Data reweighting net for web fine-grained image classification

Fine-grained visual classification (FGVC) necessitates expert knowledge,which is expensive and requires a large training sample size. Consequently, using sample data acquired through the web has emerged as a novel approach for augmenting training samples. However, the web data often includes noisy s...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 33; pp. 79985 - 80005
Main Authors Liu, Yifeng, Wu, Zhenxin, Lo, Sio-long, Chen, Zhenqiang, Ke, Gang, Yue, Chuan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fine-grained visual classification (FGVC) necessitates expert knowledge,which is expensive and requires a large training sample size. Consequently, using sample data acquired through the web has emerged as a novel approach for augmenting training samples. However, the web data often includes noisy samples, leading to misclassification of deep learning models. This paper presents a a meta-learning-base method called Data Reweighting Net (DR-Net). It enables the use of small, clean meta set as a guiding mechanism to accurately learn web image datasets that contain noise. More specifically, the DR-Net fully learns from small, clean meta set to discard noisy samples and obtain clean web samples through low similarity properties. DR-Net enables classification networks to adaptively learn training sets through sample weighting, mitigating the impact of noisy labels on classification learning. Our experiments on Web-bird, Web-aircraft, Web-car, CIFAR-10, and CIFAR-100 datasets demonstrate the feasibility of our proposed method.
AbstractList Fine-grained visual classification (FGVC) necessitates expert knowledge,which is expensive and requires a large training sample size. Consequently, using sample data acquired through the web has emerged as a novel approach for augmenting training samples. However, the web data often includes noisy samples, leading to misclassification of deep learning models. This paper presents a a meta-learning-base method called Data Reweighting Net (DR-Net). It enables the use of small, clean meta set as a guiding mechanism to accurately learn web image datasets that contain noise. More specifically, the DR-Net fully learns from small, clean meta set to discard noisy samples and obtain clean web samples through low similarity properties. DR-Net enables classification networks to adaptively learn training sets through sample weighting, mitigating the impact of noisy labels on classification learning. Our experiments on Web-bird, Web-aircraft, Web-car, CIFAR-10, and CIFAR-100 datasets demonstrate the feasibility of our proposed method.
Author Liu, Yifeng
Wu, Zhenxin
Yue, Chuan
Lo, Sio-long
Ke, Gang
Chen, Zhenqiang
Author_xml – sequence: 1
  givenname: Yifeng
  surname: Liu
  fullname: Liu, Yifeng
  organization: Faculty of Innovation Engineering, Macau University of Science and Technology
– sequence: 2
  givenname: Zhenxin
  surname: Wu
  fullname: Wu, Zhenxin
  organization: Department of Computer Science, Jinan University
– sequence: 3
  givenname: Sio-long
  orcidid: 0000-0002-5296-0922
  surname: Lo
  fullname: Lo, Sio-long
  email: sllo@must.edu.mo
  organization: Faculty of Innovation Engineering, Macau University of Science and Technology
– sequence: 4
  givenname: Zhenqiang
  surname: Chen
  fullname: Chen, Zhenqiang
  organization: Faculty of Innovation Engineering, Macau University of Science and Technology
– sequence: 5
  givenname: Gang
  surname: Ke
  fullname: Ke, Gang
  organization: Faculty of Innovation Engineering, Macau University of Science and Technology
– sequence: 6
  givenname: Chuan
  surname: Yue
  fullname: Yue, Chuan
  organization: Faculty of Innovation Engineering, Macau University of Science and Technology
BookMark eNp9kEFLAzEQhYNUsK3-AU8Bz9Ekm012L4JUq0LBS-8hm52sKTVbky2t_97oCnry9IbhvTfDN0OT0AdA6JLRa0apukmMUcEJ5YKwqqwrcjxBU1aqgijF2eTPfIZmKW0oZbLkYopu781gcIQD-O518KHDAQbs-ogP0GDnA5Aumiwt9m-mA2y3JiXvvDWD78M5OnVmm-DiR-dovXxYL57I6uXxeXG3IpYrOhDZlratwUnjqFJVWTSuFUJSZitjZG05AC1lYznllVTQKmuhUlXj6rx0opijq7F2F_v3PaRBb_p9DPmiLhgTlBVcsezio8vGPqUITu9ifjp-aEb1FyY9YtIZk_7GpI85VIyhlM2hg_hb_U_qE9rVbT8
Cites_doi 10.1109/TKDE.2015.2399298
10.1007/s11042-022-13619-z
10.1109/TIP.2020.2996736
10.1007/S11042-022-13493-9
10.1145/3446776
10.1109/TKDE.2019.2903036
10.1109/ACCESS.2020.3025372
10.1007/S11042-022-13423-9
10.1109/TPAMI.2017.2705122
10.1109/TIP.2023.3272826
10.1007/s11063-018-9963-9
10.1109/TPAMI.2019.2942030
10.1109/TMM.2018.2847248
10.1007/978-3-030-58565-5_10
10.1109/LGRS.2018.2802944
10.1007/s11263-015-0816-y
10.1007/S11042-022-12892-2
10.1016/j.patcog.2017.10.002
10.1109/TMM.2017.2684626
10.1109/TIP.2018.2869721
10.1109/TKDE.2014.2330813
10.1613/jair.953
10.1007/S11042-022-13486-8
10.1007/978-3-319-46487-9_19
10.1007/S11042-021-11473-Z
10.1016/j.eswa.2023.121979
10.1145/3240508.3240579
10.1109/CVPR.2016.131
10.1109/ICCV.2017.205
10.1145/3394171.3413851
10.1145/2964284.2967213
10.18653/v1/2023.acl-long.135
10.1007/978-3-030-58548-8_33
10.1007/978-3-319-10590-1_54
10.1145/3485447.3512032
10.1109/ICCV48922.2021.01043
10.1109/CVPR.2015.7298775
10.1109/cvpr46437.2021.00969
10.1109/CVPR.2019.00961
10.1007/978-3-030-01258-8_5
10.1109/ICCV.2019.00976
10.1109/ICCVW.2013.77
10.1145/2393347.2393363
10.1109/CVPR.2017.240
10.1109/VCIP.2017.8305148
10.1109/CVPR52688.2022.01067
10.1109/CVPR46437.2021.00265
10.1609/aaai.v34i07.6973
10.1007/978-3-030-01234-2_49
10.1007/978-1-4899-7687-1_79
10.1007/978-3-030-01264-9_26
10.1145/3394171.3413978
10.1109/TPAMI.2023.3271451
10.1109/CVPR.2018.00436
10.1109/CVPR.2016.132
10.1109/CVPR.2016.90
10.1109/CVPR52688.2022.00524
10.1109/TMM.2022.3181439
10.1145/1015330.1015425
10.1609/aaai.v35i7.16760
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11042-024-18598-x
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 80005
ExternalDocumentID 10_1007_s11042_024_18598_x
GrantInformation_xml – fundername: Fundo para o Desenvolvimento das Ciências e da Tecnologia
  grantid: 0061/2020/A2
  funderid: http://dx.doi.org/10.13039/501100006469
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c270t-6d5cd9ef6af077853bfd44601c8aa69c2ee056bc202867ed7cce878bf96bcf43
IEDL.DBID U2A
ISSN 1573-7721
1380-7501
IngestDate Sat Jul 26 00:42:21 EDT 2025
Tue Jul 01 04:13:33 EDT 2025
Fri Feb 21 02:40:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords Fine-grained visual classification
Noisy labels
Web images
Data Reweighting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-6d5cd9ef6af077853bfd44601c8aa69c2ee056bc202867ed7cce878bf96bcf43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5296-0922
PQID 3114013271
PQPubID 54626
PageCount 21
ParticipantIDs proquest_journals_3114013271
crossref_primary_10_1007_s11042_024_18598_x
springer_journals_10_1007_s11042_024_18598_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241000
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 20241000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Yang, Wang, Wang, Quan, Feng, Chen, Khabsa, Wang, Xu, Liu (CR43) 2023; 2023
Shu, Tang, Li, Lai, Zhang, Yan (CR13) 2018; 40
Yue, Huang, Towey, Xian, Wu (CR57) 2024; 238
Shu, Tang, Qi, Liu, Yang (CR14) 2021; 43
CR39
CR37
CR35
CR79
CR34
CR78
CR33
CR77
CR76
CR31
CR74
CR73
CR72
Ahmed, Lin, Srivastava (CR2) 2022; 81
Yao, Shen, Zhang, Liu, Tang, Shao (CR7) 2019; 21
CR71
CR70
Krause, Sapp, Howard, Zhou, Toshev, Duerig, Philbin, Fei-Fei, Leibe, Matas, Sebe, Welling (CR44) 2016
Nie, Chai, Wang, Liao, Xu (CR36) 2023; 82
Wei, Xie, Wu, Shen (CR64) 2018; 76
Nie, Zhao, Akbari, Shen, Chua (CR18) 2015; 27
CR8
CR9
CR49
CR47
CR46
CR45
CR42
CR41
Cui, Yan, Cao, Liu (CR50) 2021
Yadavendra Chand (CR5) 2022; 81
CR40
CR80
Du, Chang, Bhunia, Xie, Ma, Song, Guo, Vedaldi, Bischof, Brox, Frahm (CR38) 2020
Fan, Wang, Li, Wang (CR67) 2020; 8
Zhang, Bengio, Hardt, Recht, Vinyals (CR29) 2021; 64
CR19
Sharma, Mishra (CR3) 2022; 81
CR17
CR15
CR59
CR58
CR12
CR56
CR11
CR55
CR10
CR54
CR52
Nie, Wang, Zhang, Yan, Zhang, Chua (CR16) 2015; 27
CR51
Yao, Zhang, Shen, Liu, Zhu, Zhang, Shen (CR23) 2020; 32
Zhang, Wang, Tan (CR30) 2019; 50
Liu, Liang, Geng, Loui, Zhou (CR48) 2023; 32
Song, Wei, Shu, Song, Lu (CR61) 2020; 29
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Fei-Fei (CR75) 2015; 115
Chawla, Bowyer, Hall, Kegelmeyer (CR53) 2002; 16
Raghavan, Verma, Pandey, Anand, Pandey, Singh (CR4) 2022; 81
Yao, Zhang, Shen, Hua, Xu, Tang (CR22) 2017; 19
Ronneberger, Fischer, Brox, Navab, Hornegger, Wells, Frangi (CR32) 2015
Yao, Shen, Zhang, Liu, Tang, Shao (CR6) 2019; 28
CR28
CR27
CR26
CR25
CR69
Balaha, El-Kady, Balaha, Salama, Emad, Hassan, Saafan (CR1) 2023; 82
CR24
CR68
CR21
CR65
CR20
CR63
CR62
CR60
Zhang, Liu, Wang (CR66) 2018; 15
C Zhang (18598_CR29) 2021; 64
18598_CR60
O Ronneberger (18598_CR32) 2015
NV Chawla (18598_CR53) 2002; 16
18598_CR63
18598_CR20
18598_CR62
18598_CR12
18598_CR56
18598_CR10
18598_CR54
18598_CR11
18598_CR55
C Yue (18598_CR57) 2024; 238
18598_CR17
18598_CR58
18598_CR15
18598_CR59
L Nie (18598_CR16) 2015; 27
18598_CR19
R Du (18598_CR38) 2020
Y Yao (18598_CR23) 2020; 32
J Krause (18598_CR44) 2016
18598_CR70
18598_CR71
18598_CR74
18598_CR31
18598_CR72
L Nie (18598_CR18) 2015; 27
18598_CR73
Y Cui (18598_CR50) 2021
18598_CR24
18598_CR68
S Yadavendra Chand (18598_CR5) 2022; 81
18598_CR21
18598_CR65
18598_CR27
18598_CR28
18598_CR25
18598_CR69
18598_CR26
MM Balaha (18598_CR1) 2023; 82
L Yang (18598_CR43) 2023; 2023
X Nie (18598_CR36) 2023; 82
K Song (18598_CR61) 2020; 29
18598_CR80
18598_CR41
18598_CR42
18598_CR40
18598_CR34
18598_CR78
18598_CR35
18598_CR79
18598_CR76
U Ahmed (18598_CR2) 2022; 81
18598_CR33
18598_CR77
R Raghavan (18598_CR4) 2022; 81
18598_CR39
18598_CR37
Y Yao (18598_CR22) 2017; 19
O Russakovsky (18598_CR75) 2015; 115
T Fan (18598_CR67) 2020; 8
Y Yao (18598_CR7) 2019; 21
D Liu (18598_CR48) 2023; 32
A Sharma (18598_CR3) 2022; 81
18598_CR52
X Shu (18598_CR13) 2018; 40
18598_CR51
X Wei (18598_CR64) 2018; 76
18598_CR45
18598_CR46
Z Zhang (18598_CR66) 2018; 15
18598_CR9
W Zhang (18598_CR30) 2019; 50
18598_CR49
18598_CR47
Y Yao (18598_CR6) 2019; 28
X Shu (18598_CR14) 2021; 43
18598_CR8
References_xml – ident: CR45
– ident: CR70
– volume: 27
  start-page: 2107
  issue: 8
  year: 2015
  end-page: 2119
  ident: CR16
  article-title: Disease inference from health-related questions via sparse deep learning
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2015.2399298
– volume: 82
  start-page: 14799
  issue: 10
  year: 2023
  end-page: 14813
  ident: CR36
  article-title: Learning enhanced features and inferring twice for fine-grained image classification
  publication-title: Multim Tools Appl
  doi: 10.1007/s11042-022-13619-z
– ident: CR49
– ident: CR68
– ident: CR74
– volume: 29
  start-page: 7006
  year: 2020
  end-page: 7018
  ident: CR61
  article-title: Bi-modal progressive mask attention for fine-grained recognition
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2020.2996736
– ident: CR39
– ident: CR51
– volume: 81
  start-page: 42309
  issue: 29
  year: 2022
  end-page: 42323
  ident: CR4
  article-title: Optimized building extraction from high-resolution satellite imagery using deep learning
  publication-title: Multim Tools Appl
  doi: 10.1007/S11042-022-13493-9
– ident: CR12
– volume: 64
  start-page: 107
  issue: 3
  year: 2021
  end-page: 115
  ident: CR29
  article-title: Understanding deep learning (still) requires rethinking generalization
  publication-title: Commun ACM
  doi: 10.1145/3446776
– ident: CR35
– ident: CR54
– ident: CR80
– ident: CR77
– ident: CR8
– volume: 32
  start-page: 1199
  issue: 6
  year: 2020
  end-page: 1211
  ident: CR23
  article-title: Towards automatic construction of diverse, high-quality image datasets
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2019.2903036
– ident: CR58
– ident: CR25
– ident: CR42
– ident: CR21
– ident: CR46
– ident: CR71
– ident: CR19
– volume: 8
  start-page: 179656
  year: 2020
  end-page: 179665
  ident: CR67
  article-title: Ma-net: a multi-scale attention network for liver and tumor segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3025372
– volume: 2023
  start-page: 9978
  year: 2023
  end-page: 9991
  ident: CR43
  article-title: Mixpave: mix-prompt tuning for few-shot product attribute value extraction
  publication-title: Findings of the association for computational linguistics: ACL
– volume: 82
  start-page: 6807
  issue: 5
  year: 2023
  end-page: 6826
  ident: CR1
  article-title: A vision-based deep learning approach for independent-users arabic sign language interpretation
  publication-title: Multim Tools Appl
  doi: 10.1007/S11042-022-13423-9
– ident: CR15
– year: 2021
  ident: CR50
  publication-title: Tf-blender: temporal feature blender for video object detection
– ident: CR11
– ident: CR9
– volume: 40
  start-page: 905
  issue: 4
  year: 2018
  end-page: 917
  ident: CR13
  article-title: Personalized age progression with bi-level aging dictionary learning
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2705122
– ident: CR60
– ident: CR78
– ident: CR26
– ident: CR47
– ident: CR72
– ident: CR37
– volume: 32
  start-page: 2678
  year: 2023
  end-page: 2692
  ident: CR48
  article-title: Tripartite feature enhanced pyramid network for dense prediction
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2023.3272826
– volume: 50
  start-page: 1845
  issue: 2
  year: 2019
  end-page: 1860
  ident: CR30
  article-title: Robust class-specific autoencoder for data cleaning and classification in the presence of label noise
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-018-9963-9
– ident: CR10
– start-page: 234
  year: 2015
  end-page: 241
  ident: CR32
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: Medical image computing and computer-assisted intervention - MICCAI 2015
– ident: CR33
– volume: 43
  start-page: 1110
  issue: 3
  year: 2021
  end-page: 1118
  ident: CR14
  article-title: Hierarchical long short-term concurrent memory for human interaction recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2942030
– ident: CR79
– ident: CR56
– ident: CR40
– ident: CR63
– volume: 21
  start-page: 184
  issue: 1
  year: 2019
  end-page: 196
  ident: CR7
  article-title: Extracting multiple visual senses for web learning
  publication-title: IEEE Trans. Multim.
  doi: 10.1109/TMM.2018.2847248
– ident: CR27
– start-page: 153
  year: 2020
  end-page: 168
  ident: CR38
  article-title: Fine-grained visual classification via progressive multi-granularity training of jigsaw patches
  publication-title: Computer Vision - ECCV 2020
  doi: 10.1007/978-3-030-58565-5_10
– volume: 15
  start-page: 749
  issue: 5
  year: 2018
  end-page: 753
  ident: CR66
  article-title: Road extraction by deep residual u-net
  publication-title: IEEE Geosci Remote Sensing Lett
  doi: 10.1109/LGRS.2018.2802944
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  end-page: 252
  ident: CR75
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-015-0816-y
– ident: CR69
– ident: CR73
– volume: 81
  start-page: 44291
  issue: 30
  year: 2022
  end-page: 44310
  ident: CR5
  article-title: Semantic segmentation and detection of satellite objects using u-net model of deep learning
  publication-title: Multim Tools Appl
  doi: 10.1007/S11042-022-12892-2
– volume: 76
  start-page: 704
  year: 2018
  end-page: 714
  ident: CR64
  article-title: Mask-cnn: localizing parts and selecting descriptors for fine-grained bird species categorization
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.10.002
– volume: 19
  start-page: 1771
  issue: 8
  year: 2017
  end-page: 1784
  ident: CR22
  article-title: Exploiting web images for dataset construction: A domain robust approach
  publication-title: IEEE Trans Multim
  doi: 10.1109/TMM.2017.2684626
– ident: CR65
– volume: 28
  start-page: 436
  issue: 1
  year: 2019
  end-page: 450
  ident: CR6
  article-title: Extracting privileged information for enhancing classifier learning
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2869721
– volume: 27
  start-page: 396
  issue: 2
  year: 2015
  end-page: 409
  ident: CR18
  article-title: Bridging the vocabulary gap between health seekers and healthcare knowledge
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2014.2330813
– ident: CR52
– ident: CR17
– ident: CR31
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: CR53
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
– volume: 81
  start-page: 42649
  issue: 29
  year: 2022
  end-page: 42690
  ident: CR3
  article-title: Image enhancement techniques on deep learning approaches for automated diagnosis of COVID-19 features using CXR images
  publication-title: Multim Tools Appl
  doi: 10.1007/S11042-022-13486-8
– start-page: 301
  year: 2016
  end-page: 320
  ident: CR44
  article-title: The unreasonable effectiveness of noisy data for fine-grained recognition
  publication-title: Computer Vision - ECCV 2016
  doi: 10.1007/978-3-319-46487-9_19
– ident: CR34
– ident: CR55
– volume: 81
  start-page: 41899
  issue: 29
  year: 2022
  end-page: 41910
  ident: CR2
  article-title: Mitigating adversarial evasion attacks by deep active learning for medical image classification
  publication-title: Multim Tools Appl
  doi: 10.1007/S11042-021-11473-Z
– ident: CR59
– ident: CR76
– volume: 238
  year: 2024
  ident: CR57
  article-title: An entropy-based group decision-making approach for software quality evaluation
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.121979
– ident: CR28
– ident: CR41
– ident: CR62
– ident: CR24
– ident: CR20
– volume: 40
  start-page: 905
  issue: 4
  year: 2018
  ident: 18598_CR13
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2705122
– ident: 18598_CR19
– ident: 18598_CR21
– ident: 18598_CR62
  doi: 10.1145/3240508.3240579
– volume: 27
  start-page: 396
  issue: 2
  year: 2015
  ident: 18598_CR18
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2014.2330813
– volume: 21
  start-page: 184
  issue: 1
  year: 2019
  ident: 18598_CR7
  publication-title: IEEE Trans. Multim.
  doi: 10.1109/TMM.2018.2847248
– ident: 18598_CR63
  doi: 10.1109/CVPR.2016.131
– ident: 18598_CR73
– ident: 18598_CR54
  doi: 10.1109/ICCV.2017.205
– ident: 18598_CR11
  doi: 10.1145/3394171.3413851
– ident: 18598_CR24
  doi: 10.1145/2964284.2967213
– ident: 18598_CR41
  doi: 10.18653/v1/2023.acl-long.135
– ident: 18598_CR10
  doi: 10.1007/978-3-030-58548-8_33
– ident: 18598_CR33
  doi: 10.1007/978-3-319-10590-1_54
– volume: 8
  start-page: 179656
  year: 2020
  ident: 18598_CR67
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3025372
– ident: 18598_CR31
– ident: 18598_CR42
  doi: 10.1145/3485447.3512032
– ident: 18598_CR77
– ident: 18598_CR27
  doi: 10.1109/ICCV48922.2021.01043
– ident: 18598_CR35
  doi: 10.1109/CVPR.2015.7298775
– volume: 81
  start-page: 42649
  issue: 29
  year: 2022
  ident: 18598_CR3
  publication-title: Multim Tools Appl
  doi: 10.1007/S11042-022-13486-8
– volume: 82
  start-page: 6807
  issue: 5
  year: 2023
  ident: 18598_CR1
  publication-title: Multim Tools Appl
  doi: 10.1007/S11042-022-13423-9
– ident: 18598_CR49
  doi: 10.1109/cvpr46437.2021.00969
– volume: 15
  start-page: 749
  issue: 5
  year: 2018
  ident: 18598_CR66
  publication-title: IEEE Geosci Remote Sensing Lett
  doi: 10.1109/LGRS.2018.2802944
– ident: 18598_CR45
– volume: 82
  start-page: 14799
  issue: 10
  year: 2023
  ident: 18598_CR36
  publication-title: Multim Tools Appl
  doi: 10.1007/s11042-022-13619-z
– ident: 18598_CR39
– ident: 18598_CR72
– ident: 18598_CR8
  doi: 10.1109/CVPR.2019.00961
– ident: 18598_CR51
– ident: 18598_CR58
  doi: 10.1007/978-3-030-01258-8_5
– ident: 18598_CR9
  doi: 10.1109/ICCV.2019.00976
– ident: 18598_CR20
  doi: 10.1109/ICCVW.2013.77
– volume: 50
  start-page: 1845
  issue: 2
  year: 2019
  ident: 18598_CR30
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-018-9963-9
– volume: 28
  start-page: 436
  issue: 1
  year: 2019
  ident: 18598_CR6
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2869721
– ident: 18598_CR15
  doi: 10.1145/2393347.2393363
– volume: 32
  start-page: 1199
  issue: 6
  year: 2020
  ident: 18598_CR23
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2019.2903036
– ident: 18598_CR78
  doi: 10.1109/CVPR.2017.240
– volume: 43
  start-page: 1110
  issue: 3
  year: 2021
  ident: 18598_CR14
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2942030
– ident: 18598_CR28
– ident: 18598_CR34
– volume: 81
  start-page: 42309
  issue: 29
  year: 2022
  ident: 18598_CR4
  publication-title: Multim Tools Appl
  doi: 10.1007/S11042-022-13493-9
– volume-title: Tf-blender: temporal feature blender for video object detection
  year: 2021
  ident: 18598_CR50
– volume: 27
  start-page: 2107
  issue: 8
  year: 2015
  ident: 18598_CR16
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2015.2399298
– ident: 18598_CR68
  doi: 10.1109/VCIP.2017.8305148
– ident: 18598_CR40
  doi: 10.1109/CVPR52688.2022.01067
– volume: 32
  start-page: 2678
  year: 2023
  ident: 18598_CR48
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2023.3272826
– volume: 2023
  start-page: 9978
  year: 2023
  ident: 18598_CR43
  publication-title: Findings of the association for computational linguistics: ACL
– volume: 81
  start-page: 44291
  issue: 30
  year: 2022
  ident: 18598_CR5
  publication-title: Multim Tools Appl
  doi: 10.1007/S11042-022-12892-2
– ident: 18598_CR17
  doi: 10.1109/CVPR46437.2021.00265
– volume: 64
  start-page: 107
  issue: 3
  year: 2021
  ident: 18598_CR29
  publication-title: Commun ACM
  doi: 10.1145/3446776
– ident: 18598_CR69
– ident: 18598_CR46
– ident: 18598_CR25
  doi: 10.1609/aaai.v34i07.6973
– ident: 18598_CR71
  doi: 10.1007/978-3-030-01234-2_49
– ident: 18598_CR76
  doi: 10.1007/978-1-4899-7687-1_79
– start-page: 234
  volume-title: Medical image computing and computer-assisted intervention - MICCAI 2015
  year: 2015
  ident: 18598_CR32
– volume: 29
  start-page: 7006
  year: 2020
  ident: 18598_CR61
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2020.2996736
– ident: 18598_CR59
  doi: 10.1007/978-3-030-01264-9_26
– ident: 18598_CR26
  doi: 10.1145/3394171.3413978
– ident: 18598_CR79
– volume: 19
  start-page: 1771
  issue: 8
  year: 2017
  ident: 18598_CR22
  publication-title: IEEE Trans Multim
  doi: 10.1109/TMM.2017.2684626
– ident: 18598_CR80
– start-page: 153
  volume-title: Computer Vision - ECCV 2020
  year: 2020
  ident: 18598_CR38
  doi: 10.1007/978-3-030-58565-5_10
– volume: 81
  start-page: 41899
  issue: 29
  year: 2022
  ident: 18598_CR2
  publication-title: Multim Tools Appl
  doi: 10.1007/S11042-021-11473-Z
– ident: 18598_CR52
  doi: 10.1109/TPAMI.2023.3271451
– volume: 238
  year: 2024
  ident: 18598_CR57
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.121979
– volume: 76
  start-page: 704
  year: 2018
  ident: 18598_CR64
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.10.002
– ident: 18598_CR60
  doi: 10.1109/CVPR.2018.00436
– ident: 18598_CR37
  doi: 10.1109/CVPR.2016.132
– ident: 18598_CR70
– ident: 18598_CR56
  doi: 10.1109/CVPR.2016.90
– ident: 18598_CR12
  doi: 10.1109/CVPR52688.2022.00524
– ident: 18598_CR65
  doi: 10.1109/TMM.2022.3181439
– ident: 18598_CR55
  doi: 10.1145/1015330.1015425
– ident: 18598_CR47
  doi: 10.1609/aaai.v35i7.16760
– ident: 18598_CR74
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 18598_CR75
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-015-0816-y
– start-page: 301
  volume-title: Computer Vision - ECCV 2016
  year: 2016
  ident: 18598_CR44
  doi: 10.1007/978-3-319-46487-9_19
– volume: 16
  start-page: 321
  year: 2002
  ident: 18598_CR53
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
SSID ssj0016524
Score 2.3612595
Snippet Fine-grained visual classification (FGVC) necessitates expert knowledge,which is expensive and requires a large training sample size. Consequently, using...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 79985
SubjectTerms Aircraft
Bird impact
Birds
Classification
Computer Communication Networks
Computer Science
Data acquisition
Data Structures and Information Theory
Datasets
Deep learning
Image acquisition
Image classification
Machine learning
Multimedia
Multimedia Information Systems
Special Purpose and Application-Based Systems
Subject specialists
Track 6: Computer Vision for Multimedia Applications
Title Data reweighting net for web fine-grained image classification
URI https://link.springer.com/article/10.1007/s11042-024-18598-x
https://www.proquest.com/docview/3114013271
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hdoGBRwFRKJUHNrCUpI6dLEgttFQgOrVSmaLYsREDKWqD4OdzdhMCCAamSI7j4Tv77rvcwwBngsXGeMxQP5A2zMg1lZnPqC9TE-AOk2Fki5PvJ3w8Y7fzcF4Wha2qbPcqJOk0dV3s5ttSErQpFG1MHFFkjs0QfXebyDUL-p-xAx4GrCyP-f277yao5pU_QqHOwox2YbukhqS_luUebOi8BTvVtQukPIUt2PrSQ3AfLq_TIiVL_eb-ceIQyXVBkIoSVJDE4ET6aK-B0Bl5ekblQZTlyzZByMnkAKaj4fRqTMtLEahC7ArKs1BlsTY8NZ4QaGylydCl83wVpSmPVaA1chqpLDBc6EwopSMRSRPjoGG9Q2jki1wfAeEy4krYZjNcslR60sjYNrNBBywUhvttOK9gSl7WrS-SusmxBTVBUBMHavLehk6FZFIeg1XS853_Fghc7KJCt37992rH_5t-ApuBE7BNsutAo1i-6lMkC4XsQrM_Ggwm9nnzcDfsur3yAcoTuyA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGICBN6I8PcAElho3sZMBJERBLW2ZWqmbFTs2YqCgNqjwe_ijnE1CAcHA0NWxLtHns--73MMARyJMrK2GlgZMuTAjN1RlQUgDlVqGGqai2BUnd255oxfe9KP-DLyVtTA-270MSfqTelLsFrhSErQpFG1MEtOXIpWyZV7H6KiNzpp1XNVjxq6vupcNWtwlQDW-Mqc8i3SWGMtTWxUCbZSyGXpC1UDHacoTzYxBKqA0Q3vLhcmE1iYWsbIJDtqwhmJnYR65R-y2To9dfIYqeMTCohrn98_8bvEmNPZH5NUbtOtVWC6YKLn4UJ01mDGDdVgpb3kgxaZfh6UvLQs34Lye5ikZmrH_pYpDZGBygsyX4HlMLE6kd-7WCZOR-wc8q4h29NzlI3kV2ITuNHDbgrnB48BsA-Eq5lq43jZchamqKqsS1zsH_b1IWB5U4KSEST59dNqQk57KDlSJoEoPqnypwF6JpCx23UjWAu8uMoHCTkt0J4__lrbzv-mHsNDodtqy3bxt7cIi84vt8vv2YC4fPpt95Cm5OvB6QkBOWS_fAQ7y9iE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VkBAMvBHl6QEmsGjcxE4GkCpKxVsMrdTNih0bMRCqNqjlV_EXOacJBQQDA6tjXaLPZ99d7r4zwL7wI2trvqUeUy7NyA1ViedTT8WWoYapIHTk5Ns7ftHxr7pBtwJvJRcmr3YvU5JjToPr0pRmx73EHk-Ib56jlaB9oWhvopCOirLKa_M6xKBtcHLZxBU-YKx13j67oMW9AlTj6zPKk0AnkbE8tjUh0F4pm2BUVPN0GMc80swYdAuUZmh7uTCJ0NqEIlQ2wkHr11HsFMz4jnyMG6jDGh9pCx4wv2Dm_PyZX63fxKX9loXNjVtrCRYKr5Q0xmq0DBWTrsBieeMDKQ6AFZj_1L5wFU6bcRaTvhnmv1dxiKQmI-gFEzybicWJ9MHdQGES8viE5xbRzlV3tUm5OqxB-z9wW4fp9Dk1G0C4CrkWrs8NV36sasqqyPXRwdgvEJZ7VTgsYZK9cdcNOemv7ECVCKrMQZWjKmyXSMpiBw5k3ctDRyZQ2FGJ7uTx79I2_zZ9D2bvmy15c3l3vQVzLF9rV-q3DdNZ_8XsoMuSqd1cTQjIf1bLd4WI-lQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+reweighting+net+for+web+fine-grained+image+classification&rft.jtitle=Multimedia+tools+and+applications&rft.au=Liu%2C+Yifeng&rft.au=Wu%2C+Zhenxin&rft.au=Lo%2C+Sio-long&rft.au=Chen%2C+Zhenqiang&rft.date=2024-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=33&rft.spage=79985&rft.epage=80005&rft_id=info:doi/10.1007%2Fs11042-024-18598-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon