CNN-based ternary tree partition approach for VVC intra-QTMT coding
In July 2020, the Joint Video Experts Team has published the versatile video coding (VVC) standard. The VVC encoder enhances the coding efficiency compared with his predecessor high-efficiency video coding encoder, thanks to the improved coding modules and the new proposed techniques such as the new...
Saved in:
Published in | Signal, image and video processing Vol. 18; no. 4; pp. 3587 - 3594 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In July 2020, the Joint Video Experts Team has published the versatile video coding (VVC) standard. The VVC encoder enhances the coding efficiency compared with his predecessor high-efficiency video coding encoder, thanks to the improved coding modules and the new proposed techniques such as the new block partitioning structure called quadtree with nested multi-type tree (QTMT). However, QTMT induces a significant increase in encoding time mainly at the rate distortion optimization level (RDO) which causes an enormous computational complexity. Instead of RDO-QTMT partition process, a deep-QTMT partition approach based on a fast convolution neural network-ternary tree (CNN-TT) is proposed to predict the best intra-QTMT decision tree in order to reduce the encoding time. A database is initially established containing CU-based TT partition depths with several video contents. Then, a CNN-TT model is developed under three-levels provided by the TT structure to early determine the QTMT partition at 32
×
32. Different threshold values are fixed for each level according to the CNN-TT predicted probabilities to reach a balance between the encoding complexity and the coding efficiency. The experimental results prove that our deep-QTMT partition approach saves a significant encoder time on average between 23% and 58% with an acceptable RD performance. |
---|---|
AbstractList | In July 2020, the Joint Video Experts Team has published the versatile video coding (VVC) standard. The VVC encoder enhances the coding efficiency compared with his predecessor high-efficiency video coding encoder, thanks to the improved coding modules and the new proposed techniques such as the new block partitioning structure called quadtree with nested multi-type tree (QTMT). However, QTMT induces a significant increase in encoding time mainly at the rate distortion optimization level (RDO) which causes an enormous computational complexity. Instead of RDO-QTMT partition process, a deep-QTMT partition approach based on a fast convolution neural network-ternary tree (CNN-TT) is proposed to predict the best intra-QTMT decision tree in order to reduce the encoding time. A database is initially established containing CU-based TT partition depths with several video contents. Then, a CNN-TT model is developed under three-levels provided by the TT structure to early determine the QTMT partition at 32
×
32. Different threshold values are fixed for each level according to the CNN-TT predicted probabilities to reach a balance between the encoding complexity and the coding efficiency. The experimental results prove that our deep-QTMT partition approach saves a significant encoder time on average between 23% and 58% with an acceptable RD performance. In July 2020, the Joint Video Experts Team has published the versatile video coding (VVC) standard. The VVC encoder enhances the coding efficiency compared with his predecessor high-efficiency video coding encoder, thanks to the improved coding modules and the new proposed techniques such as the new block partitioning structure called quadtree with nested multi-type tree (QTMT). However, QTMT induces a significant increase in encoding time mainly at the rate distortion optimization level (RDO) which causes an enormous computational complexity. Instead of RDO-QTMT partition process, a deep-QTMT partition approach based on a fast convolution neural network-ternary tree (CNN-TT) is proposed to predict the best intra-QTMT decision tree in order to reduce the encoding time. A database is initially established containing CU-based TT partition depths with several video contents. Then, a CNN-TT model is developed under three-levels provided by the TT structure to early determine the QTMT partition at 32×32. Different threshold values are fixed for each level according to the CNN-TT predicted probabilities to reach a balance between the encoding complexity and the coding efficiency. The experimental results prove that our deep-QTMT partition approach saves a significant encoder time on average between 23% and 58% with an acceptable RD performance. |
Author | Ben Ayed, Mohamed Ali Belghith, Fatma Abdallah, Bouthaina Masmoudi, Nouri Ben Jdidia, Sonda |
Author_xml | – sequence: 1 givenname: Fatma surname: Belghith fullname: Belghith, Fatma email: fatma.belghith@enis.tn organization: LETI, ENIS, University of Sfax – sequence: 2 givenname: Bouthaina surname: Abdallah fullname: Abdallah, Bouthaina organization: LETI, ENIS, University of Sfax – sequence: 3 givenname: Sonda surname: Ben Jdidia fullname: Ben Jdidia, Sonda organization: LETI, ENIS, University of Sfax – sequence: 4 givenname: Mohamed Ali surname: Ben Ayed fullname: Ben Ayed, Mohamed Ali organization: NTS’COM, ENETCOM, University of Sfax – sequence: 5 givenname: Nouri surname: Masmoudi fullname: Masmoudi, Nouri organization: LETI, ENIS, University of Sfax |
BookMark | eNp9UD1PwzAUtFCRKKV_gMkSs-HZbvwxoggoUilCKl0t13FKqpIE2x3497gEwcYt7w13p7s7R6O2az1ClxSuKYC8iZRKAQTYjAAHxklxgsZUCU6opHT0-wM_Q9MYd5DBmVRCjVFZLpdkY6OvcPKhteETp-A97m1ITWq6Ftu-D511b7juAl6vS9y0KVjysnpaYddVTbu9QKe13Uc__bkT9Hp_tyrnZPH88FjeLohjEhKRqnaFFRuhNAfBnPCVZk7NtN74gkqboQSIwoMHIUBXTkthPc-dNGUF5xN0NfjmQB8HH5PZdYeceR8N06rQM2BwZLGB5UIXY_C16UPznosZCua4lxn2Mnkv872XKbKID6KYye3Whz_rf1RfOglsiA |
Cites_doi | 10.1109/TCSVT.2021.3108671 10.1109/ACCESS.2019.2956196 10.1109/ACCESS.2020.3004580 10.1109/TMM.2020.3042062 10.3390/electronics11142147 10.1109/ACCESS.2022.3164421 10.1109/TIP.2021.3083447 10.1109/TIP.2016.2601264 10.1109/TIP.2015.2417498 10.1109/TIP.2019.2938670 10.1109/ISCAS51556.2021.9401614 10.1109/ICME.2019.00018 10.1109/DCC50243.2021.00008 10.3390/electronics11162572 10.1109/STA56120.2022.10018992 10.1109/ICIP46576.2022.9897378 10.1007/s11760-020-01843-9 10.1007/s11042-022-13479-7 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11760-024-03023-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1863-1711 |
EndPage | 3594 |
ExternalDocumentID | 10_1007_s11760_024_03023_5 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 123 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 875 8TC 95- 95. 95~ AAAVM AABHQ AACDK AAFGU AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBXA ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEFTE AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFBBN AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 Z5O Z7R Z7X Z83 Z88 ZMTXR ~A9 AAYXX ACDTI CITATION H13 SJYHP AAYZH |
ID | FETCH-LOGICAL-c270t-78fc5a6b6893062c6ed92c8499be517aaaa86065e0e06609dc976ae3030912533 |
IEDL.DBID | AGYKE |
ISSN | 1863-1703 |
IngestDate | Thu Nov 07 18:38:58 EST 2024 Thu Sep 12 16:48:41 EDT 2024 Tue Mar 26 01:23:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Convolution Neural Network Ternary Tree (CNN-TT) Versatile Video Coding (VVC) Computational complexity Quadtree with nested multi-type tree (QTMT) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-78fc5a6b6893062c6ed92c8499be517aaaa86065e0e06609dc976ae3030912533 |
PQID | 2985940203 |
PQPubID | 2044169 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2985940203 crossref_primary_10_1007_s11760_024_03023_5 springer_journals_10_1007_s11760_024_03023_5 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Signal, image and video processing |
PublicationTitleAbbrev | SIViP |
PublicationYear | 2024 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | CR2 CR4 Saldanha, Sanchez, Marcon (CR10) 2021; 32 Liu, Yu, Gao (CR20) 2016; 25 Li, Xu, Tang (CR3) 2021; 30 CR6 CR5 Zhao, Wu, Zhang (CR14) 2022; 11 CR17 CR9 CR16 Javaid, Rizvi, Ubaid (CR1) 2022; 10 Park, Kang (CR7) 2020; 23 CR15 CR12 CR11 Zhang, Wang, Huang (CR13) 2020; 8 Zhang, Kwong, Wang (CR19) 2015; 24 Amestoy, Mercat, Hamidouche (CR8) 2019; 29 Park, Kang (CR18) 2019; 7 3023_CR12 3023_CR11 3023_CR17 3023_CR16 3023_CR15 S Javaid (3023_CR1) 2022; 10 T Li (3023_CR3) 2021; 30 S-H Park (3023_CR18) 2019; 7 J Zhao (3023_CR14) 2022; 11 Z Liu (3023_CR20) 2016; 25 3023_CR4 M Saldanha (3023_CR10) 2021; 32 3023_CR5 3023_CR6 3023_CR2 S-H Park (3023_CR7) 2020; 23 T Amestoy (3023_CR8) 2019; 29 Q Zhang (3023_CR13) 2020; 8 Y Zhang (3023_CR19) 2015; 24 3023_CR9 |
References_xml | – volume: 32 start-page: 3947 issue: 6 year: 2021 end-page: 3960 ident: CR10 article-title: Configurable fast block partitioning for vvc intra coding using light gradient boosting machine publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2021.3108671 contributor: fullname: Marcon – volume: 7 start-page: 172597 year: 2019 end-page: 172605 ident: CR18 article-title: Context-based ternary tree decision method in versatile video coding for fast intra coding publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2956196 contributor: fullname: Kang – volume: 8 start-page: 117539 year: 2020 end-page: 117550 ident: CR13 article-title: Fast cu partition and intra mode decision method for h. 266/vvc publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004580 contributor: fullname: Huang – ident: CR4 – ident: CR15 – ident: CR2 – ident: CR16 – volume: 23 start-page: 4388 year: 2020 end-page: 4399 ident: CR7 article-title: Fast multi-type tree partitioning for versatile video coding using a lightweight neural network publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2020.3042062 contributor: fullname: Kang – volume: 11 start-page: 2147 issue: 14 year: 2022 ident: CR14 article-title: Svm-based fast cu partition decision algorithm for vvc intra coding publication-title: Electronics doi: 10.3390/electronics11142147 contributor: fullname: Zhang – volume: 10 start-page: 37246 year: 2022 end-page: 37256 ident: CR1 article-title: Vvc/h. 266 intra mode qtmt based cu partition using cnn publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3164421 contributor: fullname: Ubaid – ident: CR12 – ident: CR17 – volume: 30 start-page: 5377 year: 2021 end-page: 5390 ident: CR3 article-title: Deepqtmt: a deep learning approach for fast qtmt-based cu partition of intra-mode vvc publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3083447 contributor: fullname: Tang – volume: 25 start-page: 5088 issue: 11 year: 2016 end-page: 5103 ident: CR20 article-title: Cu partition mode decision for hevc hardwired intra encoder using convolution neural network publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2601264 contributor: fullname: Gao – ident: CR11 – ident: CR9 – volume: 24 start-page: 2225 issue: 7 year: 2015 end-page: 2238 ident: CR19 article-title: Machine learning-based coding unit depth decisions for flexible complexity allocation in hevc publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2417498 contributor: fullname: Wang – ident: CR6 – ident: CR5 – volume: 29 start-page: 1313 year: 2019 end-page: 1328 ident: CR8 article-title: Tunable vvc frame partitioning based on lightweight machine learning publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2938670 contributor: fullname: Hamidouche – volume: 29 start-page: 1313 year: 2019 ident: 3023_CR8 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2938670 contributor: fullname: T Amestoy – volume: 8 start-page: 117539 year: 2020 ident: 3023_CR13 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004580 contributor: fullname: Q Zhang – ident: 3023_CR12 doi: 10.1109/ISCAS51556.2021.9401614 – volume: 7 start-page: 172597 year: 2019 ident: 3023_CR18 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2956196 contributor: fullname: S-H Park – ident: 3023_CR9 doi: 10.1109/ICME.2019.00018 – ident: 3023_CR2 doi: 10.1109/DCC50243.2021.00008 – ident: 3023_CR11 doi: 10.3390/electronics11162572 – volume: 24 start-page: 2225 issue: 7 year: 2015 ident: 3023_CR19 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2417498 contributor: fullname: Y Zhang – ident: 3023_CR15 doi: 10.1109/STA56120.2022.10018992 – volume: 23 start-page: 4388 year: 2020 ident: 3023_CR7 publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2020.3042062 contributor: fullname: S-H Park – ident: 3023_CR16 – ident: 3023_CR4 doi: 10.1109/ICIP46576.2022.9897378 – ident: 3023_CR5 doi: 10.1007/s11760-020-01843-9 – ident: 3023_CR17 – volume: 30 start-page: 5377 year: 2021 ident: 3023_CR3 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3083447 contributor: fullname: T Li – volume: 10 start-page: 37246 year: 2022 ident: 3023_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3164421 contributor: fullname: S Javaid – volume: 32 start-page: 3947 issue: 6 year: 2021 ident: 3023_CR10 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2021.3108671 contributor: fullname: M Saldanha – volume: 25 start-page: 5088 issue: 11 year: 2016 ident: 3023_CR20 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2601264 contributor: fullname: Z Liu – volume: 11 start-page: 2147 issue: 14 year: 2022 ident: 3023_CR14 publication-title: Electronics doi: 10.3390/electronics11142147 contributor: fullname: J Zhao – ident: 3023_CR6 doi: 10.1007/s11042-022-13479-7 |
SSID | ssj0000327868 |
Score | 2.3470755 |
Snippet | In July 2020, the Joint Video Experts Team has published the versatile video coding (VVC) standard. The VVC encoder enhances the coding efficiency compared... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 3587 |
SubjectTerms | Artificial neural networks Coders Coding Complexity Computer Imaging Computer Science Decision trees Efficiency Image Processing and Computer Vision Multimedia Information Systems Original Paper Pattern Recognition and Graphics Signal,Image and Speech Processing Video compression Vision |
Title | CNN-based ternary tree partition approach for VVC intra-QTMT coding |
URI | https://link.springer.com/article/10.1007/s11760-024-03023-5 https://www.proquest.com/docview/2985940203 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXPQgihpRJHvwpku2XbaPIzQi0UhiAgRPTbu7TYwJECwH_fXO9pH6PNBrm006M9vvm5nOtwBXnCOKRhanOtKK9oSb0NhXAjeeGydK-34UZWqfY2c07d3Pxbya485-di87ktmHupp1s1yHUYQUysxBN1TsQr0YPK33754fqtIK47br5UNwnmMEOBkvxmX-Xug7JFU880drNEOcYQMm5dxO_qPJa3eTxl358VvGcZuXOYSDgoGSfh4yR7CjF01olKc7kGKzN2H_i1ThMQTBeEwN5CmSlRDX78T0s8nKhJ5xLinVyQnSYDKbBeTF1I3p0-RxQuTSQOQJTIe3k2BEiwMYqLRdllLXS6SInNhBUsMcWzpa-bb0MEmKtbDcCC8PEyChmUbmwnwlkdxEmpu2DRInzk-htlgu9BkQnijLkz5mk5r3lI7iWCM64zpKeZrZsgXXpQ_CVa6zEVaKysZaIVorzKwViha0SzeFxZ57C23fE75Jh3kLbkqzV7f_X-18u8cvYM_OPGdKMW2opeuNvkRmksYdjMThYDDuFBHZgd2p3f8EqPjZOg |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADhQKiUMADGxg5dp3HWEWUQttISGlVpiixXQkhtVUfA_x67DwUqGBo1kRWcmfn--7O9xngljGNorHFsIqVxC3uTHDiSa4XnpNMpPK8OE7VPgO7O2y9jPk4bwpbFrvdi5Jk-qcum90sxyZYYwom5qQbzHeh2qKWTStQbT-99crcCmHUcbMuONc2CpyE5f0yfw_0G5NKorlRG00hp1ODYfGy2U6Tj4f1KnkQXxs6jtt-zREc5hwUtbNJcww7alqHWnG-A8qXex0OfogVnoDvBwE2oCdRmkRcfCJT0UZzM_mMe1GhT440EUajkY_eTeYYv4aDEImZAclTGHYeQ7-L8yMYsKAOWWHHnQge24mtaQ2xqbCV9KhwdZiUKG45sb5cHQJxRZTmLsSTQtObWDFTuNHUibEzqExnU3UOiE2k5QpPx5OKtaSKk0RpfNbjSOkqQkUD7gonRPNMaSMqNZWNtSJtrSi1VsQb0Cz8FOWrbhlRz-WeCYhZA-4Ls5e3_x_tYrvHb2CvGw76Uf856F3CPk29aBIzTaisFmt1pXnKKrnOp-U3l6LaqQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH5RTIweRFEjitqDNy10K92PI0ERRYkmQPC0dG2XGBMgOA7619vuR4ZED8Zdt7xsfe2-773X9xXgglKNotyiWHElcZO5EQ59yfTCc8NIKt_nPFH77DvdYfN-zMZLXfzJbve8JJn2NBiVpkncmMmoUTS-Wa5DsMYXTMypN5itw0bTKCOVYKN1-9Ir8iyE2q6XdsR5jlHjJDTrnfnZ0Hd8KkjnSp00gZ9OGXj-4umuk7f6Ig7r4nNF0_E_X7YLOxk3Ra10Mu3BmppUoJyf-4Cy30AFtpdEDPeh3e73sQFDiZLk4vwDmUo3mplJadyOct1ypAkyGo3a6NVklPHz4HGAxNSA5wEMOzeDdhdnRzNgYbskxq4XCcad0NF0hzi2cJT0beHp8ClUzHK5vjwdGjFFlOY0xJdC0x6uqCnoaEpF6SGUJtOJOgJEI2l5wtdxpqJNqXgYKo3b2o6UniK2qMJl7pBglipwBIXWshmtQI9WkIxWwKpQy30WZKvxPbB9j_kmUKZVuMpdUNz-3drx3x4_h82n607wcNfvncCWnTjR5GtqUIrnC3Wq6UscnmUz9At_wuON |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN-based+ternary+tree+partition+approach+for+VVC+intra-QTMT+coding&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Belghith+Fatma&rft.au=Bouthaina%2C+Abdallah&rft.au=Sonda%2C+Ben+Jdidia&rft.au=Mohamed+Ali%2C+Ben+Ayed&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=18&rft.issue=4&rft.spage=3587&rft.epage=3594&rft_id=info:doi/10.1007%2Fs11760-024-03023-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon |