Differentially private approximate aggregation based on feature selection

Privacy-preserving data aggregation is an important problem that has attracted extensive study. The state-of-the-art techniques for solving this problem is differential privacy, which offers a strong privacy guarantee without making strong assumptions about the attacker. However, existing solutions...

Full description

Saved in:
Bibliographic Details
Published inJournal of combinatorial optimization Vol. 41; no. 2; pp. 318 - 327
Main Authors He, Zaobo, Sai, Akshita Maradapu Vera Venkata, Huang, Yan, seo, Daehee, Zhang, Hanzhou, Han, Qilong
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Privacy-preserving data aggregation is an important problem that has attracted extensive study. The state-of-the-art techniques for solving this problem is differential privacy, which offers a strong privacy guarantee without making strong assumptions about the attacker. However, existing solutions cannot effectively query data aggregation from high-dimensional datasets under differential privacy guarantee. Particularly, when the input dataset contains large number of dimensions, existing solutions must inject large scale of noise into returned aggregates. To address the above issue, this paper proposes an algorithm for querying differentially private approximate aggregates from high-dimensional datasets. Given a dataset D , our algorithm first develops a ε ′ -differentially private feature selection method that is based on a data sampling process over a kd-tree, which allows us to obtain a differentially private low-dimensional dataset with representative instances. After that, our algorithm samples independent samples from the kd-tree aiming at obtaining ( α ′ , δ ′ ) -approximate aggregates. Finally, a model is proposed to determine the relevance between privacy and utility budgets such that the final aggregate still satisfies the accuracy requirements specified by data consumers. Intuitively, the proposed algorithm circumvents the dilemma of both dimensionality and the height threshold of kd-tree, as it samples a low-dimensional dataset S and queries aggregates from S , instead of the kd-tree. Satisfying user-specified privacy and utility budgets after multiple-stages approximation is significantly challenging, and we presents a novel model to determine the parameters’ relevance.
AbstractList Privacy-preserving data aggregation is an important problem that has attracted extensive study. The state-of-the-art techniques for solving this problem is differential privacy, which offers a strong privacy guarantee without making strong assumptions about the attacker. However, existing solutions cannot effectively query data aggregation from high-dimensional datasets under differential privacy guarantee. Particularly, when the input dataset contains large number of dimensions, existing solutions must inject large scale of noise into returned aggregates. To address the above issue, this paper proposes an algorithm for querying differentially private approximate aggregates from high-dimensional datasets. Given a dataset D , our algorithm first develops a ε ′ -differentially private feature selection method that is based on a data sampling process over a kd-tree, which allows us to obtain a differentially private low-dimensional dataset with representative instances. After that, our algorithm samples independent samples from the kd-tree aiming at obtaining ( α ′ , δ ′ ) -approximate aggregates. Finally, a model is proposed to determine the relevance between privacy and utility budgets such that the final aggregate still satisfies the accuracy requirements specified by data consumers. Intuitively, the proposed algorithm circumvents the dilemma of both dimensionality and the height threshold of kd-tree, as it samples a low-dimensional dataset S and queries aggregates from S , instead of the kd-tree. Satisfying user-specified privacy and utility budgets after multiple-stages approximation is significantly challenging, and we presents a novel model to determine the parameters’ relevance.
Privacy-preserving data aggregation is an important problem that has attracted extensive study. The state-of-the-art techniques for solving this problem is differential privacy, which offers a strong privacy guarantee without making strong assumptions about the attacker. However, existing solutions cannot effectively query data aggregation from high-dimensional datasets under differential privacy guarantee. Particularly, when the input dataset contains large number of dimensions, existing solutions must inject large scale of noise into returned aggregates. To address the above issue, this paper proposes an algorithm for querying differentially private approximate aggregates from high-dimensional datasets. Given a dataset D, our algorithm first develops a ε′-differentially private feature selection method that is based on a data sampling process over a kd-tree, which allows us to obtain a differentially private low-dimensional dataset with representative instances. After that, our algorithm samples independent samples from the kd-tree aiming at obtaining (α′,δ′)-approximate aggregates. Finally, a model is proposed to determine the relevance between privacy and utility budgets such that the final aggregate still satisfies the accuracy requirements specified by data consumers. Intuitively, the proposed algorithm circumvents the dilemma of both dimensionality and the height threshold of kd-tree, as it samples a low-dimensional dataset S and queries aggregates from S, instead of the kd-tree. Satisfying user-specified privacy and utility budgets after multiple-stages approximation is significantly challenging, and we presents a novel model to determine the parameters’ relevance.
Author Huang, Yan
He, Zaobo
Zhang, Hanzhou
Sai, Akshita Maradapu Vera Venkata
seo, Daehee
Han, Qilong
Author_xml – sequence: 1
  givenname: Zaobo
  surname: He
  fullname: He, Zaobo
  email: hez26@miamioh.edu
  organization: Miami University
– sequence: 2
  givenname: Akshita Maradapu Vera Venkata
  surname: Sai
  fullname: Sai, Akshita Maradapu Vera Venkata
  organization: Miami University
– sequence: 3
  givenname: Yan
  surname: Huang
  fullname: Huang, Yan
  organization: Miami University
– sequence: 4
  givenname: Daehee
  surname: seo
  fullname: seo, Daehee
  organization: Miami University
– sequence: 5
  givenname: Hanzhou
  surname: Zhang
  fullname: Zhang, Hanzhou
  organization: Miami University
– sequence: 6
  givenname: Qilong
  surname: Han
  fullname: Han, Qilong
  organization: Miami University
BookMark eNp9UE1PwzAMjRBIbIM_wKkS54Cdtml6RONr0iQucI7S1Kk6de1IOsT-PdmKxI2Tn-X3nu03Z-f90BNjNwh3CFDcBwRVKA4COICUkuMZm2FepFwoJc8jTpXgsoT8ks1D2ABAxNmMrR5b58hTP7am6w7JzrdfZqTE7HZ--G63J9w0nhoztkOfVCZQnUTgyIx7T0mgjuxxdMUunOkCXf_WBft4fnpfvvL128tq-bDmVhQw8qLCTGXWVCBTqHInDEKeOipyQIpNAbUVrlbSSlFawDJHW5U1UYlATtl0wW4n33jg557CqDfD3vdxpRaZkkoKzGRkiYll_RCCJ6fjZ1vjDxpBHyPTU2Q6RqZPkWmMonQShUjuG_J_1v-ofgAryHEX
Cites_doi 10.26599/BDMA.2019.9020019
10.26599/BDMA.2018.9020016
10.1109/TII.2019.2911697
10.1109/JIOT.2017.2679483
10.1016/j.tcs.2015.07.056
10.26599/TST.2018.9010002
10.1109/TNSE.2018.2830307
10.1109/TVT.2017.2738018
10.1137/090756090
10.1145/355744.355745
10.1109/TVT.2016.2585591
10.26599/BDMA.2019.9020003
10.26599/BDMA.2019.9020004
10.1109/JSAC.2020.2980802
10.26599/TST.2018.9010037
10.26599/TST.2018.9010124
10.1145/3134428
10.1109/ICDCS.2019.00023
10.1145/2857705.2857708
10.1145/2882903.2882928
10.1109/FOCS.2007.66
10.1007/11787006_1
10.1109/TFUZZ.2019.2958295
10.1007/11681878_14
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s10878-020-00666-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
EndPage 327
ExternalDocumentID 10_1007_s10878_020_00666_1
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYOK
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c270t-7b1484cab0630b5f2a1053fe7501e2a170dc2fd86c629c01951cb9dee910ef8c3
IEDL.DBID AGYKE
ISSN 1382-6905
IngestDate Thu Oct 10 18:40:46 EDT 2024
Thu Sep 12 16:40:13 EDT 2024
Sat Dec 16 12:10:22 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Data aggregation
Differential privacy
Sampling
kd-tree
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-7b1484cab0630b5f2a1053fe7501e2a170dc2fd86c629c01951cb9dee910ef8c3
PQID 2486862146
PQPubID 2043856
PageCount 10
ParticipantIDs proquest_journals_2486862146
crossref_primary_10_1007_s10878_020_00666_1
springer_journals_10_1007_s10878_020_00666_1
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Li, Wang, Li (CR17) 2020; 3
He, Cai, Cheng, Wang (CR10) 2015; 607
Zaki, Pan (CR23) 2002; 11
CR15
He, Cai, Yu (CR12) 2017; 67
He, Li, Li, Li, Cai, Liang (CR13) 2018; 23
Liu, Chen, Lu, Wang, Wen (CR18) 2019; 24
Liu, Wang, Liu (CR19) 2019; 2
Wu, Yu, He (CR22) 2019; 2
Zheng, Cai (CR27) 2020; 38
Zhang, Wang, Li, Gao (CR25) 2018; 1
Li, Peng, Wang, Niu, Yuan (CR16) 2019; 24
Friedman, Bentley, Finkel (CR9) 1976; 3
Cai, Zheng (CR2) 2018; 7
Zheng, Cai, Yu, Wang, Li (CR28) 2017; 4
CR6
CR5
CR8
CR7
Zhang, Cormode, Procopiuc, Srivastava, Xiao (CR24) 2017; 42
CR26
CR21
Cai, He, Guan, Li (CR3) 2016; 15
CR20
He, Cai, Yu, Wang, Sun, Li (CR11) 2016; 66
Cai, Zheng, Yu (CR4) 2019; 15
Bamunu Mudiyanselage, Xiao, Zhang, Pan (CR1) 2020; 28
Kasiviswanathan, Lee, Nissim, Raskhodnikova, Smith (CR14) 2011; 40
M Li (666_CR17) 2020; 3
W Wu (666_CR22) 2019; 2
X Zheng (666_CR28) 2017; 4
TK Bamunu Mudiyanselage (666_CR1) 2020; 28
666_CR7
666_CR6
666_CR5
666_CR20
666_CR21
666_CR26
G Li (666_CR16) 2019; 24
Z He (666_CR13) 2018; 23
X Zheng (666_CR27) 2020; 38
Z Cai (666_CR2) 2018; 7
Z He (666_CR10) 2015; 607
SP Kasiviswanathan (666_CR14) 2011; 40
J Zhang (666_CR24) 2017; 42
Z Cai (666_CR4) 2019; 15
JH Friedman (666_CR9) 1976; 3
Z He (666_CR12) 2017; 67
L Liu (666_CR18) 2019; 24
H Zhang (666_CR25) 2018; 1
J Liu (666_CR19) 2019; 2
666_CR15
Z He (666_CR11) 2016; 66
Z Cai (666_CR3) 2016; 15
MJ Zaki (666_CR23) 2002; 11
666_CR8
References_xml – volume: 28
  start-page: 3219
  issue: 12
  year: 2020
  end-page: 3228
  ident: CR1
  article-title: Deep fuzzy neural networks for biomarker selection for accurate cancer detection
  publication-title: IEEE Trans Fuzzy Syst
  contributor:
    fullname: Pan
– volume: 11
  start-page: 123
  issue: 2
  year: 2002
  end-page: 127
  ident: CR23
  article-title: Introduction: recent developments in parallel and distributed data mining
  publication-title: Distrib Parallel Databases
  contributor:
    fullname: Pan
– volume: 3
  start-page: 68
  issue: 1
  year: 2020
  end-page: 84
  ident: CR17
  article-title: Mining conditional functional dependency rules on big data
  publication-title: Big Data Mining Anal
  doi: 10.26599/BDMA.2019.9020019
  contributor:
    fullname: Li
– ident: CR6
– volume: 1
  start-page: 160
  issue: 2
  year: 2018
  end-page: 171
  ident: CR25
  article-title: A generic data analytics system for manufacturing production
  publication-title: Big Data Min Anal
  doi: 10.26599/BDMA.2018.9020016
  contributor:
    fullname: Gao
– volume: 15
  start-page: 6492
  issue: 12
  year: 2019
  end-page: 6499
  ident: CR4
  article-title: A differential-private framework for urban traffic flows estimation via taxi companies
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2019.2911697
  contributor:
    fullname: Yu
– volume: 4
  start-page: 1868
  issue: 6
  year: 2017
  end-page: 1878
  ident: CR28
  article-title: Follow but no track: privacy preserved profile publishing in cyber-physical social systems
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2017.2679483
  contributor:
    fullname: Li
– ident: CR8
– volume: 607
  start-page: 381
  year: 2015
  end-page: 390
  ident: CR10
  article-title: Approximate aggregation for tracking quantiles and range countings in wireless sensor networks
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2015.07.056
  contributor:
    fullname: Wang
– volume: 24
  start-page: 86
  issue: 1
  year: 2019
  end-page: 96
  ident: CR16
  article-title: An energy-efficient data collection scheme using denoising autoencoder in wireless sensor networks
  publication-title: Tsinghua Sci Technol
  doi: 10.26599/TST.2018.9010002
  contributor:
    fullname: Yuan
– volume: 7
  start-page: 766
  year: 2018
  end-page: 775
  ident: CR2
  article-title: A private and efficient mechanism for data uploading in smart cyber-physical systems
  publication-title: IEEE Trans Network Sci Eng
  doi: 10.1109/TNSE.2018.2830307
  contributor:
    fullname: Zheng
– volume: 67
  start-page: 665
  issue: 1
  year: 2017
  end-page: 673
  ident: CR12
  article-title: Latent-data privacy preserving with customized data utility for social network data
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2017.2738018
  contributor:
    fullname: Yu
– volume: 40
  start-page: 793
  issue: 3
  year: 2011
  end-page: 826
  ident: CR14
  article-title: What can we learn privately?
  publication-title: SIAM J Comput
  doi: 10.1137/090756090
  contributor:
    fullname: Smith
– ident: CR21
– volume: 3
  start-page: 209
  year: 1976
  end-page: 226
  ident: CR9
  article-title: An algorithm for finding best matches in logarithmic time
  publication-title: ACM Trans Math Softw
  doi: 10.1145/355744.355745
  contributor:
    fullname: Finkel
– volume: 66
  start-page: 2789
  issue: 3
  year: 2016
  end-page: 2800
  ident: CR11
  article-title: Cost-efficient strategies for restraining rumor spreading in mobile social networks
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2016.2585591
  contributor:
    fullname: Li
– volume: 2
  start-page: 195
  issue: 3
  year: 2019
  end-page: 204
  ident: CR19
  article-title: Efficient preference clustering via random fourier features
  publication-title: Big Data Min Anal
  doi: 10.26599/BDMA.2019.9020003
  contributor:
    fullname: Liu
– ident: CR15
– volume: 2
  start-page: 205
  issue: 3
  year: 2019
  end-page: 216
  ident: CR22
  article-title: A semi-supervised deep network embedding approach based on the neighborhood structure
  publication-title: Big Data Min Anal
  doi: 10.26599/BDMA.2019.9020004
  contributor:
    fullname: He
– volume: 38
  start-page: 968
  year: 2020
  end-page: 979
  ident: CR27
  article-title: Privacy-preserved data sharing towards multiple parties in industrial Io Ts
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2020.2980802
  contributor:
    fullname: Cai
– volume: 15
  start-page: 577
  issue: 4
  year: 2016
  end-page: 590
  ident: CR3
  article-title: Collective data-sanitization for preventing sensitive information inference attacks in social networks
  publication-title: IEEE Trans Dependable Secure Comput
  contributor:
    fullname: Li
– volume: 23
  start-page: 389
  issue: 4
  year: 2018
  end-page: 395
  ident: CR13
  article-title: Achieving differential privacy of genomic data releasing via belief propagation
  publication-title: Tsinghua Sci Techno
  doi: 10.26599/TST.2018.9010037
  contributor:
    fullname: Liang
– volume: 24
  start-page: 271
  issue: 3
  year: 2019
  end-page: 280
  ident: CR18
  article-title: Mobile-edge computing framework with data compression for wireless network in energy internet
  publication-title: Tsinghua Sci Technol
  doi: 10.26599/TST.2018.9010124
  contributor:
    fullname: Wen
– ident: CR5
– ident: CR7
– ident: CR26
– volume: 42
  start-page: 25
  issue: 4
  year: 2017
  ident: CR24
  article-title: Privbayes: private data release via Bayesian networks
  publication-title: ACM Trans Database Syst
  doi: 10.1145/3134428
  contributor:
    fullname: Xiao
– ident: CR20
– ident: 666_CR5
  doi: 10.1109/ICDCS.2019.00023
– volume: 2
  start-page: 195
  issue: 3
  year: 2019
  ident: 666_CR19
  publication-title: Big Data Min Anal
  doi: 10.26599/BDMA.2019.9020003
  contributor:
    fullname: J Liu
– ident: 666_CR21
  doi: 10.1145/2857705.2857708
– ident: 666_CR26
  doi: 10.1145/2882903.2882928
– ident: 666_CR15
– volume: 7
  start-page: 766
  year: 2018
  ident: 666_CR2
  publication-title: IEEE Trans Network Sci Eng
  doi: 10.1109/TNSE.2018.2830307
  contributor:
    fullname: Z Cai
– volume: 42
  start-page: 25
  issue: 4
  year: 2017
  ident: 666_CR24
  publication-title: ACM Trans Database Syst
  doi: 10.1145/3134428
  contributor:
    fullname: J Zhang
– volume: 24
  start-page: 271
  issue: 3
  year: 2019
  ident: 666_CR18
  publication-title: Tsinghua Sci Technol
  doi: 10.26599/TST.2018.9010124
  contributor:
    fullname: L Liu
– ident: 666_CR20
  doi: 10.1109/FOCS.2007.66
– ident: 666_CR7
  doi: 10.1007/11787006_1
– volume: 67
  start-page: 665
  issue: 1
  year: 2017
  ident: 666_CR12
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2017.2738018
  contributor:
    fullname: Z He
– volume: 24
  start-page: 86
  issue: 1
  year: 2019
  ident: 666_CR16
  publication-title: Tsinghua Sci Technol
  doi: 10.26599/TST.2018.9010002
  contributor:
    fullname: G Li
– volume: 28
  start-page: 3219
  issue: 12
  year: 2020
  ident: 666_CR1
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2019.2958295
  contributor:
    fullname: TK Bamunu Mudiyanselage
– volume: 40
  start-page: 793
  issue: 3
  year: 2011
  ident: 666_CR14
  publication-title: SIAM J Comput
  doi: 10.1137/090756090
  contributor:
    fullname: SP Kasiviswanathan
– ident: 666_CR6
– volume: 1
  start-page: 160
  issue: 2
  year: 2018
  ident: 666_CR25
  publication-title: Big Data Min Anal
  doi: 10.26599/BDMA.2018.9020016
  contributor:
    fullname: H Zhang
– ident: 666_CR8
  doi: 10.1007/11681878_14
– volume: 15
  start-page: 6492
  issue: 12
  year: 2019
  ident: 666_CR4
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2019.2911697
  contributor:
    fullname: Z Cai
– volume: 15
  start-page: 577
  issue: 4
  year: 2016
  ident: 666_CR3
  publication-title: IEEE Trans Dependable Secure Comput
  contributor:
    fullname: Z Cai
– volume: 2
  start-page: 205
  issue: 3
  year: 2019
  ident: 666_CR22
  publication-title: Big Data Min Anal
  doi: 10.26599/BDMA.2019.9020004
  contributor:
    fullname: W Wu
– volume: 3
  start-page: 68
  issue: 1
  year: 2020
  ident: 666_CR17
  publication-title: Big Data Mining Anal
  doi: 10.26599/BDMA.2019.9020019
  contributor:
    fullname: M Li
– volume: 607
  start-page: 381
  year: 2015
  ident: 666_CR10
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2015.07.056
  contributor:
    fullname: Z He
– volume: 3
  start-page: 209
  year: 1976
  ident: 666_CR9
  publication-title: ACM Trans Math Softw
  doi: 10.1145/355744.355745
  contributor:
    fullname: JH Friedman
– volume: 4
  start-page: 1868
  issue: 6
  year: 2017
  ident: 666_CR28
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2017.2679483
  contributor:
    fullname: X Zheng
– volume: 23
  start-page: 389
  issue: 4
  year: 2018
  ident: 666_CR13
  publication-title: Tsinghua Sci Techno
  doi: 10.26599/TST.2018.9010037
  contributor:
    fullname: Z He
– volume: 38
  start-page: 968
  year: 2020
  ident: 666_CR27
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2020.2980802
  contributor:
    fullname: X Zheng
– volume: 66
  start-page: 2789
  issue: 3
  year: 2016
  ident: 666_CR11
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2016.2585591
  contributor:
    fullname: Z He
– volume: 11
  start-page: 123
  issue: 2
  year: 2002
  ident: 666_CR23
  publication-title: Distrib Parallel Databases
  contributor:
    fullname: MJ Zaki
SSID ssj0009054
Score 2.274938
Snippet Privacy-preserving data aggregation is an important problem that has attracted extensive study. The state-of-the-art techniques for solving this problem is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 318
SubjectTerms Agglomeration
Aggregates
Algorithms
Budgets
Combinatorics
Convex and Discrete Geometry
Data management
Data sampling
Datasets
Feature selection
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Privacy
State-of-the-art reviews
Theory of Computation
Title Differentially private approximate aggregation based on feature selection
URI https://link.springer.com/article/10.1007/s10878-020-00666-1
https://www.proquest.com/docview/2486862146
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAG1EoVQY2SJU4TpOOEbQUUJlaqUyW7TgVohREUwT8es5OQspr6BDJkS1HOb--k-_7DuAk5IGnfJ3QRAoHHRTJcc35rk1iKiTnAReeZiP3b1u9Ib0e-aOSx22C3YsbSbNRL3DdQi0GSzQRGjG3jS5PNSeeVqPLu5tOqbXr-FkuWwSP6Pz5OVfm716-n0clyPxxL2qOm-4mDArSThZl8tCcp6IpP35rOC7zJ1uwkcNPK8rmyzasqOkOrC-IEuJb_0vJdbYLVxd5BhXcCSaTdws_9Yrw1DJa5G_3j6Y8Rqd9bIbY0qdibGEhUUYy1JqZRDtYtQfDbmdw3rPz9Au2JIGT2oFAV4lKLrQsl_ATwhGLeYlCjOEqfAmcWJIkDluyRdpSEw9dKdqxUohAVBJKbx8q06epOgArEQ53Yzds4-jTIJSC4iMIdyin1ONuDU6LQWDPmcoGK_WUtbkYmosZczFsXS_GieUrbsYIDTXZBTf-GpwVdi-r_-_tcLnmR7BGdFiLCdyuQyV9matjxCWpaOTzsAGrQxJ9Asq_2Ws
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hdgAG3ohCgQxskCpxnCYdK2hp6WNqpTJFtuNUiFIQSRHw6zk7CSkVDAyRbNlykjs_vpPvvgO48JnnSFclNBHcQgNFMFxzrm2SkHLBmMe4o6KRB8N6Z0zvJu4kCwqLc2_3_EpS79RLwW6-YoMlKhIaQbeJNk-ZErtOSlBu3t73WgXZruWmyWwRPaL152bBMr-P8vNAKlDmysWoPm_a2zDOvzR1M3msLRJeE58rJI7__ZUd2MoAqNFMZ8wurMn5Hmwu0RJibfDN5RrvQ_cmy6GCe8Fs9mHgq94QoBqajfz94UmXp2i2T7WSDXUuhgYWIqlJQ41Yp9rBpgMYt1uj646ZJWAwBfGsxPQ4GktUMK6IubgbEYZozIkkogxbYsWzQkGi0K-LOmkIFXpoC94IpUQMIiNfOIdQmj_P5REYEbeYHdp-A_VPPV9wig8nzKKMUofZFbjMtRC8pDwbQcGorMQVoLgCLa4Ae1dzRQXZmosDQn0V7oJbfwWucrkXzX-Pdvy_7uew3hkN-kG_O-ydwAZRTi7ajbsKpeR1IU8RpST8LJuUX4a93FY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4MJEYP_jaiqDt408HWdWwciYAgQjxIgqem7TpixElkGPWv97XbHBI9GA9LurTptr5273tpv-8hdOYzz5GuSmgiuAUBimCw5lzbxAHhgjGPcUexkfuDWmdIrkfuaIHFr0-7Z1uSCadBqTRFcXUahNUF4puvlGGxYkUDADch_ikSpYxUQMXG1X2vlQvvWm6S2BaQJESCbkqc-bmX784pR5xLm6Ta97Q3EcveOjly8liZx7wiPpYEHf_zWVtoIwWmRiOZSdtoRUY7aH1BrhDu-l8ar7Nd1G2muVXgHzGZvBvw2FcAroZWKX97eNLlMYTzY218Q_nLwIBCKLWYqDHTKXigag8N2627y46ZJmYwBfas2PQ4BFFEMK4Eu7gbYgYozQkloA9bwo1nBQKHgV8TNVwXipJoC14PpARsIkNfOPuoED1H8gAZIbeYHdh-HeYF8XzBCVwcM4swQhxml9B5ZhE6TfQ3aK60rIaLwnBRPVwUWpczo9F0Lc4oJr6iwYBLKKGLzAZ59e-9Hf6t-SlavW226U130DtCa1idfdGnu8uoEL_M5TGAl5ifpPPzE16u5To
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentially+private+approximate+aggregation+based+on+feature+selection&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=He+Zaobo&rft.au=Sai+Akshita+Maradapu+Vera+Venkata&rft.au=Huang%2C+Yan&rft.au=seo+Daehee&rft.date=2021-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=41&rft.issue=2&rft.spage=318&rft.epage=327&rft_id=info:doi/10.1007%2Fs10878-020-00666-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon