Optimization of facial skin temperature-based anomaly detection model considering diurnal variation
The amount of blood under the surface of skin is controlled by the autonomic nervous system and directly influences the facial skin temperature. Classification models have been used to estimate various physiological and psychological states of the human body using facial skin temperature. The anomal...
Saved in:
Published in | Artificial life and robotics Vol. 28; no. 2; pp. 394 - 402 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Springer Japan
01.05.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The amount of blood under the surface of skin is controlled by the autonomic nervous system and directly influences the facial skin temperature. Classification models have been used to estimate various physiological and psychological states of the human body using facial skin temperature. The anomaly detection method is required to monitor the facial skin temperature because of the difficulty in collecting anomalous samples. The normal state of the facial skin temperature fluctuates; hence, diurnal variation should be considered when applying anomaly detection methods to monitor the facial skin temperature. In a previous study, the anomaly detection method was applied to the facial skin temperature considering diurnal variation, and the normal and anomaly states were measured 16 times at 1-h intervals. A variational autoencoder (VAE) was applied to the normal-state data to construct an anomaly detection model. However, in many cases, anomalous states were not detected. The mean AUC (area under the receiver-operating characteristic curve) for the 16 experiments was 0.57 using the model of the previous study. The application of thermal images and VAE training is yet to be comprehensively studied. In this study, we improved anomaly detection accuracy for the facial skin temperature with diurnal variation by optimizing the method of thermal images and model structure. The mean AUC of the proposed model for the 16 experiments was 0.96. |
---|---|
AbstractList | The amount of blood under the surface of skin is controlled by the autonomic nervous system and directly influences the facial skin temperature. Classification models have been used to estimate various physiological and psychological states of the human body using facial skin temperature. The anomaly detection method is required to monitor the facial skin temperature because of the difficulty in collecting anomalous samples. The normal state of the facial skin temperature fluctuates; hence, diurnal variation should be considered when applying anomaly detection methods to monitor the facial skin temperature. In a previous study, the anomaly detection method was applied to the facial skin temperature considering diurnal variation, and the normal and anomaly states were measured 16 times at 1-h intervals. A variational autoencoder (VAE) was applied to the normal-state data to construct an anomaly detection model. However, in many cases, anomalous states were not detected. The mean AUC (area under the receiver-operating characteristic curve) for the 16 experiments was 0.57 using the model of the previous study. The application of thermal images and VAE training is yet to be comprehensively studied. In this study, we improved anomaly detection accuracy for the facial skin temperature with diurnal variation by optimizing the method of thermal images and model structure. The mean AUC of the proposed model for the 16 experiments was 0.96. |
Author | Oiwa, Kosuke Nozawa, Akio Iwashita, Yuki Nagumo, Kent Takano, Masahito |
Author_xml | – sequence: 1 givenname: Masahito surname: Takano fullname: Takano, Masahito organization: Aoyama Gakuin University – sequence: 2 givenname: Yuki surname: Iwashita fullname: Iwashita, Yuki organization: Aoyama Gakuin University – sequence: 3 givenname: Kent surname: Nagumo fullname: Nagumo, Kent organization: Aoyama Gakuin University – sequence: 4 givenname: Kosuke surname: Oiwa fullname: Oiwa, Kosuke organization: Aoyama Gakuin University – sequence: 5 givenname: Akio surname: Nozawa fullname: Nozawa, Akio email: akio@ee.aoyama.ac.jp organization: Aoyama Gakuin University |
BookMark | eNp9kD1PwzAQhi1UJNrCH2CyxGzwRxwnI6r4kip1gdmynQtySeJgp0jl15MmSGwsdzfc--juWaFFFzpA6JrRW0apuktjZZJQLgilhRREnKEly1lGVCbzxThnQhDJy-ICrVLaU5opmoslcrt-8K3_NoMPHQ41ro3zpsHpw3d4gLaHaIZDBGJNggqbLrSmOeIKBnBTpA0VNNiFLvkKou_eceUPsRsRXyb6CXuJzmvTJLj67Wv09vjwunkm293Ty-Z-SxxXdCDKgJO14yBkzS1YW0oKhc1opQQwaYTKXZ2VNjOylFzkylkljQXFRVUpW4o1upm5fQyfB0iD3ofplKR5QXPJWMHUuMXnLRdDShFq3UffmnjUjOqTTD3L1KNMPcnUYgyJOZT6048Q_9D_pH4AATZ7eg |
Cites_doi | 10.1007/s10015-021-00699-7 10.1002/tee.22876 10.1016/j.zemedi.2018.12.003 10.1161/HYPERTENSIONAHA.108.117234 10.1186/s12859-020-03936-1 10.1016/j.eswa.2021.114598 10.1145/3464423 10.1007/s10015-021-00705-y 10.1111/psyp.12243 10.1126/science.3287615 10.1109/TCYB.2020.3027724 10.1109/TMI.2020.3040950 10.1007/s10015-020-00634-2 10.3390/diagnostics12020452 10.1080/17686733.2014.892667 10.1145/3394486.3406704 10.1371/journal.pone.0090782 |
ContentType | Journal Article |
Copyright | International Society of Artificial Life and Robotics (ISAROB) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: International Society of Artificial Life and Robotics (ISAROB) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10015-023-00853-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1614-7456 |
EndPage | 402 |
ExternalDocumentID | 10_1007_s10015_023_00853_3 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 23N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI RNS ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z83 Z88 ZJWQK ZMTXR AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION |
ID | FETCH-LOGICAL-c270t-7aec5fc2e35f2bebb950e8b40d73e15a376cf49b4a5952367cb75abe723dd7b93 |
IEDL.DBID | AGYKE |
ISSN | 1433-5298 |
IngestDate | Thu Oct 10 17:00:28 EDT 2024 Thu Sep 12 19:25:04 EDT 2024 Sat Dec 16 12:04:44 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Infrared thermography Deep learning Variational autoencoder Blood pressure Remote health monitoring Thermal face image |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-7aec5fc2e35f2bebb950e8b40d73e15a376cf49b4a5952367cb75abe723dd7b93 |
PQID | 2806511817 |
PQPubID | 2043964 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2806511817 crossref_primary_10_1007_s10015_023_00853_3 springer_journals_10_1007_s10015_023_00853_3 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo – name: Heidelberg |
PublicationTitle | Artificial life and robotics |
PublicationTitleAbbrev | Artif Life Robotics |
PublicationYear | 2023 |
Publisher | Springer Japan Springer Nature B.V |
Publisher_xml | – name: Springer Japan – name: Springer Nature B.V |
References | Masaki, Nagumo, Iwashita, Oiwa, Nozawa (CR13) 2021; 26 Biaggioni (CR17) 2008; 52 CR3 CR5 Zhang, Xie, Pang, Liao, Verjans, Li, Sun, He, Li, Shen (CR9) 2021; 40 An, Cho (CR14) 2015; 2 Matsubara, Sato, Hama, Tachibana, Uehara (CR16) 2022; 52 Finck, Moosbauer, Probst, Schlaeger, Schuberth, Schinz, Yiğitsoy, Byas, Zimmer, Pfister (CR11) 2022; 12 Pumsirirat, Yan (CR7) 2018; 9 Masaki, Nagumo, Lamsal, Oiwa, Nozawa (CR12) 2020; 26 Swets (CR18) 1988; 240 Adachi, Oiwa, Nozawa (CR4) 2019; 14 Ioannou, Gallese, Merla (CR1) 2014; 51 Maier, Syben, Lasser, Riess (CR15) 2019; 29 Fernando, Gammulle, Denman, Sridharan, Fookes (CR8) 2022; 54 Han, Rundo, Murao, Noguchi, Shimahara, Milacski, Koshino, Sala, Nakayama, Satoh (CR10) 2021; 22 Ring (CR2) 2014; 11 Iwashita, Nagumo, Oiwa, Nozawa (CR19) 2021; 26 Ayvaz, Alpay (CR6) 2021; 173 A Maier (853_CR15) 2019; 29 J An (853_CR14) 2015; 2 J Zhang (853_CR9) 2021; 40 JA Swets (853_CR18) 1988; 240 S Ioannou (853_CR1) 2014; 51 C Han (853_CR10) 2021; 22 S Ayvaz (853_CR6) 2021; 173 Y Iwashita (853_CR19) 2021; 26 FJ Ring (853_CR2) 2014; 11 A Masaki (853_CR13) 2021; 26 T Finck (853_CR11) 2022; 12 A Pumsirirat (853_CR7) 2018; 9 I Biaggioni (853_CR17) 2008; 52 853_CR3 853_CR5 H Adachi (853_CR4) 2019; 14 T Matsubara (853_CR16) 2022; 52 T Fernando (853_CR8) 2022; 54 A Masaki (853_CR12) 2020; 26 |
References_xml | – volume: 2 start-page: 1 issue: 1 year: 2015 end-page: 18 ident: CR14 article-title: Variational autoencoder based anomaly detection using reconstruction probability publication-title: Spec Lect on IE contributor: fullname: Cho – volume: 26 start-page: 488 issue: 4 year: 2021 end-page: 493 ident: CR13 article-title: An attempt to construct the individual model of daily facial skin temperature using variational autoencoder publication-title: Artif Life Robot doi: 10.1007/s10015-021-00699-7 contributor: fullname: Nozawa – volume: 14 start-page: 870 issue: 6 year: 2019 end-page: 876 ident: CR4 article-title: Drowsiness level modeling based on facial skin temperature distribution using a convolutional neural network publication-title: IEEJ Trans Electr Electron Eng doi: 10.1002/tee.22876 contributor: fullname: Nozawa – volume: 29 start-page: 86 issue: 2 year: 2019 end-page: 101 ident: CR15 article-title: A gentle introduction to deep learning in medical image processing publication-title: Z Med Phys doi: 10.1016/j.zemedi.2018.12.003 contributor: fullname: Riess – volume: 52 start-page: 797 issue: 5 year: 2008 end-page: 798 ident: CR17 article-title: Circadian clocks, autonomic rhythms, and blood pressure dipping publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.108.117234 contributor: fullname: Biaggioni – ident: CR3 – volume: 22 start-page: 31 issue: S2 year: 2021 ident: CR10 article-title: Madgan: unsupervised medical anomaly detection GAN using multiple adjacent brain MIR slice reconstruction publication-title: BMC Bioinform doi: 10.1186/s12859-020-03936-1 contributor: fullname: Satoh – volume: 173 start-page: 114598 year: 2021 ident: CR6 article-title: Predictive maintenance system for production lines in manufacturing: a machine learning approach using IoT data in real-time publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114598 contributor: fullname: Alpay – volume: 54 start-page: 1 issue: 7 year: 2022 end-page: 37 ident: CR8 article-title: Deep learning for medical anomaly detection—a survey publication-title: ACM Comput Surv doi: 10.1145/3464423 contributor: fullname: Fookes – volume: 26 start-page: 473 issue: 4 year: 2021 end-page: 480 ident: CR19 article-title: Estimation of resting blood pressure using facial thermal images by separating acute stress variations publication-title: Artif Life Robot doi: 10.1007/s10015-021-00705-y contributor: fullname: Nozawa – volume: 51 start-page: 951 issue: 10 year: 2014 end-page: 963 ident: CR1 article-title: Thermal infrared imaging in psychophysiology: potentialities and limits publication-title: Psychophysiology doi: 10.1111/psyp.12243 contributor: fullname: Merla – volume: 240 start-page: 1285 issue: 4857 year: 1988 end-page: 1293 ident: CR18 article-title: Measuring the accuracy of diagnostic systems publication-title: Science doi: 10.1126/science.3287615 contributor: fullname: Swets – volume: 9 start-page: 18 issue: 1 year: 2018 end-page: 25 ident: CR7 article-title: Credit card fraud detection using deep learning based on auto-encoder and restricted Boltzmann machine publication-title: Int J Adv Comput Sci Appl contributor: fullname: Yan – volume: 52 start-page: 5161 issue: 6 year: 2022 end-page: 5173 ident: CR16 article-title: Deep generative model using unregularized score for anomaly detection with heterogeneous complexity publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.3027724 contributor: fullname: Uehara – ident: CR5 – volume: 40 start-page: 879 issue: 3 year: 2021 end-page: 890 ident: CR9 article-title: Viral pneumonia screening on chest x-rays using confidence-aware anomaly detection publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3040950 contributor: fullname: Shen – volume: 26 start-page: 122 issue: 1 year: 2020 end-page: 128 ident: CR12 article-title: Anomaly detection in facial skin temperature using variational autoencoder publication-title: Artif Life Robot doi: 10.1007/s10015-020-00634-2 contributor: fullname: Nozawa – volume: 12 start-page: 452 issue: 2 year: 2022 ident: CR11 article-title: Faster and better: How anomaly detection can accelerate and improve reporting of head computed tomography publication-title: Diagnostics doi: 10.3390/diagnostics12020452 contributor: fullname: Pfister – volume: 11 start-page: 57 issue: 1 year: 2014 end-page: 65 ident: CR2 article-title: Pioneering progress in infrared imaging in medicine publication-title: Quant Infra Therm J doi: 10.1080/17686733.2014.892667 contributor: fullname: Ring – volume: 26 start-page: 473 issue: 4 year: 2021 ident: 853_CR19 publication-title: Artif Life Robot doi: 10.1007/s10015-021-00705-y contributor: fullname: Y Iwashita – volume: 40 start-page: 879 issue: 3 year: 2021 ident: 853_CR9 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3040950 contributor: fullname: J Zhang – volume: 173 start-page: 114598 year: 2021 ident: 853_CR6 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114598 contributor: fullname: S Ayvaz – volume: 26 start-page: 122 issue: 1 year: 2020 ident: 853_CR12 publication-title: Artif Life Robot doi: 10.1007/s10015-020-00634-2 contributor: fullname: A Masaki – ident: 853_CR5 doi: 10.1145/3394486.3406704 – volume: 54 start-page: 1 issue: 7 year: 2022 ident: 853_CR8 publication-title: ACM Comput Surv doi: 10.1145/3464423 contributor: fullname: T Fernando – volume: 52 start-page: 797 issue: 5 year: 2008 ident: 853_CR17 publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.108.117234 contributor: fullname: I Biaggioni – volume: 2 start-page: 1 issue: 1 year: 2015 ident: 853_CR14 publication-title: Spec Lect on IE contributor: fullname: J An – volume: 26 start-page: 488 issue: 4 year: 2021 ident: 853_CR13 publication-title: Artif Life Robot doi: 10.1007/s10015-021-00699-7 contributor: fullname: A Masaki – volume: 12 start-page: 452 issue: 2 year: 2022 ident: 853_CR11 publication-title: Diagnostics doi: 10.3390/diagnostics12020452 contributor: fullname: T Finck – volume: 29 start-page: 86 issue: 2 year: 2019 ident: 853_CR15 publication-title: Z Med Phys doi: 10.1016/j.zemedi.2018.12.003 contributor: fullname: A Maier – volume: 9 start-page: 18 issue: 1 year: 2018 ident: 853_CR7 publication-title: Int J Adv Comput Sci Appl contributor: fullname: A Pumsirirat – volume: 52 start-page: 5161 issue: 6 year: 2022 ident: 853_CR16 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.3027724 contributor: fullname: T Matsubara – volume: 51 start-page: 951 issue: 10 year: 2014 ident: 853_CR1 publication-title: Psychophysiology doi: 10.1111/psyp.12243 contributor: fullname: S Ioannou – volume: 14 start-page: 870 issue: 6 year: 2019 ident: 853_CR4 publication-title: IEEJ Trans Electr Electron Eng doi: 10.1002/tee.22876 contributor: fullname: H Adachi – volume: 240 start-page: 1285 issue: 4857 year: 1988 ident: 853_CR18 publication-title: Science doi: 10.1126/science.3287615 contributor: fullname: JA Swets – volume: 22 start-page: 31 issue: S2 year: 2021 ident: 853_CR10 publication-title: BMC Bioinform doi: 10.1186/s12859-020-03936-1 contributor: fullname: C Han – volume: 11 start-page: 57 issue: 1 year: 2014 ident: 853_CR2 publication-title: Quant Infra Therm J doi: 10.1080/17686733.2014.892667 contributor: fullname: FJ Ring – ident: 853_CR3 doi: 10.1371/journal.pone.0090782 |
SSID | ssj0047063 |
Score | 2.3023248 |
Snippet | The amount of blood under the surface of skin is controlled by the autonomic nervous system and directly influences the facial skin temperature. Classification... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 394 |
SubjectTerms | Anomalies Artificial Intelligence Autonomic nervous system Computation by Abstract Devices Computer Science Control Diurnal variations Mechatronics Optimization Original Article Robotics Skin Skin temperature Temperature Thermal imaging |
Title | Optimization of facial skin temperature-based anomaly detection model considering diurnal variation |
URI | https://link.springer.com/article/10.1007/s10015-023-00853-3 https://www.proquest.com/docview/2806511817 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RsrDwRhRK5YENjIofcTxWqAWBBAuVyhTZjiMhaIpoQIJfj-04Ks8BZUsiJ7mz7865-74DOHQxaqLcgYvkNMFMpxqnKSdYFkSzRGmh88D2eZ1cjNnlhE8WOO5Q7N5kJIOh_oR1c54LOxeDfZhAMW3BcgSeLg_O766GjQFmom6g5iIB6vZZMo1Ymd9H-eqPFkHmt7xocDejNbhtQDt1lcnDyUulT8z7Tw7H_3zJOqzG8BMN6vmyAUu23IS1prUDiit9C8yNMyXTiNFEswIVyv9bR_OH-xJ5OqvIxYy9F8yRKmdT9fiGcluF0q4ShQ47yMR2oO71UH5fP_vV7c7DsNswHg1vzy5w7MeADRH9CgtlDS8MsZQ7TVqtJe_bVLN-Lqg95crZKlMwqZnikntmOKMFV9oKQvNcaEl3oF3OSrsLSBJ3UhsiC6ZYSm0qnSERRhHj-dM46cBRo5XsqabdyBYEy15-mZNfFuSX0Q50G8VlcQnOs5Ay9rBa0YHjRhGLy3-Ptve_2_dhhQRd-iLILrSr5xd74AKVSvfixOxBa0wGH1sk350 |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGWDhjSgU8MAGllo_4nisEKhAKUsrdYtsx5EqaIpoQOLfY7uOCggGlC2JLtEX38O5u-8Azl2Mmih34CLpJJjpVOM05QTLgmiWKC10Htg-B0lvxO7GfBybwuZ1tXudkgyW-kuzm3Nd2PkY7OMEiukqrHl-dc-YPyLd2v4ysZif5gIB6rZZMo2tMr_L-O6OljHmj7Ro8DY327AZw0TUXXzXHVix5S5s1SMYUNTIPTCPTuWnsZcSzQpUKP8PHM2fJiXytFORMxl7b5UjVc6m6vkD5bYKJVglCpNwkIljO927oHyyePa720UHsfswurkeXvVwnJuADRHtCgtlDS8MsZQ7xK3Wkrdtqlk7F9R2uHI2xRRMaqa45J7BzWjBlbaC0DwXWtIDaJSz0h4CksSd1IbIgimWUptKp_DCKGI8zxknTbio4cteFvQY2ZII2YOdObCzAHZGm9CqEc6iqsyzkNr17a-iCZc16svLf0s7-t_tZ7DeGz70s_7t4P4YNkhYBL5wsQWN6vXNnrjgotKnYS19AjQdxaE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86Qbz4LU6n5uBNw2Y-muY41DE_mB4c7FaSNAHRdcNVwf_eJE3ZFD1Ib21Jy695eb_0vfd7AJw6jppIdyCbXCSIqlShNGUYCYsVTaTiKg9qn4OkP6S3IzZaqOIP2e51SLKqafAqTUXZnua2vVD45twYcv4Gec5AEFkGK84VEZ_UN8Tdei2mvOql5kgBcVsukcaymd_H-O6a5nzzR4g0eJ7eJliPlBF2q2-8BZZMsQ026nYMMFrnDtAPzvzHsa4STiy00v8Ph7OX5wJ6Caqon4y858qhLCZj-foJc1OGdKwChq44UMcWnu5dYP5cPfvD7ajDsLtg2Lt-uuyj2EMBacw7JeLSaGY1NoQ59I1SgnVMqmgn58RcMOnWF22pUFQywbyam1acSWU4JnnOlSB7oFFMCrMPoMDupNJYWCppSkwqnPFzLbH2mmcMN8FZDV82raQysrkosgc7c2BnAeyMNEGrRjiLZjPLQpjXl8LyJjivUZ9f_nu0g__dfgJWH6962f3N4O4QrOEwB3wOYws0yrd3c-R4RqmOw1T6AuvXyeY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+facial+skin+temperature-based+anomaly+detection+model+considering+diurnal+variation&rft.jtitle=Artificial+life+and+robotics&rft.au=Takano+Masahito&rft.au=Iwashita+Yuki&rft.au=Nagumo+Kent&rft.au=Oiwa+Kosuke&rft.date=2023-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-5298&rft.eissn=1614-7456&rft.volume=28&rft.issue=2&rft.spage=394&rft.epage=402&rft_id=info:doi/10.1007%2Fs10015-023-00853-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-5298&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-5298&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-5298&client=summon |