalDocumentID | 10_1007_s10878_020_00666_1 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYOK AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9R PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c270t-7b1484cab0630b5f2a1053fe7501e2a170dc2fd86c629c01951cb9dee910ef8c3 |
IEDL.DBID | AGYKE |
ISSN | 1382-6905 |
IngestDate | Thu Oct 10 18:40:46 EDT 2024 Thu Sep 12 16:40:13 EDT 2024 Sat Dec 16 12:10:22 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Data aggregation Differential privacy Sampling kd-tree |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-7b1484cab0630b5f2a1053fe7501e2a170dc2fd86c629c01951cb9dee910ef8c3 |
PQID | 2486862146 |
PQPubID | 2043856 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2486862146 crossref_primary_10_1007_s10878_020_00666_1 springer_journals_10_1007_s10878_020_00666_1 |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Journal of combinatorial optimization |
PublicationTitleAbbrev | J Comb Optim |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Li, Wang, Li (CR17) 2020; 3 He, Cai, Cheng, Wang (CR10) 2015; 607 Zaki, Pan (CR23) 2002; 11 CR15 He, Cai, Yu (CR12) 2017; 67 He, Li, Li, Li, Cai, Liang (CR13) 2018; 23 Liu, Chen, Lu, Wang, Wen (CR18) 2019; 24 Liu, Wang, Liu (CR19) 2019; 2 Wu, Yu, He (CR22) 2019; 2 Zheng, Cai (CR27) 2020; 38 Zhang, Wang, Li, Gao (CR25) 2018; 1 Li, Peng, Wang, Niu, Yuan (CR16) 2019; 24 Friedman, Bentley, Finkel (CR9) 1976; 3 Cai, Zheng (CR2) 2018; 7 Zheng, Cai, Yu, Wang, Li (CR28) 2017; 4 CR6 CR5 CR8 CR7 Zhang, Cormode, Procopiuc, Srivastava, Xiao (CR24) 2017; 42 CR26 CR21 Cai, He, Guan, Li (CR3) 2016; 15 CR20 He, Cai, Yu, Wang, Sun, Li (CR11) 2016; 66 Cai, Zheng, Yu (CR4) 2019; 15 Bamunu Mudiyanselage, Xiao, Zhang, Pan (CR1) 2020; 28 Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith (CR14) 2011; 40 M Li (666_CR17) 2020; 3 W Wu (666_CR22) 2019; 2 X Zheng (666_CR28) 2017; 4 TK Bamunu Mudiyanselage (666_CR1) 2020; 28 666_CR7 666_CR6 666_CR5 666_CR20 666_CR21 666_CR26 G Li (666_CR16) 2019; 24 Z He (666_CR13) 2018; 23 X Zheng (666_CR27) 2020; 38 Z Cai (666_CR2) 2018; 7 Z He (666_CR10) 2015; 607 SP Kasiviswanathan (666_CR14) 2011; 40 J Zhang (666_CR24) 2017; 42 Z Cai (666_CR4) 2019; 15 JH Friedman (666_CR9) 1976; 3 Z He (666_CR12) 2017; 67 L Liu (666_CR18) 2019; 24 H Zhang (666_CR25) 2018; 1 J Liu (666_CR19) 2019; 2 666_CR15 Z He (666_CR11) 2016; 66 Z Cai (666_CR3) 2016; 15 MJ Zaki (666_CR23) 2002; 11 666_CR8 |
References_xml | – volume: 28 start-page: 3219 issue: 12 year: 2020 end-page: 3228 ident: CR1 article-title: Deep fuzzy neural networks for biomarker selection for accurate cancer detection publication-title: IEEE Trans Fuzzy Syst contributor: fullname: Pan – volume: 11 start-page: 123 issue: 2 year: 2002 end-page: 127 ident: CR23 article-title: Introduction: recent developments in parallel and distributed data mining publication-title: Distrib Parallel Databases contributor: fullname: Pan – volume: 3 start-page: 68 issue: 1 year: 2020 end-page: 84 ident: CR17 article-title: Mining conditional functional dependency rules on big data publication-title: Big Data Mining Anal doi: 10.26599/BDMA.2019.9020019 contributor: fullname: Li – ident: CR6 – volume: 1 start-page: 160 issue: 2 year: 2018 end-page: 171 ident: CR25 article-title: A generic data analytics system for manufacturing production publication-title: Big Data Min Anal doi: 10.26599/BDMA.2018.9020016 contributor: fullname: Gao – volume: 15 start-page: 6492 issue: 12 year: 2019 end-page: 6499 ident: CR4 article-title: A differential-private framework for urban traffic flows estimation via taxi companies publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2019.2911697 contributor: fullname: Yu – volume: 4 start-page: 1868 issue: 6 year: 2017 end-page: 1878 ident: CR28 article-title: Follow but no track: privacy preserved profile publishing in cyber-physical social systems publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2017.2679483 contributor: fullname: Li – ident: CR8 – volume: 607 start-page: 381 year: 2015 end-page: 390 ident: CR10 article-title: Approximate aggregation for tracking quantiles and range countings in wireless sensor networks publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2015.07.056 contributor: fullname: Wang – volume: 24 start-page: 86 issue: 1 year: 2019 end-page: 96 ident: CR16 article-title: An energy-efficient data collection scheme using denoising autoencoder in wireless sensor networks publication-title: Tsinghua Sci Technol doi: 10.26599/TST.2018.9010002 contributor: fullname: Yuan – volume: 7 start-page: 766 year: 2018 end-page: 775 ident: CR2 article-title: A private and efficient mechanism for data uploading in smart cyber-physical systems publication-title: IEEE Trans Network Sci Eng doi: 10.1109/TNSE.2018.2830307 contributor: fullname: Zheng – volume: 67 start-page: 665 issue: 1 year: 2017 end-page: 673 ident: CR12 article-title: Latent-data privacy preserving with customized data utility for social network data publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2017.2738018 contributor: fullname: Yu – volume: 40 start-page: 793 issue: 3 year: 2011 end-page: 826 ident: CR14 article-title: What can we learn privately? publication-title: SIAM J Comput doi: 10.1137/090756090 contributor: fullname: Smith – ident: CR21 – volume: 3 start-page: 209 year: 1976 end-page: 226 ident: CR9 article-title: An algorithm for finding best matches in logarithmic time publication-title: ACM Trans Math Softw doi: 10.1145/355744.355745 contributor: fullname: Finkel – volume: 66 start-page: 2789 issue: 3 year: 2016 end-page: 2800 ident: CR11 article-title: Cost-efficient strategies for restraining rumor spreading in mobile social networks publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2016.2585591 contributor: fullname: Li – volume: 2 start-page: 195 issue: 3 year: 2019 end-page: 204 ident: CR19 article-title: Efficient preference clustering via random fourier features publication-title: Big Data Min Anal doi: 10.26599/BDMA.2019.9020003 contributor: fullname: Liu – ident: CR15 – volume: 2 start-page: 205 issue: 3 year: 2019 end-page: 216 ident: CR22 article-title: A semi-supervised deep network embedding approach based on the neighborhood structure publication-title: Big Data Min Anal doi: 10.26599/BDMA.2019.9020004 contributor: fullname: He – volume: 38 start-page: 968 year: 2020 end-page: 979 ident: CR27 article-title: Privacy-preserved data sharing towards multiple parties in industrial Io Ts publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2020.2980802 contributor: fullname: Cai – volume: 15 start-page: 577 issue: 4 year: 2016 end-page: 590 ident: CR3 article-title: Collective data-sanitization for preventing sensitive information inference attacks in social networks publication-title: IEEE Trans Dependable Secure Comput contributor: fullname: Li – volume: 23 start-page: 389 issue: 4 year: 2018 end-page: 395 ident: CR13 article-title: Achieving differential privacy of genomic data releasing via belief propagation publication-title: Tsinghua Sci Techno doi: 10.26599/TST.2018.9010037 contributor: fullname: Liang – volume: 24 start-page: 271 issue: 3 year: 2019 end-page: 280 ident: CR18 article-title: Mobile-edge computing framework with data compression for wireless network in energy internet publication-title: Tsinghua Sci Technol doi: 10.26599/TST.2018.9010124 contributor: fullname: Wen – ident: CR5 – ident: CR7 – ident: CR26 – volume: 42 start-page: 25 issue: 4 year: 2017 ident: CR24 article-title: Privbayes: private data release via Bayesian networks publication-title: ACM Trans Database Syst doi: 10.1145/3134428 contributor: fullname: Xiao – ident: CR20 – ident: 666_CR5 doi: 10.1109/ICDCS.2019.00023 – volume: 2 start-page: 195 issue: 3 year: 2019 ident: 666_CR19 publication-title: Big Data Min Anal doi: 10.26599/BDMA.2019.9020003 contributor: fullname: J Liu – ident: 666_CR21 doi: 10.1145/2857705.2857708 – ident: 666_CR26 doi: 10.1145/2882903.2882928 – ident: 666_CR15 – volume: 7 start-page: 766 year: 2018 ident: 666_CR2 publication-title: IEEE Trans Network Sci Eng doi: 10.1109/TNSE.2018.2830307 contributor: fullname: Z Cai – volume: 42 start-page: 25 issue: 4 year: 2017 ident: 666_CR24 publication-title: ACM Trans Database Syst doi: 10.1145/3134428 contributor: fullname: J Zhang – volume: 24 start-page: 271 issue: 3 year: 2019 ident: 666_CR18 publication-title: Tsinghua Sci Technol doi: 10.26599/TST.2018.9010124 contributor: fullname: L Liu – ident: 666_CR20 doi: 10.1109/FOCS.2007.66 – ident: 666_CR7 doi: 10.1007/11787006_1 – volume: 67 start-page: 665 issue: 1 year: 2017 ident: 666_CR12 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2017.2738018 contributor: fullname: Z He – volume: 24 start-page: 86 issue: 1 year: 2019 ident: 666_CR16 publication-title: Tsinghua Sci Technol doi: 10.26599/TST.2018.9010002 contributor: fullname: G Li – volume: 28 start-page: 3219 issue: 12 year: 2020 ident: 666_CR1 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2019.2958295 contributor: fullname: TK Bamunu Mudiyanselage – volume: 40 start-page: 793 issue: 3 year: 2011 ident: 666_CR14 publication-title: SIAM J Comput doi: 10.1137/090756090 contributor: fullname: SP Kasiviswanathan – ident: 666_CR6 – volume: 1 start-page: 160 issue: 2 year: 2018 ident: 666_CR25 publication-title: Big Data Min Anal doi: 10.26599/BDMA.2018.9020016 contributor: fullname: H Zhang – ident: 666_CR8 doi: 10.1007/11681878_14 – volume: 15 start-page: 6492 issue: 12 year: 2019 ident: 666_CR4 publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2019.2911697 contributor: fullname: Z Cai – volume: 15 start-page: 577 issue: 4 year: 2016 ident: 666_CR3 publication-title: IEEE Trans Dependable Secure Comput contributor: fullname: Z Cai – volume: 2 start-page: 205 issue: 3 year: 2019 ident: 666_CR22 publication-title: Big Data Min Anal doi: 10.26599/BDMA.2019.9020004 contributor: fullname: W Wu – volume: 3 start-page: 68 issue: 1 year: 2020 ident: 666_CR17 publication-title: Big Data Mining Anal doi: 10.26599/BDMA.2019.9020019 contributor: fullname: M Li – volume: 607 start-page: 381 year: 2015 ident: 666_CR10 publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2015.07.056 contributor: fullname: Z He – volume: 3 start-page: 209 year: 1976 ident: 666_CR9 publication-title: ACM Trans Math Softw doi: 10.1145/355744.355745 contributor: fullname: JH Friedman – volume: 4 start-page: 1868 issue: 6 year: 2017 ident: 666_CR28 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2017.2679483 contributor: fullname: X Zheng – volume: 23 start-page: 389 issue: 4 year: 2018 ident: 666_CR13 publication-title: Tsinghua Sci Techno doi: 10.26599/TST.2018.9010037 contributor: fullname: Z He – volume: 38 start-page: 968 year: 2020 ident: 666_CR27 publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2020.2980802 contributor: fullname: X Zheng – volume: 66 start-page: 2789 issue: 3 year: 2016 ident: 666_CR11 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2016.2585591 contributor: fullname: Z He – volume: 11 start-page: 123 issue: 2 year: 2002 ident: 666_CR23 publication-title: Distrib Parallel Databases contributor: fullname: MJ Zaki |
SSID | ssj0009054 |
Score | 2.274938 |
Snippet | Privacy-preserving data aggregation is an important problem that has attracted extensive study. The state-of-the-art techniques for solving this problem is... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 318 |
SubjectTerms | Agglomeration Aggregates Algorithms Budgets Combinatorics Convex and Discrete Geometry Data management Data sampling Datasets Feature selection Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Privacy State-of-the-art reviews Theory of Computation |
Title | Differentially private approximate aggregation based on feature selection |
URI | https://link.springer.com/article/10.1007/s10878-020-00666-1 https://www.proquest.com/docview/2486862146 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAG1EoVQY2SJU4TpOOEbQUUJlaqUyW7TgVohREUwT8es5OQspr6BDJkS1HOb--k-_7DuAk5IGnfJ3QRAoHHRTJcc35rk1iKiTnAReeZiP3b1u9Ib0e-aOSx22C3YsbSbNRL3DdQi0GSzQRGjG3jS5PNSeeVqPLu5tOqbXr-FkuWwSP6Pz5OVfm716-n0clyPxxL2qOm-4mDArSThZl8tCcp6IpP35rOC7zJ1uwkcNPK8rmyzasqOkOrC-IEuJb_0vJdbYLVxd5BhXcCSaTdws_9Yrw1DJa5G_3j6Y8Rqd9bIbY0qdibGEhUUYy1JqZRDtYtQfDbmdw3rPz9Au2JIGT2oFAV4lKLrQsl_ATwhGLeYlCjOEqfAmcWJIkDluyRdpSEw9dKdqxUohAVBJKbx8q06epOgArEQ53Yzds4-jTIJSC4iMIdyin1ONuDU6LQWDPmcoGK_WUtbkYmosZczFsXS_GieUrbsYIDTXZBTf-GpwVdi-r_-_tcLnmR7BGdFiLCdyuQyV9matjxCWpaOTzsAGrQxJ9Asq_2Ws |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hdgAG3ohCgQxskCpxnCYdK2hp6WNqpTJFtuNUiFIQSRHw6zk7CSkVDAyRbNlykjs_vpPvvgO48JnnSFclNBHcQgNFMFxzrm2SkHLBmMe4o6KRB8N6Z0zvJu4kCwqLc2_3_EpS79RLwW6-YoMlKhIaQbeJNk-ZErtOSlBu3t73WgXZruWmyWwRPaL152bBMr-P8vNAKlDmysWoPm_a2zDOvzR1M3msLRJeE58rJI7__ZUd2MoAqNFMZ8wurMn5Hmwu0RJibfDN5RrvQ_cmy6GCe8Fs9mHgq94QoBqajfz94UmXp2i2T7WSDXUuhgYWIqlJQ41Yp9rBpgMYt1uj646ZJWAwBfGsxPQ4GktUMK6IubgbEYZozIkkogxbYsWzQkGi0K-LOmkIFXpoC94IpUQMIiNfOIdQmj_P5REYEbeYHdp-A_VPPV9wig8nzKKMUofZFbjMtRC8pDwbQcGorMQVoLgCLa4Ae1dzRQXZmosDQn0V7oJbfwWucrkXzX-Pdvy_7uew3hkN-kG_O-ydwAZRTi7ajbsKpeR1IU8RpST8LJuUX4a93FY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4MJEYP_jaiqDt408HWdWwciYAgQjxIgqem7TpixElkGPWv97XbHBI9GA9LurTptr5273tpv-8hdOYzz5GuSmgiuAUBimCw5lzbxAHhgjGPcUexkfuDWmdIrkfuaIHFr0-7Z1uSCadBqTRFcXUahNUF4puvlGGxYkUDADch_ikSpYxUQMXG1X2vlQvvWm6S2BaQJESCbkqc-bmX784pR5xLm6Ta97Q3EcveOjly8liZx7wiPpYEHf_zWVtoIwWmRiOZSdtoRUY7aH1BrhDu-l8ar7Nd1G2muVXgHzGZvBvw2FcAroZWKX97eNLlMYTzY218Q_nLwIBCKLWYqDHTKXigag8N2627y46ZJmYwBfas2PQ4BFFEMK4Eu7gbYgYozQkloA9bwo1nBQKHgV8TNVwXipJoC14PpARsIkNfOPuoED1H8gAZIbeYHdh-HeYF8XzBCVwcM4swQhxml9B5ZhE6TfQ3aK60rIaLwnBRPVwUWpczo9F0Lc4oJr6iwYBLKKGLzAZ59e-9Hf6t-SlavW226U130DtCa1idfdGnu8uoEL_M5TGAl5ifpPPzE16u5To |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentially+private+approximate+aggregation+based+on+feature+selection&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=He+Zaobo&rft.au=Sai+Akshita+Maradapu+Vera+Venkata&rft.au=Huang%2C+Yan&rft.au=seo+Daehee&rft.date=2021-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=41&rft.issue=2&rft.spage=318&rft.epage=327&rft_id=info:doi/10.1007%2Fs10878-020-00666-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon |