Optimization of facial skin temperature-based anomaly detection model considering diurnal variation

The amount of blood under the surface of skin is controlled by the autonomic nervous system and directly influences the facial skin temperature. Classification models have been used to estimate various physiological and psychological states of the human body using facial skin temperature. The anomal...

Full description

Saved in:
Bibliographic Details
Published inArtificial life and robotics Vol. 28; no. 2; pp. 394 - 402
Main Authors Takano, Masahito, Iwashita, Yuki, Nagumo, Kent, Oiwa, Kosuke, Nozawa, Akio
Format Journal Article
LanguageEnglish
Published Tokyo Springer Japan 01.05.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The amount of blood under the surface of skin is controlled by the autonomic nervous system and directly influences the facial skin temperature. Classification models have been used to estimate various physiological and psychological states of the human body using facial skin temperature. The anomaly detection method is required to monitor the facial skin temperature because of the difficulty in collecting anomalous samples. The normal state of the facial skin temperature fluctuates; hence, diurnal variation should be considered when applying anomaly detection methods to monitor the facial skin temperature. In a previous study, the anomaly detection method was applied to the facial skin temperature considering diurnal variation, and the normal and anomaly states were measured 16 times at 1-h intervals. A variational autoencoder (VAE) was applied to the normal-state data to construct an anomaly detection model. However, in many cases, anomalous states were not detected. The mean AUC (area under the receiver-operating characteristic curve) for the 16 experiments was 0.57 using the model of the previous study. The application of thermal images and VAE training is yet to be comprehensively studied. In this study, we improved anomaly detection accuracy for the facial skin temperature with diurnal variation by optimizing the method of thermal images and model structure. The mean AUC of the proposed model for the 16 experiments was 0.96.
AbstractList The amount of blood under the surface of skin is controlled by the autonomic nervous system and directly influences the facial skin temperature. Classification models have been used to estimate various physiological and psychological states of the human body using facial skin temperature. The anomaly detection method is required to monitor the facial skin temperature because of the difficulty in collecting anomalous samples. The normal state of the facial skin temperature fluctuates; hence, diurnal variation should be considered when applying anomaly detection methods to monitor the facial skin temperature. In a previous study, the anomaly detection method was applied to the facial skin temperature considering diurnal variation, and the normal and anomaly states were measured 16 times at 1-h intervals. A variational autoencoder (VAE) was applied to the normal-state data to construct an anomaly detection model. However, in many cases, anomalous states were not detected. The mean AUC (area under the receiver-operating characteristic curve) for the 16 experiments was 0.57 using the model of the previous study. The application of thermal images and VAE training is yet to be comprehensively studied. In this study, we improved anomaly detection accuracy for the facial skin temperature with diurnal variation by optimizing the method of thermal images and model structure. The mean AUC of the proposed model for the 16 experiments was 0.96.
Author Oiwa, Kosuke
Nozawa, Akio
Iwashita, Yuki
Nagumo, Kent
Takano, Masahito
Author_xml – sequence: 1
  givenname: Masahito
  surname: Takano
  fullname: Takano, Masahito
  organization: Aoyama Gakuin University
– sequence: 2
  givenname: Yuki
  surname: Iwashita
  fullname: Iwashita, Yuki
  organization: Aoyama Gakuin University
– sequence: 3
  givenname: Kent
  surname: Nagumo
  fullname: Nagumo, Kent
  organization: Aoyama Gakuin University
– sequence: 4
  givenname: Kosuke
  surname: Oiwa
  fullname: Oiwa, Kosuke
  organization: Aoyama Gakuin University
– sequence: 5
  givenname: Akio
  surname: Nozawa
  fullname: Nozawa, Akio
  email: akio@ee.aoyama.ac.jp
  organization: Aoyama Gakuin University
BookMark eNp9kD1PwzAQhi1UJNrCH2CyxGzwRxwnI6r4kip1gdmynQtySeJgp0jl15MmSGwsdzfc--juWaFFFzpA6JrRW0apuktjZZJQLgilhRREnKEly1lGVCbzxThnQhDJy-ICrVLaU5opmoslcrt-8K3_NoMPHQ41ro3zpsHpw3d4gLaHaIZDBGJNggqbLrSmOeIKBnBTpA0VNNiFLvkKou_eceUPsRsRXyb6CXuJzmvTJLj67Wv09vjwunkm293Ty-Z-SxxXdCDKgJO14yBkzS1YW0oKhc1opQQwaYTKXZ2VNjOylFzkylkljQXFRVUpW4o1upm5fQyfB0iD3ofplKR5QXPJWMHUuMXnLRdDShFq3UffmnjUjOqTTD3L1KNMPcnUYgyJOZT6048Q_9D_pH4AATZ7eg
Cites_doi 10.1007/s10015-021-00699-7
10.1002/tee.22876
10.1016/j.zemedi.2018.12.003
10.1161/HYPERTENSIONAHA.108.117234
10.1186/s12859-020-03936-1
10.1016/j.eswa.2021.114598
10.1145/3464423
10.1007/s10015-021-00705-y
10.1111/psyp.12243
10.1126/science.3287615
10.1109/TCYB.2020.3027724
10.1109/TMI.2020.3040950
10.1007/s10015-020-00634-2
10.3390/diagnostics12020452
10.1080/17686733.2014.892667
10.1145/3394486.3406704
10.1371/journal.pone.0090782
ContentType Journal Article
Copyright International Society of Artificial Life and Robotics (ISAROB) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: International Society of Artificial Life and Robotics (ISAROB) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10015-023-00853-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1614-7456
EndPage 402
ExternalDocumentID 10_1007_s10015_023_00853_3
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
23N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z83
Z88
ZJWQK
ZMTXR
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
ID FETCH-LOGICAL-c270t-7aec5fc2e35f2bebb950e8b40d73e15a376cf49b4a5952367cb75abe723dd7b93
IEDL.DBID AGYKE
ISSN 1433-5298
IngestDate Thu Oct 10 17:00:28 EDT 2024
Thu Sep 12 19:25:04 EDT 2024
Sat Dec 16 12:04:44 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Infrared thermography
Deep learning
Variational autoencoder
Blood pressure
Remote health monitoring
Thermal face image
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-7aec5fc2e35f2bebb950e8b40d73e15a376cf49b4a5952367cb75abe723dd7b93
PQID 2806511817
PQPubID 2043964
PageCount 9
ParticipantIDs proquest_journals_2806511817
crossref_primary_10_1007_s10015_023_00853_3
springer_journals_10_1007_s10015_023_00853_3
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
– name: Heidelberg
PublicationTitle Artificial life and robotics
PublicationTitleAbbrev Artif Life Robotics
PublicationYear 2023
Publisher Springer Japan
Springer Nature B.V
Publisher_xml – name: Springer Japan
– name: Springer Nature B.V
References Masaki, Nagumo, Iwashita, Oiwa, Nozawa (CR13) 2021; 26
Biaggioni (CR17) 2008; 52
CR3
CR5
Zhang, Xie, Pang, Liao, Verjans, Li, Sun, He, Li, Shen (CR9) 2021; 40
An, Cho (CR14) 2015; 2
Matsubara, Sato, Hama, Tachibana, Uehara (CR16) 2022; 52
Finck, Moosbauer, Probst, Schlaeger, Schuberth, Schinz, Yiğitsoy, Byas, Zimmer, Pfister (CR11) 2022; 12
Pumsirirat, Yan (CR7) 2018; 9
Masaki, Nagumo, Lamsal, Oiwa, Nozawa (CR12) 2020; 26
Swets (CR18) 1988; 240
Adachi, Oiwa, Nozawa (CR4) 2019; 14
Ioannou, Gallese, Merla (CR1) 2014; 51
Maier, Syben, Lasser, Riess (CR15) 2019; 29
Fernando, Gammulle, Denman, Sridharan, Fookes (CR8) 2022; 54
Han, Rundo, Murao, Noguchi, Shimahara, Milacski, Koshino, Sala, Nakayama, Satoh (CR10) 2021; 22
Ring (CR2) 2014; 11
Iwashita, Nagumo, Oiwa, Nozawa (CR19) 2021; 26
Ayvaz, Alpay (CR6) 2021; 173
A Maier (853_CR15) 2019; 29
J An (853_CR14) 2015; 2
J Zhang (853_CR9) 2021; 40
JA Swets (853_CR18) 1988; 240
S Ioannou (853_CR1) 2014; 51
C Han (853_CR10) 2021; 22
S Ayvaz (853_CR6) 2021; 173
Y Iwashita (853_CR19) 2021; 26
FJ Ring (853_CR2) 2014; 11
A Masaki (853_CR13) 2021; 26
T Finck (853_CR11) 2022; 12
A Pumsirirat (853_CR7) 2018; 9
I Biaggioni (853_CR17) 2008; 52
853_CR3
853_CR5
H Adachi (853_CR4) 2019; 14
T Matsubara (853_CR16) 2022; 52
T Fernando (853_CR8) 2022; 54
A Masaki (853_CR12) 2020; 26
References_xml – volume: 2
  start-page: 1
  issue: 1
  year: 2015
  end-page: 18
  ident: CR14
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
  publication-title: Spec Lect on IE
  contributor:
    fullname: Cho
– volume: 26
  start-page: 488
  issue: 4
  year: 2021
  end-page: 493
  ident: CR13
  article-title: An attempt to construct the individual model of daily facial skin temperature using variational autoencoder
  publication-title: Artif Life Robot
  doi: 10.1007/s10015-021-00699-7
  contributor:
    fullname: Nozawa
– volume: 14
  start-page: 870
  issue: 6
  year: 2019
  end-page: 876
  ident: CR4
  article-title: Drowsiness level modeling based on facial skin temperature distribution using a convolutional neural network
  publication-title: IEEJ Trans Electr Electron Eng
  doi: 10.1002/tee.22876
  contributor:
    fullname: Nozawa
– volume: 29
  start-page: 86
  issue: 2
  year: 2019
  end-page: 101
  ident: CR15
  article-title: A gentle introduction to deep learning in medical image processing
  publication-title: Z Med Phys
  doi: 10.1016/j.zemedi.2018.12.003
  contributor:
    fullname: Riess
– volume: 52
  start-page: 797
  issue: 5
  year: 2008
  end-page: 798
  ident: CR17
  article-title: Circadian clocks, autonomic rhythms, and blood pressure dipping
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.108.117234
  contributor:
    fullname: Biaggioni
– ident: CR3
– volume: 22
  start-page: 31
  issue: S2
  year: 2021
  ident: CR10
  article-title: Madgan: unsupervised medical anomaly detection GAN using multiple adjacent brain MIR slice reconstruction
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-020-03936-1
  contributor:
    fullname: Satoh
– volume: 173
  start-page: 114598
  year: 2021
  ident: CR6
  article-title: Predictive maintenance system for production lines in manufacturing: a machine learning approach using IoT data in real-time
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114598
  contributor:
    fullname: Alpay
– volume: 54
  start-page: 1
  issue: 7
  year: 2022
  end-page: 37
  ident: CR8
  article-title: Deep learning for medical anomaly detection—a survey
  publication-title: ACM Comput Surv
  doi: 10.1145/3464423
  contributor:
    fullname: Fookes
– volume: 26
  start-page: 473
  issue: 4
  year: 2021
  end-page: 480
  ident: CR19
  article-title: Estimation of resting blood pressure using facial thermal images by separating acute stress variations
  publication-title: Artif Life Robot
  doi: 10.1007/s10015-021-00705-y
  contributor:
    fullname: Nozawa
– volume: 51
  start-page: 951
  issue: 10
  year: 2014
  end-page: 963
  ident: CR1
  article-title: Thermal infrared imaging in psychophysiology: potentialities and limits
  publication-title: Psychophysiology
  doi: 10.1111/psyp.12243
  contributor:
    fullname: Merla
– volume: 240
  start-page: 1285
  issue: 4857
  year: 1988
  end-page: 1293
  ident: CR18
  article-title: Measuring the accuracy of diagnostic systems
  publication-title: Science
  doi: 10.1126/science.3287615
  contributor:
    fullname: Swets
– volume: 9
  start-page: 18
  issue: 1
  year: 2018
  end-page: 25
  ident: CR7
  article-title: Credit card fraud detection using deep learning based on auto-encoder and restricted Boltzmann machine
  publication-title: Int J Adv Comput Sci Appl
  contributor:
    fullname: Yan
– volume: 52
  start-page: 5161
  issue: 6
  year: 2022
  end-page: 5173
  ident: CR16
  article-title: Deep generative model using unregularized score for anomaly detection with heterogeneous complexity
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2020.3027724
  contributor:
    fullname: Uehara
– ident: CR5
– volume: 40
  start-page: 879
  issue: 3
  year: 2021
  end-page: 890
  ident: CR9
  article-title: Viral pneumonia screening on chest x-rays using confidence-aware anomaly detection
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3040950
  contributor:
    fullname: Shen
– volume: 26
  start-page: 122
  issue: 1
  year: 2020
  end-page: 128
  ident: CR12
  article-title: Anomaly detection in facial skin temperature using variational autoencoder
  publication-title: Artif Life Robot
  doi: 10.1007/s10015-020-00634-2
  contributor:
    fullname: Nozawa
– volume: 12
  start-page: 452
  issue: 2
  year: 2022
  ident: CR11
  article-title: Faster and better: How anomaly detection can accelerate and improve reporting of head computed tomography
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12020452
  contributor:
    fullname: Pfister
– volume: 11
  start-page: 57
  issue: 1
  year: 2014
  end-page: 65
  ident: CR2
  article-title: Pioneering progress in infrared imaging in medicine
  publication-title: Quant Infra Therm J
  doi: 10.1080/17686733.2014.892667
  contributor:
    fullname: Ring
– volume: 26
  start-page: 473
  issue: 4
  year: 2021
  ident: 853_CR19
  publication-title: Artif Life Robot
  doi: 10.1007/s10015-021-00705-y
  contributor:
    fullname: Y Iwashita
– volume: 40
  start-page: 879
  issue: 3
  year: 2021
  ident: 853_CR9
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3040950
  contributor:
    fullname: J Zhang
– volume: 173
  start-page: 114598
  year: 2021
  ident: 853_CR6
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114598
  contributor:
    fullname: S Ayvaz
– volume: 26
  start-page: 122
  issue: 1
  year: 2020
  ident: 853_CR12
  publication-title: Artif Life Robot
  doi: 10.1007/s10015-020-00634-2
  contributor:
    fullname: A Masaki
– ident: 853_CR5
  doi: 10.1145/3394486.3406704
– volume: 54
  start-page: 1
  issue: 7
  year: 2022
  ident: 853_CR8
  publication-title: ACM Comput Surv
  doi: 10.1145/3464423
  contributor:
    fullname: T Fernando
– volume: 52
  start-page: 797
  issue: 5
  year: 2008
  ident: 853_CR17
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.108.117234
  contributor:
    fullname: I Biaggioni
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 853_CR14
  publication-title: Spec Lect on IE
  contributor:
    fullname: J An
– volume: 26
  start-page: 488
  issue: 4
  year: 2021
  ident: 853_CR13
  publication-title: Artif Life Robot
  doi: 10.1007/s10015-021-00699-7
  contributor:
    fullname: A Masaki
– volume: 12
  start-page: 452
  issue: 2
  year: 2022
  ident: 853_CR11
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12020452
  contributor:
    fullname: T Finck
– volume: 29
  start-page: 86
  issue: 2
  year: 2019
  ident: 853_CR15
  publication-title: Z Med Phys
  doi: 10.1016/j.zemedi.2018.12.003
  contributor:
    fullname: A Maier
– volume: 9
  start-page: 18
  issue: 1
  year: 2018
  ident: 853_CR7
  publication-title: Int J Adv Comput Sci Appl
  contributor:
    fullname: A Pumsirirat
– volume: 52
  start-page: 5161
  issue: 6
  year: 2022
  ident: 853_CR16
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2020.3027724
  contributor:
    fullname: T Matsubara
– volume: 51
  start-page: 951
  issue: 10
  year: 2014
  ident: 853_CR1
  publication-title: Psychophysiology
  doi: 10.1111/psyp.12243
  contributor:
    fullname: S Ioannou
– volume: 14
  start-page: 870
  issue: 6
  year: 2019
  ident: 853_CR4
  publication-title: IEEJ Trans Electr Electron Eng
  doi: 10.1002/tee.22876
  contributor:
    fullname: H Adachi
– volume: 240
  start-page: 1285
  issue: 4857
  year: 1988
  ident: 853_CR18
  publication-title: Science
  doi: 10.1126/science.3287615
  contributor:
    fullname: JA Swets
– volume: 22
  start-page: 31
  issue: S2
  year: 2021
  ident: 853_CR10
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-020-03936-1
  contributor:
    fullname: C Han
– volume: 11
  start-page: 57
  issue: 1
  year: 2014
  ident: 853_CR2
  publication-title: Quant Infra Therm J
  doi: 10.1080/17686733.2014.892667
  contributor:
    fullname: FJ Ring
– ident: 853_CR3
  doi: 10.1371/journal.pone.0090782
SSID ssj0047063
Score 2.3023248
Snippet The amount of blood under the surface of skin is controlled by the autonomic nervous system and directly influences the facial skin temperature. Classification...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 394
SubjectTerms Anomalies
Artificial Intelligence
Autonomic nervous system
Computation by Abstract Devices
Computer Science
Control
Diurnal variations
Mechatronics
Optimization
Original Article
Robotics
Skin
Skin temperature
Temperature
Thermal imaging
Title Optimization of facial skin temperature-based anomaly detection model considering diurnal variation
URI https://link.springer.com/article/10.1007/s10015-023-00853-3
https://www.proquest.com/docview/2806511817
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RsrDwRhRK5YENjIofcTxWqAWBBAuVyhTZjiMhaIpoQIJfj-04Ks8BZUsiJ7mz7865-74DOHQxaqLcgYvkNMFMpxqnKSdYFkSzRGmh88D2eZ1cjNnlhE8WOO5Q7N5kJIOh_oR1c54LOxeDfZhAMW3BcgSeLg_O766GjQFmom6g5iIB6vZZMo1Ymd9H-eqPFkHmt7xocDejNbhtQDt1lcnDyUulT8z7Tw7H_3zJOqzG8BMN6vmyAUu23IS1prUDiit9C8yNMyXTiNFEswIVyv9bR_OH-xJ5OqvIxYy9F8yRKmdT9fiGcluF0q4ShQ47yMR2oO71UH5fP_vV7c7DsNswHg1vzy5w7MeADRH9CgtlDS8MsZQ7TVqtJe_bVLN-Lqg95crZKlMwqZnikntmOKMFV9oKQvNcaEl3oF3OSrsLSBJ3UhsiC6ZYSm0qnSERRhHj-dM46cBRo5XsqabdyBYEy15-mZNfFuSX0Q50G8VlcQnOs5Ay9rBa0YHjRhGLy3-Ptve_2_dhhQRd-iLILrSr5xd74AKVSvfixOxBa0wGH1sk350
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGWDhjSgU8MAGllo_4nisEKhAKUsrdYtsx5EqaIpoQOLfY7uOCggGlC2JLtEX38O5u-8Azl2Mmih34CLpJJjpVOM05QTLgmiWKC10Htg-B0lvxO7GfBybwuZ1tXudkgyW-kuzm3Nd2PkY7OMEiukqrHl-dc-YPyLd2v4ysZif5gIB6rZZMo2tMr_L-O6OljHmj7Ro8DY327AZw0TUXXzXHVix5S5s1SMYUNTIPTCPTuWnsZcSzQpUKP8PHM2fJiXytFORMxl7b5UjVc6m6vkD5bYKJVglCpNwkIljO927oHyyePa720UHsfswurkeXvVwnJuADRHtCgtlDS8MsZQ7xK3Wkrdtqlk7F9R2uHI2xRRMaqa45J7BzWjBlbaC0DwXWtIDaJSz0h4CksSd1IbIgimWUptKp_DCKGI8zxknTbio4cteFvQY2ZII2YOdObCzAHZGm9CqEc6iqsyzkNr17a-iCZc16svLf0s7-t_tZ7DeGz70s_7t4P4YNkhYBL5wsQWN6vXNnrjgotKnYS19AjQdxaE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86Qbz4LU6n5uBNw2Y-muY41DE_mB4c7FaSNAHRdcNVwf_eJE3ZFD1Ib21Jy695eb_0vfd7AJw6jppIdyCbXCSIqlShNGUYCYsVTaTiKg9qn4OkP6S3IzZaqOIP2e51SLKqafAqTUXZnua2vVD45twYcv4Gec5AEFkGK84VEZ_UN8Tdei2mvOql5kgBcVsukcaymd_H-O6a5nzzR4g0eJ7eJliPlBF2q2-8BZZMsQ026nYMMFrnDtAPzvzHsa4STiy00v8Ph7OX5wJ6Caqon4y858qhLCZj-foJc1OGdKwChq44UMcWnu5dYP5cPfvD7ajDsLtg2Lt-uuyj2EMBacw7JeLSaGY1NoQ59I1SgnVMqmgn58RcMOnWF22pUFQywbyam1acSWU4JnnOlSB7oFFMCrMPoMDupNJYWCppSkwqnPFzLbH2mmcMN8FZDV82raQysrkosgc7c2BnAeyMNEGrRjiLZjPLQpjXl8LyJjivUZ9f_nu0g__dfgJWH6962f3N4O4QrOEwB3wOYws0yrd3c-R4RqmOw1T6AuvXyeY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+facial+skin+temperature-based+anomaly+detection+model+considering+diurnal+variation&rft.jtitle=Artificial+life+and+robotics&rft.au=Takano+Masahito&rft.au=Iwashita+Yuki&rft.au=Nagumo+Kent&rft.au=Oiwa+Kosuke&rft.date=2023-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-5298&rft.eissn=1614-7456&rft.volume=28&rft.issue=2&rft.spage=394&rft.epage=402&rft_id=info:doi/10.1007%2Fs10015-023-00853-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-5298&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-5298&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-5298&client=summon