CNN-based ternary tree partition approach for VVC intra-QTMT coding

In July 2020, the Joint Video Experts Team has published the versatile video coding (VVC) standard. The VVC encoder enhances the coding efficiency compared with his predecessor high-efficiency video coding encoder, thanks to the improved coding modules and the new proposed techniques such as the new...

Full description

Saved in:
Bibliographic Details
Published inSignal, image and video processing Vol. 18; no. 4; pp. 3587 - 3594
Main Authors Belghith, Fatma, Abdallah, Bouthaina, Ben Jdidia, Sonda, Ben Ayed, Mohamed Ali, Masmoudi, Nouri
Format Journal Article
LanguageEnglish
Published London Springer London 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In July 2020, the Joint Video Experts Team has published the versatile video coding (VVC) standard. The VVC encoder enhances the coding efficiency compared with his predecessor high-efficiency video coding encoder, thanks to the improved coding modules and the new proposed techniques such as the new block partitioning structure called quadtree with nested multi-type tree (QTMT). However, QTMT induces a significant increase in encoding time mainly at the rate distortion optimization level (RDO) which causes an enormous computational complexity. Instead of RDO-QTMT partition process, a deep-QTMT partition approach based on a fast convolution neural network-ternary tree (CNN-TT) is proposed to predict the best intra-QTMT decision tree in order to reduce the encoding time. A database is initially established containing CU-based TT partition depths with several video contents. Then, a CNN-TT model is developed under three-levels provided by the TT structure to early determine the QTMT partition at 32 × 32. Different threshold values are fixed for each level according to the CNN-TT predicted probabilities to reach a balance between the encoding complexity and the coding efficiency. The experimental results prove that our deep-QTMT partition approach saves a significant encoder time on average between 23% and 58% with an acceptable RD performance.
AbstractList In July 2020, the Joint Video Experts Team has published the versatile video coding (VVC) standard. The VVC encoder enhances the coding efficiency compared with his predecessor high-efficiency video coding encoder, thanks to the improved coding modules and the new proposed techniques such as the new block partitioning structure called quadtree with nested multi-type tree (QTMT). However, QTMT induces a significant increase in encoding time mainly at the rate distortion optimization level (RDO) which causes an enormous computational complexity. Instead of RDO-QTMT partition process, a deep-QTMT partition approach based on a fast convolution neural network-ternary tree (CNN-TT) is proposed to predict the best intra-QTMT decision tree in order to reduce the encoding time. A database is initially established containing CU-based TT partition depths with several video contents. Then, a CNN-TT model is developed under three-levels provided by the TT structure to early determine the QTMT partition at 32 × 32. Different threshold values are fixed for each level according to the CNN-TT predicted probabilities to reach a balance between the encoding complexity and the coding efficiency. The experimental results prove that our deep-QTMT partition approach saves a significant encoder time on average between 23% and 58% with an acceptable RD performance.
In July 2020, the Joint Video Experts Team has published the versatile video coding (VVC) standard. The VVC encoder enhances the coding efficiency compared with his predecessor high-efficiency video coding encoder, thanks to the improved coding modules and the new proposed techniques such as the new block partitioning structure called quadtree with nested multi-type tree (QTMT). However, QTMT induces a significant increase in encoding time mainly at the rate distortion optimization level (RDO) which causes an enormous computational complexity. Instead of RDO-QTMT partition process, a deep-QTMT partition approach based on a fast convolution neural network-ternary tree (CNN-TT) is proposed to predict the best intra-QTMT decision tree in order to reduce the encoding time. A database is initially established containing CU-based TT partition depths with several video contents. Then, a CNN-TT model is developed under three-levels provided by the TT structure to early determine the QTMT partition at 32×32. Different threshold values are fixed for each level according to the CNN-TT predicted probabilities to reach a balance between the encoding complexity and the coding efficiency. The experimental results prove that our deep-QTMT partition approach saves a significant encoder time on average between 23% and 58% with an acceptable RD performance.
Author Ben Ayed, Mohamed Ali
Belghith, Fatma
Abdallah, Bouthaina
Masmoudi, Nouri
Ben Jdidia, Sonda
Author_xml – sequence: 1
  givenname: Fatma
  surname: Belghith
  fullname: Belghith, Fatma
  email: fatma.belghith@enis.tn
  organization: LETI, ENIS, University of Sfax
– sequence: 2
  givenname: Bouthaina
  surname: Abdallah
  fullname: Abdallah, Bouthaina
  organization: LETI, ENIS, University of Sfax
– sequence: 3
  givenname: Sonda
  surname: Ben Jdidia
  fullname: Ben Jdidia, Sonda
  organization: LETI, ENIS, University of Sfax
– sequence: 4
  givenname: Mohamed Ali
  surname: Ben Ayed
  fullname: Ben Ayed, Mohamed Ali
  organization: NTS’COM, ENETCOM, University of Sfax
– sequence: 5
  givenname: Nouri
  surname: Masmoudi
  fullname: Masmoudi, Nouri
  organization: LETI, ENIS, University of Sfax
BookMark eNp9UD1PwzAUtFCRKKV_gMkSs-HZbvwxoggoUilCKl0t13FKqpIE2x3497gEwcYt7w13p7s7R6O2az1ClxSuKYC8iZRKAQTYjAAHxklxgsZUCU6opHT0-wM_Q9MYd5DBmVRCjVFZLpdkY6OvcPKhteETp-A97m1ITWq6Ftu-D511b7juAl6vS9y0KVjysnpaYddVTbu9QKe13Uc__bkT9Hp_tyrnZPH88FjeLohjEhKRqnaFFRuhNAfBnPCVZk7NtN74gkqboQSIwoMHIUBXTkthPc-dNGUF5xN0NfjmQB8HH5PZdYeceR8N06rQM2BwZLGB5UIXY_C16UPznosZCua4lxn2Mnkv872XKbKID6KYye3Whz_rf1RfOglsiA
Cites_doi 10.1109/TCSVT.2021.3108671
10.1109/ACCESS.2019.2956196
10.1109/ACCESS.2020.3004580
10.1109/TMM.2020.3042062
10.3390/electronics11142147
10.1109/ACCESS.2022.3164421
10.1109/TIP.2021.3083447
10.1109/TIP.2016.2601264
10.1109/TIP.2015.2417498
10.1109/TIP.2019.2938670
10.1109/ISCAS51556.2021.9401614
10.1109/ICME.2019.00018
10.1109/DCC50243.2021.00008
10.3390/electronics11162572
10.1109/STA56120.2022.10018992
10.1109/ICIP46576.2022.9897378
10.1007/s11760-020-01843-9
10.1007/s11042-022-13479-7
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11760-024-03023-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
EndPage 3594
ExternalDocumentID 10_1007_s11760_024_03023_5
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAFGU
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFBBN
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ACDTI
CITATION
H13
SJYHP
AAYZH
ID FETCH-LOGICAL-c270t-78fc5a6b6893062c6ed92c8499be517aaaa86065e0e06609dc976ae3030912533
IEDL.DBID AGYKE
ISSN 1863-1703
IngestDate Thu Nov 07 18:38:58 EST 2024
Thu Sep 12 16:48:41 EDT 2024
Tue Mar 26 01:23:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Convolution Neural Network Ternary Tree (CNN-TT)
Versatile Video Coding (VVC)
Computational complexity
Quadtree with nested multi-type tree (QTMT)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-78fc5a6b6893062c6ed92c8499be517aaaa86065e0e06609dc976ae3030912533
PQID 2985940203
PQPubID 2044169
PageCount 8
ParticipantIDs proquest_journals_2985940203
crossref_primary_10_1007_s11760_024_03023_5
springer_journals_10_1007_s11760_024_03023_5
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References CR2
CR4
Saldanha, Sanchez, Marcon (CR10) 2021; 32
Liu, Yu, Gao (CR20) 2016; 25
Li, Xu, Tang (CR3) 2021; 30
CR6
CR5
Zhao, Wu, Zhang (CR14) 2022; 11
CR17
CR9
CR16
Javaid, Rizvi, Ubaid (CR1) 2022; 10
Park, Kang (CR7) 2020; 23
CR15
CR12
CR11
Zhang, Wang, Huang (CR13) 2020; 8
Zhang, Kwong, Wang (CR19) 2015; 24
Amestoy, Mercat, Hamidouche (CR8) 2019; 29
Park, Kang (CR18) 2019; 7
3023_CR12
3023_CR11
3023_CR17
3023_CR16
3023_CR15
S Javaid (3023_CR1) 2022; 10
T Li (3023_CR3) 2021; 30
S-H Park (3023_CR18) 2019; 7
J Zhao (3023_CR14) 2022; 11
Z Liu (3023_CR20) 2016; 25
3023_CR4
M Saldanha (3023_CR10) 2021; 32
3023_CR5
3023_CR6
3023_CR2
S-H Park (3023_CR7) 2020; 23
T Amestoy (3023_CR8) 2019; 29
Q Zhang (3023_CR13) 2020; 8
Y Zhang (3023_CR19) 2015; 24
3023_CR9
References_xml – volume: 32
  start-page: 3947
  issue: 6
  year: 2021
  end-page: 3960
  ident: CR10
  article-title: Configurable fast block partitioning for vvc intra coding using light gradient boosting machine
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3108671
  contributor:
    fullname: Marcon
– volume: 7
  start-page: 172597
  year: 2019
  end-page: 172605
  ident: CR18
  article-title: Context-based ternary tree decision method in versatile video coding for fast intra coding
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2956196
  contributor:
    fullname: Kang
– volume: 8
  start-page: 117539
  year: 2020
  end-page: 117550
  ident: CR13
  article-title: Fast cu partition and intra mode decision method for h. 266/vvc
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004580
  contributor:
    fullname: Huang
– ident: CR4
– ident: CR15
– ident: CR2
– ident: CR16
– volume: 23
  start-page: 4388
  year: 2020
  end-page: 4399
  ident: CR7
  article-title: Fast multi-type tree partitioning for versatile video coding using a lightweight neural network
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2020.3042062
  contributor:
    fullname: Kang
– volume: 11
  start-page: 2147
  issue: 14
  year: 2022
  ident: CR14
  article-title: Svm-based fast cu partition decision algorithm for vvc intra coding
  publication-title: Electronics
  doi: 10.3390/electronics11142147
  contributor:
    fullname: Zhang
– volume: 10
  start-page: 37246
  year: 2022
  end-page: 37256
  ident: CR1
  article-title: Vvc/h. 266 intra mode qtmt based cu partition using cnn
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3164421
  contributor:
    fullname: Ubaid
– ident: CR12
– ident: CR17
– volume: 30
  start-page: 5377
  year: 2021
  end-page: 5390
  ident: CR3
  article-title: Deepqtmt: a deep learning approach for fast qtmt-based cu partition of intra-mode vvc
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3083447
  contributor:
    fullname: Tang
– volume: 25
  start-page: 5088
  issue: 11
  year: 2016
  end-page: 5103
  ident: CR20
  article-title: Cu partition mode decision for hevc hardwired intra encoder using convolution neural network
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2601264
  contributor:
    fullname: Gao
– ident: CR11
– ident: CR9
– volume: 24
  start-page: 2225
  issue: 7
  year: 2015
  end-page: 2238
  ident: CR19
  article-title: Machine learning-based coding unit depth decisions for flexible complexity allocation in hevc
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2417498
  contributor:
    fullname: Wang
– ident: CR6
– ident: CR5
– volume: 29
  start-page: 1313
  year: 2019
  end-page: 1328
  ident: CR8
  article-title: Tunable vvc frame partitioning based on lightweight machine learning
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2938670
  contributor:
    fullname: Hamidouche
– volume: 29
  start-page: 1313
  year: 2019
  ident: 3023_CR8
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2938670
  contributor:
    fullname: T Amestoy
– volume: 8
  start-page: 117539
  year: 2020
  ident: 3023_CR13
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004580
  contributor:
    fullname: Q Zhang
– ident: 3023_CR12
  doi: 10.1109/ISCAS51556.2021.9401614
– volume: 7
  start-page: 172597
  year: 2019
  ident: 3023_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2956196
  contributor:
    fullname: S-H Park
– ident: 3023_CR9
  doi: 10.1109/ICME.2019.00018
– ident: 3023_CR2
  doi: 10.1109/DCC50243.2021.00008
– ident: 3023_CR11
  doi: 10.3390/electronics11162572
– volume: 24
  start-page: 2225
  issue: 7
  year: 2015
  ident: 3023_CR19
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2417498
  contributor:
    fullname: Y Zhang
– ident: 3023_CR15
  doi: 10.1109/STA56120.2022.10018992
– volume: 23
  start-page: 4388
  year: 2020
  ident: 3023_CR7
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2020.3042062
  contributor:
    fullname: S-H Park
– ident: 3023_CR16
– ident: 3023_CR4
  doi: 10.1109/ICIP46576.2022.9897378
– ident: 3023_CR5
  doi: 10.1007/s11760-020-01843-9
– ident: 3023_CR17
– volume: 30
  start-page: 5377
  year: 2021
  ident: 3023_CR3
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3083447
  contributor:
    fullname: T Li
– volume: 10
  start-page: 37246
  year: 2022
  ident: 3023_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3164421
  contributor:
    fullname: S Javaid
– volume: 32
  start-page: 3947
  issue: 6
  year: 2021
  ident: 3023_CR10
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3108671
  contributor:
    fullname: M Saldanha
– volume: 25
  start-page: 5088
  issue: 11
  year: 2016
  ident: 3023_CR20
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2601264
  contributor:
    fullname: Z Liu
– volume: 11
  start-page: 2147
  issue: 14
  year: 2022
  ident: 3023_CR14
  publication-title: Electronics
  doi: 10.3390/electronics11142147
  contributor:
    fullname: J Zhao
– ident: 3023_CR6
  doi: 10.1007/s11042-022-13479-7
SSID ssj0000327868
Score 2.3470755
Snippet In July 2020, the Joint Video Experts Team has published the versatile video coding (VVC) standard. The VVC encoder enhances the coding efficiency compared...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 3587
SubjectTerms Artificial neural networks
Coders
Coding
Complexity
Computer Imaging
Computer Science
Decision trees
Efficiency
Image Processing and Computer Vision
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Signal,Image and Speech Processing
Video compression
Vision
Title CNN-based ternary tree partition approach for VVC intra-QTMT coding
URI https://link.springer.com/article/10.1007/s11760-024-03023-5
https://www.proquest.com/docview/2985940203
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXPQgihpRJHvwpku2XbaPIzQi0UhiAgRPTbu7TYwJECwH_fXO9pH6PNBrm006M9vvm5nOtwBXnCOKRhanOtKK9oSb0NhXAjeeGydK-34UZWqfY2c07d3Pxbya485-di87ktmHupp1s1yHUYQUysxBN1TsQr0YPK33754fqtIK47br5UNwnmMEOBkvxmX-Xug7JFU880drNEOcYQMm5dxO_qPJa3eTxl358VvGcZuXOYSDgoGSfh4yR7CjF01olKc7kGKzN2H_i1ThMQTBeEwN5CmSlRDX78T0s8nKhJ5xLinVyQnSYDKbBeTF1I3p0-RxQuTSQOQJTIe3k2BEiwMYqLRdllLXS6SInNhBUsMcWzpa-bb0MEmKtbDcCC8PEyChmUbmwnwlkdxEmpu2DRInzk-htlgu9BkQnijLkz5mk5r3lI7iWCM64zpKeZrZsgXXpQ_CVa6zEVaKysZaIVorzKwViha0SzeFxZ57C23fE75Jh3kLbkqzV7f_X-18u8cvYM_OPGdKMW2opeuNvkRmksYdjMThYDDuFBHZgd2p3f8EqPjZOg
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADhQKiUMADGxg5dp3HWEWUQttISGlVpiixXQkhtVUfA_x67DwUqGBo1kRWcmfn--7O9xngljGNorHFsIqVxC3uTHDiSa4XnpNMpPK8OE7VPgO7O2y9jPk4bwpbFrvdi5Jk-qcum90sxyZYYwom5qQbzHeh2qKWTStQbT-99crcCmHUcbMuONc2CpyE5f0yfw_0G5NKorlRG00hp1ODYfGy2U6Tj4f1KnkQXxs6jtt-zREc5hwUtbNJcww7alqHWnG-A8qXex0OfogVnoDvBwE2oCdRmkRcfCJT0UZzM_mMe1GhT440EUajkY_eTeYYv4aDEImZAclTGHYeQ7-L8yMYsKAOWWHHnQge24mtaQ2xqbCV9KhwdZiUKG45sb5cHQJxRZTmLsSTQtObWDFTuNHUibEzqExnU3UOiE2k5QpPx5OKtaSKk0RpfNbjSOkqQkUD7gonRPNMaSMqNZWNtSJtrSi1VsQb0Cz8FOWrbhlRz-WeCYhZA-4Ls5e3_x_tYrvHb2CvGw76Uf856F3CPk29aBIzTaisFmt1pXnKKrnOp-U3l6LaqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH5RTIweRFEjitqDNy10K92PI0ERRYkmQPC0dG2XGBMgOA7619vuR4ZED8Zdt7xsfe2-773X9xXgglKNotyiWHElcZO5EQ59yfTCc8NIKt_nPFH77DvdYfN-zMZLXfzJbve8JJn2NBiVpkncmMmoUTS-Wa5DsMYXTMypN5itw0bTKCOVYKN1-9Ir8iyE2q6XdsR5jlHjJDTrnfnZ0Hd8KkjnSp00gZ9OGXj-4umuk7f6Ig7r4nNF0_E_X7YLOxk3Ra10Mu3BmppUoJyf-4Cy30AFtpdEDPeh3e73sQFDiZLk4vwDmUo3mplJadyOct1ypAkyGo3a6NVklPHz4HGAxNSA5wEMOzeDdhdnRzNgYbskxq4XCcad0NF0hzi2cJT0beHp8ClUzHK5vjwdGjFFlOY0xJdC0x6uqCnoaEpF6SGUJtOJOgJEI2l5wtdxpqJNqXgYKo3b2o6UniK2qMJl7pBglipwBIXWshmtQI9WkIxWwKpQy30WZKvxPbB9j_kmUKZVuMpdUNz-3drx3x4_h82n607wcNfvncCWnTjR5GtqUIrnC3Wq6UscnmUz9At_wuON
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN-based+ternary+tree+partition+approach+for+VVC+intra-QTMT+coding&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Belghith+Fatma&rft.au=Bouthaina%2C+Abdallah&rft.au=Sonda%2C+Ben+Jdidia&rft.au=Mohamed+Ali%2C+Ben+Ayed&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=18&rft.issue=4&rft.spage=3587&rft.epage=3594&rft_id=info:doi/10.1007%2Fs11760-024-03023-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon