Data reweighting net for web fine-grained image classification
Fine-grained visual classification (FGVC) necessitates expert knowledge,which is expensive and requires a large training sample size. Consequently, using sample data acquired through the web has emerged as a novel approach for augmenting training samples. However, the web data often includes noisy s...
Saved in:
Published in | Multimedia tools and applications Vol. 83; no. 33; pp. 79985 - 80005 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fine-grained visual classification (FGVC) necessitates expert knowledge,which is expensive and requires a large training sample size. Consequently, using sample data acquired through the web has emerged as a novel approach for augmenting training samples. However, the web data often includes noisy samples, leading to misclassification of deep learning models. This paper presents a a meta-learning-base method called Data Reweighting Net (DR-Net). It enables the use of small, clean meta set as a guiding mechanism to accurately learn web image datasets that contain noise. More specifically, the DR-Net fully learns from small, clean meta set to discard noisy samples and obtain clean web samples through low similarity properties. DR-Net enables classification networks to adaptively learn training sets through sample weighting, mitigating the impact of noisy labels on classification learning. Our experiments on Web-bird, Web-aircraft, Web-car, CIFAR-10, and CIFAR-100 datasets demonstrate the feasibility of our proposed method. |
---|---|
AbstractList | Fine-grained visual classification (FGVC) necessitates expert knowledge,which is expensive and requires a large training sample size. Consequently, using sample data acquired through the web has emerged as a novel approach for augmenting training samples. However, the web data often includes noisy samples, leading to misclassification of deep learning models. This paper presents a a meta-learning-base method called Data Reweighting Net (DR-Net). It enables the use of small, clean meta set as a guiding mechanism to accurately learn web image datasets that contain noise. More specifically, the DR-Net fully learns from small, clean meta set to discard noisy samples and obtain clean web samples through low similarity properties. DR-Net enables classification networks to adaptively learn training sets through sample weighting, mitigating the impact of noisy labels on classification learning. Our experiments on Web-bird, Web-aircraft, Web-car, CIFAR-10, and CIFAR-100 datasets demonstrate the feasibility of our proposed method. |
Author | Liu, Yifeng Wu, Zhenxin Yue, Chuan Lo, Sio-long Ke, Gang Chen, Zhenqiang |
Author_xml | – sequence: 1 givenname: Yifeng surname: Liu fullname: Liu, Yifeng organization: Faculty of Innovation Engineering, Macau University of Science and Technology – sequence: 2 givenname: Zhenxin surname: Wu fullname: Wu, Zhenxin organization: Department of Computer Science, Jinan University – sequence: 3 givenname: Sio-long orcidid: 0000-0002-5296-0922 surname: Lo fullname: Lo, Sio-long email: sllo@must.edu.mo organization: Faculty of Innovation Engineering, Macau University of Science and Technology – sequence: 4 givenname: Zhenqiang surname: Chen fullname: Chen, Zhenqiang organization: Faculty of Innovation Engineering, Macau University of Science and Technology – sequence: 5 givenname: Gang surname: Ke fullname: Ke, Gang organization: Faculty of Innovation Engineering, Macau University of Science and Technology – sequence: 6 givenname: Chuan surname: Yue fullname: Yue, Chuan organization: Faculty of Innovation Engineering, Macau University of Science and Technology |
BookMark | eNp9kEFLAzEQhYNUsK3-AU8Bz9Ekm012L4JUq0LBS-8hm52sKTVbky2t_97oCnry9IbhvTfDN0OT0AdA6JLRa0apukmMUcEJ5YKwqqwrcjxBU1aqgijF2eTPfIZmKW0oZbLkYopu781gcIQD-O518KHDAQbs-ogP0GDnA5Aumiwt9m-mA2y3JiXvvDWD78M5OnVmm-DiR-dovXxYL57I6uXxeXG3IpYrOhDZlratwUnjqFJVWTSuFUJSZitjZG05AC1lYznllVTQKmuhUlXj6rx0opijq7F2F_v3PaRBb_p9DPmiLhgTlBVcsezio8vGPqUITu9ifjp-aEb1FyY9YtIZk_7GpI85VIyhlM2hg_hb_U_qE9rVbT8 |
Cites_doi | 10.1109/TKDE.2015.2399298 10.1007/s11042-022-13619-z 10.1109/TIP.2020.2996736 10.1007/S11042-022-13493-9 10.1145/3446776 10.1109/TKDE.2019.2903036 10.1109/ACCESS.2020.3025372 10.1007/S11042-022-13423-9 10.1109/TPAMI.2017.2705122 10.1109/TIP.2023.3272826 10.1007/s11063-018-9963-9 10.1109/TPAMI.2019.2942030 10.1109/TMM.2018.2847248 10.1007/978-3-030-58565-5_10 10.1109/LGRS.2018.2802944 10.1007/s11263-015-0816-y 10.1007/S11042-022-12892-2 10.1016/j.patcog.2017.10.002 10.1109/TMM.2017.2684626 10.1109/TIP.2018.2869721 10.1109/TKDE.2014.2330813 10.1613/jair.953 10.1007/S11042-022-13486-8 10.1007/978-3-319-46487-9_19 10.1007/S11042-021-11473-Z 10.1016/j.eswa.2023.121979 10.1145/3240508.3240579 10.1109/CVPR.2016.131 10.1109/ICCV.2017.205 10.1145/3394171.3413851 10.1145/2964284.2967213 10.18653/v1/2023.acl-long.135 10.1007/978-3-030-58548-8_33 10.1007/978-3-319-10590-1_54 10.1145/3485447.3512032 10.1109/ICCV48922.2021.01043 10.1109/CVPR.2015.7298775 10.1109/cvpr46437.2021.00969 10.1109/CVPR.2019.00961 10.1007/978-3-030-01258-8_5 10.1109/ICCV.2019.00976 10.1109/ICCVW.2013.77 10.1145/2393347.2393363 10.1109/CVPR.2017.240 10.1109/VCIP.2017.8305148 10.1109/CVPR52688.2022.01067 10.1109/CVPR46437.2021.00265 10.1609/aaai.v34i07.6973 10.1007/978-3-030-01234-2_49 10.1007/978-1-4899-7687-1_79 10.1007/978-3-030-01264-9_26 10.1145/3394171.3413978 10.1109/TPAMI.2023.3271451 10.1109/CVPR.2018.00436 10.1109/CVPR.2016.132 10.1109/CVPR.2016.90 10.1109/CVPR52688.2022.00524 10.1109/TMM.2022.3181439 10.1145/1015330.1015425 10.1609/aaai.v35i7.16760 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s11042-024-18598-x |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 80005 |
ExternalDocumentID | 10_1007_s11042_024_18598_x |
GrantInformation_xml | – fundername: Fundo para o Desenvolvimento das Ciências e da Tecnologia grantid: 0061/2020/A2 funderid: http://dx.doi.org/10.13039/501100006469 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 8FD ABRTQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c270t-6d5cd9ef6af077853bfd44601c8aa69c2ee056bc202867ed7cce878bf96bcf43 |
IEDL.DBID | U2A |
ISSN | 1573-7721 1380-7501 |
IngestDate | Sat Jul 26 00:42:21 EDT 2025 Tue Jul 01 04:13:33 EDT 2025 Fri Feb 21 02:40:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Keywords | Fine-grained visual classification Noisy labels Web images Data Reweighting |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-6d5cd9ef6af077853bfd44601c8aa69c2ee056bc202867ed7cce878bf96bcf43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5296-0922 |
PQID | 3114013271 |
PQPubID | 54626 |
PageCount | 21 |
ParticipantIDs | proquest_journals_3114013271 crossref_primary_10_1007_s11042_024_18598_x springer_journals_10_1007_s11042_024_18598_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241000 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 20241000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Yang, Wang, Wang, Quan, Feng, Chen, Khabsa, Wang, Xu, Liu (CR43) 2023; 2023 Shu, Tang, Li, Lai, Zhang, Yan (CR13) 2018; 40 Yue, Huang, Towey, Xian, Wu (CR57) 2024; 238 Shu, Tang, Qi, Liu, Yang (CR14) 2021; 43 CR39 CR37 CR35 CR79 CR34 CR78 CR33 CR77 CR76 CR31 CR74 CR73 CR72 Ahmed, Lin, Srivastava (CR2) 2022; 81 Yao, Shen, Zhang, Liu, Tang, Shao (CR7) 2019; 21 CR71 CR70 Krause, Sapp, Howard, Zhou, Toshev, Duerig, Philbin, Fei-Fei, Leibe, Matas, Sebe, Welling (CR44) 2016 Nie, Chai, Wang, Liao, Xu (CR36) 2023; 82 Wei, Xie, Wu, Shen (CR64) 2018; 76 Nie, Zhao, Akbari, Shen, Chua (CR18) 2015; 27 CR8 CR9 CR49 CR47 CR46 CR45 CR42 CR41 Cui, Yan, Cao, Liu (CR50) 2021 Yadavendra Chand (CR5) 2022; 81 CR40 CR80 Du, Chang, Bhunia, Xie, Ma, Song, Guo, Vedaldi, Bischof, Brox, Frahm (CR38) 2020 Fan, Wang, Li, Wang (CR67) 2020; 8 Zhang, Bengio, Hardt, Recht, Vinyals (CR29) 2021; 64 CR19 Sharma, Mishra (CR3) 2022; 81 CR17 CR15 CR59 CR58 CR12 CR56 CR11 CR55 CR10 CR54 CR52 Nie, Wang, Zhang, Yan, Zhang, Chua (CR16) 2015; 27 CR51 Yao, Zhang, Shen, Liu, Zhu, Zhang, Shen (CR23) 2020; 32 Zhang, Wang, Tan (CR30) 2019; 50 Liu, Liang, Geng, Loui, Zhou (CR48) 2023; 32 Song, Wei, Shu, Song, Lu (CR61) 2020; 29 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Fei-Fei (CR75) 2015; 115 Chawla, Bowyer, Hall, Kegelmeyer (CR53) 2002; 16 Raghavan, Verma, Pandey, Anand, Pandey, Singh (CR4) 2022; 81 Yao, Zhang, Shen, Hua, Xu, Tang (CR22) 2017; 19 Ronneberger, Fischer, Brox, Navab, Hornegger, Wells, Frangi (CR32) 2015 Yao, Shen, Zhang, Liu, Tang, Shao (CR6) 2019; 28 CR28 CR27 CR26 CR25 CR69 Balaha, El-Kady, Balaha, Salama, Emad, Hassan, Saafan (CR1) 2023; 82 CR24 CR68 CR21 CR65 CR20 CR63 CR62 CR60 Zhang, Liu, Wang (CR66) 2018; 15 C Zhang (18598_CR29) 2021; 64 18598_CR60 O Ronneberger (18598_CR32) 2015 NV Chawla (18598_CR53) 2002; 16 18598_CR63 18598_CR20 18598_CR62 18598_CR12 18598_CR56 18598_CR10 18598_CR54 18598_CR11 18598_CR55 C Yue (18598_CR57) 2024; 238 18598_CR17 18598_CR58 18598_CR15 18598_CR59 L Nie (18598_CR16) 2015; 27 18598_CR19 R Du (18598_CR38) 2020 Y Yao (18598_CR23) 2020; 32 J Krause (18598_CR44) 2016 18598_CR70 18598_CR71 18598_CR74 18598_CR31 18598_CR72 L Nie (18598_CR18) 2015; 27 18598_CR73 Y Cui (18598_CR50) 2021 18598_CR24 18598_CR68 S Yadavendra Chand (18598_CR5) 2022; 81 18598_CR21 18598_CR65 18598_CR27 18598_CR28 18598_CR25 18598_CR69 18598_CR26 MM Balaha (18598_CR1) 2023; 82 L Yang (18598_CR43) 2023; 2023 X Nie (18598_CR36) 2023; 82 K Song (18598_CR61) 2020; 29 18598_CR80 18598_CR41 18598_CR42 18598_CR40 18598_CR34 18598_CR78 18598_CR35 18598_CR79 18598_CR76 U Ahmed (18598_CR2) 2022; 81 18598_CR33 18598_CR77 R Raghavan (18598_CR4) 2022; 81 18598_CR39 18598_CR37 Y Yao (18598_CR22) 2017; 19 O Russakovsky (18598_CR75) 2015; 115 T Fan (18598_CR67) 2020; 8 Y Yao (18598_CR7) 2019; 21 D Liu (18598_CR48) 2023; 32 A Sharma (18598_CR3) 2022; 81 18598_CR52 X Shu (18598_CR13) 2018; 40 18598_CR51 X Wei (18598_CR64) 2018; 76 18598_CR45 18598_CR46 Z Zhang (18598_CR66) 2018; 15 18598_CR9 W Zhang (18598_CR30) 2019; 50 18598_CR49 18598_CR47 Y Yao (18598_CR6) 2019; 28 X Shu (18598_CR14) 2021; 43 18598_CR8 |
References_xml | – ident: CR45 – ident: CR70 – volume: 27 start-page: 2107 issue: 8 year: 2015 end-page: 2119 ident: CR16 article-title: Disease inference from health-related questions via sparse deep learning publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2015.2399298 – volume: 82 start-page: 14799 issue: 10 year: 2023 end-page: 14813 ident: CR36 article-title: Learning enhanced features and inferring twice for fine-grained image classification publication-title: Multim Tools Appl doi: 10.1007/s11042-022-13619-z – ident: CR49 – ident: CR68 – ident: CR74 – volume: 29 start-page: 7006 year: 2020 end-page: 7018 ident: CR61 article-title: Bi-modal progressive mask attention for fine-grained recognition publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.2996736 – ident: CR39 – ident: CR51 – volume: 81 start-page: 42309 issue: 29 year: 2022 end-page: 42323 ident: CR4 article-title: Optimized building extraction from high-resolution satellite imagery using deep learning publication-title: Multim Tools Appl doi: 10.1007/S11042-022-13493-9 – ident: CR12 – volume: 64 start-page: 107 issue: 3 year: 2021 end-page: 115 ident: CR29 article-title: Understanding deep learning (still) requires rethinking generalization publication-title: Commun ACM doi: 10.1145/3446776 – ident: CR35 – ident: CR54 – ident: CR80 – ident: CR77 – ident: CR8 – volume: 32 start-page: 1199 issue: 6 year: 2020 end-page: 1211 ident: CR23 article-title: Towards automatic construction of diverse, high-quality image datasets publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2019.2903036 – ident: CR58 – ident: CR25 – ident: CR42 – ident: CR21 – ident: CR46 – ident: CR71 – ident: CR19 – volume: 8 start-page: 179656 year: 2020 end-page: 179665 ident: CR67 article-title: Ma-net: a multi-scale attention network for liver and tumor segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3025372 – volume: 2023 start-page: 9978 year: 2023 end-page: 9991 ident: CR43 article-title: Mixpave: mix-prompt tuning for few-shot product attribute value extraction publication-title: Findings of the association for computational linguistics: ACL – volume: 82 start-page: 6807 issue: 5 year: 2023 end-page: 6826 ident: CR1 article-title: A vision-based deep learning approach for independent-users arabic sign language interpretation publication-title: Multim Tools Appl doi: 10.1007/S11042-022-13423-9 – ident: CR15 – year: 2021 ident: CR50 publication-title: Tf-blender: temporal feature blender for video object detection – ident: CR11 – ident: CR9 – volume: 40 start-page: 905 issue: 4 year: 2018 end-page: 917 ident: CR13 article-title: Personalized age progression with bi-level aging dictionary learning publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2705122 – ident: CR60 – ident: CR78 – ident: CR26 – ident: CR47 – ident: CR72 – ident: CR37 – volume: 32 start-page: 2678 year: 2023 end-page: 2692 ident: CR48 article-title: Tripartite feature enhanced pyramid network for dense prediction publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2023.3272826 – volume: 50 start-page: 1845 issue: 2 year: 2019 end-page: 1860 ident: CR30 article-title: Robust class-specific autoencoder for data cleaning and classification in the presence of label noise publication-title: Neural Process Lett doi: 10.1007/s11063-018-9963-9 – ident: CR10 – start-page: 234 year: 2015 end-page: 241 ident: CR32 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: Medical image computing and computer-assisted intervention - MICCAI 2015 – ident: CR33 – volume: 43 start-page: 1110 issue: 3 year: 2021 end-page: 1118 ident: CR14 article-title: Hierarchical long short-term concurrent memory for human interaction recognition publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2019.2942030 – ident: CR79 – ident: CR56 – ident: CR40 – ident: CR63 – volume: 21 start-page: 184 issue: 1 year: 2019 end-page: 196 ident: CR7 article-title: Extracting multiple visual senses for web learning publication-title: IEEE Trans. Multim. doi: 10.1109/TMM.2018.2847248 – ident: CR27 – start-page: 153 year: 2020 end-page: 168 ident: CR38 article-title: Fine-grained visual classification via progressive multi-granularity training of jigsaw patches publication-title: Computer Vision - ECCV 2020 doi: 10.1007/978-3-030-58565-5_10 – volume: 15 start-page: 749 issue: 5 year: 2018 end-page: 753 ident: CR66 article-title: Road extraction by deep residual u-net publication-title: IEEE Geosci Remote Sensing Lett doi: 10.1109/LGRS.2018.2802944 – volume: 115 start-page: 211 issue: 3 year: 2015 end-page: 252 ident: CR75 article-title: Imagenet large scale visual recognition challenge publication-title: Int J Comput Vis doi: 10.1007/s11263-015-0816-y – ident: CR69 – ident: CR73 – volume: 81 start-page: 44291 issue: 30 year: 2022 end-page: 44310 ident: CR5 article-title: Semantic segmentation and detection of satellite objects using u-net model of deep learning publication-title: Multim Tools Appl doi: 10.1007/S11042-022-12892-2 – volume: 76 start-page: 704 year: 2018 end-page: 714 ident: CR64 article-title: Mask-cnn: localizing parts and selecting descriptors for fine-grained bird species categorization publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.10.002 – volume: 19 start-page: 1771 issue: 8 year: 2017 end-page: 1784 ident: CR22 article-title: Exploiting web images for dataset construction: A domain robust approach publication-title: IEEE Trans Multim doi: 10.1109/TMM.2017.2684626 – ident: CR65 – volume: 28 start-page: 436 issue: 1 year: 2019 end-page: 450 ident: CR6 article-title: Extracting privileged information for enhancing classifier learning publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2869721 – volume: 27 start-page: 396 issue: 2 year: 2015 end-page: 409 ident: CR18 article-title: Bridging the vocabulary gap between health seekers and healthcare knowledge publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2014.2330813 – ident: CR52 – ident: CR17 – ident: CR31 – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: CR53 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J Artif Intell Res doi: 10.1613/jair.953 – volume: 81 start-page: 42649 issue: 29 year: 2022 end-page: 42690 ident: CR3 article-title: Image enhancement techniques on deep learning approaches for automated diagnosis of COVID-19 features using CXR images publication-title: Multim Tools Appl doi: 10.1007/S11042-022-13486-8 – start-page: 301 year: 2016 end-page: 320 ident: CR44 article-title: The unreasonable effectiveness of noisy data for fine-grained recognition publication-title: Computer Vision - ECCV 2016 doi: 10.1007/978-3-319-46487-9_19 – ident: CR34 – ident: CR55 – volume: 81 start-page: 41899 issue: 29 year: 2022 end-page: 41910 ident: CR2 article-title: Mitigating adversarial evasion attacks by deep active learning for medical image classification publication-title: Multim Tools Appl doi: 10.1007/S11042-021-11473-Z – ident: CR59 – ident: CR76 – volume: 238 year: 2024 ident: CR57 article-title: An entropy-based group decision-making approach for software quality evaluation publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.121979 – ident: CR28 – ident: CR41 – ident: CR62 – ident: CR24 – ident: CR20 – volume: 40 start-page: 905 issue: 4 year: 2018 ident: 18598_CR13 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2705122 – ident: 18598_CR19 – ident: 18598_CR21 – ident: 18598_CR62 doi: 10.1145/3240508.3240579 – volume: 27 start-page: 396 issue: 2 year: 2015 ident: 18598_CR18 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2014.2330813 – volume: 21 start-page: 184 issue: 1 year: 2019 ident: 18598_CR7 publication-title: IEEE Trans. Multim. doi: 10.1109/TMM.2018.2847248 – ident: 18598_CR63 doi: 10.1109/CVPR.2016.131 – ident: 18598_CR73 – ident: 18598_CR54 doi: 10.1109/ICCV.2017.205 – ident: 18598_CR11 doi: 10.1145/3394171.3413851 – ident: 18598_CR24 doi: 10.1145/2964284.2967213 – ident: 18598_CR41 doi: 10.18653/v1/2023.acl-long.135 – ident: 18598_CR10 doi: 10.1007/978-3-030-58548-8_33 – ident: 18598_CR33 doi: 10.1007/978-3-319-10590-1_54 – volume: 8 start-page: 179656 year: 2020 ident: 18598_CR67 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3025372 – ident: 18598_CR31 – ident: 18598_CR42 doi: 10.1145/3485447.3512032 – ident: 18598_CR77 – ident: 18598_CR27 doi: 10.1109/ICCV48922.2021.01043 – ident: 18598_CR35 doi: 10.1109/CVPR.2015.7298775 – volume: 81 start-page: 42649 issue: 29 year: 2022 ident: 18598_CR3 publication-title: Multim Tools Appl doi: 10.1007/S11042-022-13486-8 – volume: 82 start-page: 6807 issue: 5 year: 2023 ident: 18598_CR1 publication-title: Multim Tools Appl doi: 10.1007/S11042-022-13423-9 – ident: 18598_CR49 doi: 10.1109/cvpr46437.2021.00969 – volume: 15 start-page: 749 issue: 5 year: 2018 ident: 18598_CR66 publication-title: IEEE Geosci Remote Sensing Lett doi: 10.1109/LGRS.2018.2802944 – ident: 18598_CR45 – volume: 82 start-page: 14799 issue: 10 year: 2023 ident: 18598_CR36 publication-title: Multim Tools Appl doi: 10.1007/s11042-022-13619-z – ident: 18598_CR39 – ident: 18598_CR72 – ident: 18598_CR8 doi: 10.1109/CVPR.2019.00961 – ident: 18598_CR51 – ident: 18598_CR58 doi: 10.1007/978-3-030-01258-8_5 – ident: 18598_CR9 doi: 10.1109/ICCV.2019.00976 – ident: 18598_CR20 doi: 10.1109/ICCVW.2013.77 – volume: 50 start-page: 1845 issue: 2 year: 2019 ident: 18598_CR30 publication-title: Neural Process Lett doi: 10.1007/s11063-018-9963-9 – volume: 28 start-page: 436 issue: 1 year: 2019 ident: 18598_CR6 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2869721 – ident: 18598_CR15 doi: 10.1145/2393347.2393363 – volume: 32 start-page: 1199 issue: 6 year: 2020 ident: 18598_CR23 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2019.2903036 – ident: 18598_CR78 doi: 10.1109/CVPR.2017.240 – volume: 43 start-page: 1110 issue: 3 year: 2021 ident: 18598_CR14 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2019.2942030 – ident: 18598_CR28 – ident: 18598_CR34 – volume: 81 start-page: 42309 issue: 29 year: 2022 ident: 18598_CR4 publication-title: Multim Tools Appl doi: 10.1007/S11042-022-13493-9 – volume-title: Tf-blender: temporal feature blender for video object detection year: 2021 ident: 18598_CR50 – volume: 27 start-page: 2107 issue: 8 year: 2015 ident: 18598_CR16 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2015.2399298 – ident: 18598_CR68 doi: 10.1109/VCIP.2017.8305148 – ident: 18598_CR40 doi: 10.1109/CVPR52688.2022.01067 – volume: 32 start-page: 2678 year: 2023 ident: 18598_CR48 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2023.3272826 – volume: 2023 start-page: 9978 year: 2023 ident: 18598_CR43 publication-title: Findings of the association for computational linguistics: ACL – volume: 81 start-page: 44291 issue: 30 year: 2022 ident: 18598_CR5 publication-title: Multim Tools Appl doi: 10.1007/S11042-022-12892-2 – ident: 18598_CR17 doi: 10.1109/CVPR46437.2021.00265 – volume: 64 start-page: 107 issue: 3 year: 2021 ident: 18598_CR29 publication-title: Commun ACM doi: 10.1145/3446776 – ident: 18598_CR69 – ident: 18598_CR46 – ident: 18598_CR25 doi: 10.1609/aaai.v34i07.6973 – ident: 18598_CR71 doi: 10.1007/978-3-030-01234-2_49 – ident: 18598_CR76 doi: 10.1007/978-1-4899-7687-1_79 – start-page: 234 volume-title: Medical image computing and computer-assisted intervention - MICCAI 2015 year: 2015 ident: 18598_CR32 – volume: 29 start-page: 7006 year: 2020 ident: 18598_CR61 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.2996736 – ident: 18598_CR59 doi: 10.1007/978-3-030-01264-9_26 – ident: 18598_CR26 doi: 10.1145/3394171.3413978 – ident: 18598_CR79 – volume: 19 start-page: 1771 issue: 8 year: 2017 ident: 18598_CR22 publication-title: IEEE Trans Multim doi: 10.1109/TMM.2017.2684626 – ident: 18598_CR80 – start-page: 153 volume-title: Computer Vision - ECCV 2020 year: 2020 ident: 18598_CR38 doi: 10.1007/978-3-030-58565-5_10 – volume: 81 start-page: 41899 issue: 29 year: 2022 ident: 18598_CR2 publication-title: Multim Tools Appl doi: 10.1007/S11042-021-11473-Z – ident: 18598_CR52 doi: 10.1109/TPAMI.2023.3271451 – volume: 238 year: 2024 ident: 18598_CR57 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.121979 – volume: 76 start-page: 704 year: 2018 ident: 18598_CR64 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.10.002 – ident: 18598_CR60 doi: 10.1109/CVPR.2018.00436 – ident: 18598_CR37 doi: 10.1109/CVPR.2016.132 – ident: 18598_CR70 – ident: 18598_CR56 doi: 10.1109/CVPR.2016.90 – ident: 18598_CR12 doi: 10.1109/CVPR52688.2022.00524 – ident: 18598_CR65 doi: 10.1109/TMM.2022.3181439 – ident: 18598_CR55 doi: 10.1145/1015330.1015425 – ident: 18598_CR47 doi: 10.1609/aaai.v35i7.16760 – ident: 18598_CR74 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 18598_CR75 publication-title: Int J Comput Vis doi: 10.1007/s11263-015-0816-y – start-page: 301 volume-title: Computer Vision - ECCV 2016 year: 2016 ident: 18598_CR44 doi: 10.1007/978-3-319-46487-9_19 – volume: 16 start-page: 321 year: 2002 ident: 18598_CR53 publication-title: J Artif Intell Res doi: 10.1613/jair.953 |
SSID | ssj0016524 |
Score | 2.3612595 |
Snippet | Fine-grained visual classification (FGVC) necessitates expert knowledge,which is expensive and requires a large training sample size. Consequently, using... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 79985 |
SubjectTerms | Aircraft Bird impact Birds Classification Computer Communication Networks Computer Science Data acquisition Data Structures and Information Theory Datasets Deep learning Image acquisition Image classification Machine learning Multimedia Multimedia Information Systems Special Purpose and Application-Based Systems Subject specialists Track 6: Computer Vision for Multimedia Applications |
Title | Data reweighting net for web fine-grained image classification |
URI | https://link.springer.com/article/10.1007/s11042-024-18598-x https://www.proquest.com/docview/3114013271 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hdoGBRwFRKJUHNrCUpI6dLEgttFQgOrVSmaLYsREDKWqD4OdzdhMCCAamSI7j4Tv77rvcwwBngsXGeMxQP5A2zMg1lZnPqC9TE-AOk2Fki5PvJ3w8Y7fzcF4Wha2qbPcqJOk0dV3s5ttSErQpFG1MHFFkjs0QfXebyDUL-p-xAx4GrCyP-f277yao5pU_QqHOwox2YbukhqS_luUebOi8BTvVtQukPIUt2PrSQ3AfLq_TIiVL_eb-ceIQyXVBkIoSVJDE4ET6aK-B0Bl5ekblQZTlyzZByMnkAKaj4fRqTMtLEahC7ArKs1BlsTY8NZ4QaGylydCl83wVpSmPVaA1chqpLDBc6EwopSMRSRPjoGG9Q2jki1wfAeEy4krYZjNcslR60sjYNrNBBywUhvttOK9gSl7WrS-SusmxBTVBUBMHavLehk6FZFIeg1XS853_Fghc7KJCt37992rH_5t-ApuBE7BNsutAo1i-6lMkC4XsQrM_Ggwm9nnzcDfsur3yAcoTuyA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGICBN6I8PcAElho3sZMBJERBLW2ZWqmbFTs2YqCgNqjwe_ijnE1CAcHA0NWxLtHns--73MMARyJMrK2GlgZMuTAjN1RlQUgDlVqGGqai2BUnd255oxfe9KP-DLyVtTA-270MSfqTelLsFrhSErQpFG1MEtOXIpWyZV7H6KiNzpp1XNVjxq6vupcNWtwlQDW-Mqc8i3SWGMtTWxUCbZSyGXpC1UDHacoTzYxBKqA0Q3vLhcmE1iYWsbIJDtqwhmJnYR65R-y2To9dfIYqeMTCohrn98_8bvEmNPZH5NUbtOtVWC6YKLn4UJ01mDGDdVgpb3kgxaZfh6UvLQs34Lye5ikZmrH_pYpDZGBygsyX4HlMLE6kd-7WCZOR-wc8q4h29NzlI3kV2ITuNHDbgrnB48BsA-Eq5lq43jZchamqKqsS1zsH_b1IWB5U4KSEST59dNqQk57KDlSJoEoPqnypwF6JpCx23UjWAu8uMoHCTkt0J4__lrbzv-mHsNDodtqy3bxt7cIi84vt8vv2YC4fPpt95Cm5OvB6QkBOWS_fAQ7y9iE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VkBAMvBHl6QEmsGjcxE4GkCpKxVsMrdTNih0bMRCqNqjlV_EXOacJBQQDA6tjXaLPZ99d7r4zwL7wI2trvqUeUy7NyA1ViedTT8WWoYapIHTk5Ns7ftHxr7pBtwJvJRcmr3YvU5JjToPr0pRmx73EHk-Ib56jlaB9oWhvopCOirLKa_M6xKBtcHLZxBU-YKx13j67oMW9AlTj6zPKk0AnkbE8tjUh0F4pm2BUVPN0GMc80swYdAuUZmh7uTCJ0NqEIlQ2wkHr11HsFMz4jnyMG6jDGh9pCx4wv2Dm_PyZX63fxKX9loXNjVtrCRYKr5Q0xmq0DBWTrsBieeMDKQ6AFZj_1L5wFU6bcRaTvhnmv1dxiKQmI-gFEzybicWJ9MHdQGES8viE5xbRzlV3tUm5OqxB-z9wW4fp9Dk1G0C4CrkWrs8NV36sasqqyPXRwdgvEJZ7VTgsYZK9cdcNOemv7ECVCKrMQZWjKmyXSMpiBw5k3ctDRyZQ2FGJ7uTx79I2_zZ9D2bvmy15c3l3vQVzLF9rV-q3DdNZ_8XsoMuSqd1cTQjIf1bLd4WI-lQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+reweighting+net+for+web+fine-grained+image+classification&rft.jtitle=Multimedia+tools+and+applications&rft.au=Liu%2C+Yifeng&rft.au=Wu%2C+Zhenxin&rft.au=Lo%2C+Sio-long&rft.au=Chen%2C+Zhenqiang&rft.date=2024-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=33&rft.spage=79985&rft.epage=80005&rft_id=info:doi/10.1007%2Fs11042-024-18598-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |