Numerical Study on Combustion of Hydrogen Jet in Supersonic Airflow with Detailed and Skeletal Mechanisms

Understanding supersonic hydrogen combustion is crucial to design propulsion systems in hypersonic vehicles. The choice of a hydrogen combustion chemical kinetics mechanism requires careful consideration of both accuracy and computational efficiency. The goal of this paper is to study the influence...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Lebedev Physics Institute Vol. 52; no. Suppl 2; pp. S130 - S143
Main Authors Ashirova, G. A., Beketaeva, A. O., Naimanova, A. Zh, Bykov, V. V.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.07.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1068-3356
1934-838X
DOI10.3103/S1068335624602620

Cover

Loading…
Abstract Understanding supersonic hydrogen combustion is crucial to design propulsion systems in hypersonic vehicles. The choice of a hydrogen combustion chemical kinetics mechanism requires careful consideration of both accuracy and computational efficiency. The goal of this paper is to study the influence of this choice on the performance of the mechanisms on the problem of transverse hydrogen injection into supersonic flow with subsequent combustion taking place. The skeletal mechanism, including 7 species and 8 chemical reactions only and the detailed Kéromnès mechanism, consisting 9 species and 19 reactions are employed to quantify the effect of chemical reactions. A numerical simulation of this supersonic combustion system is performed by solving the three-dimensional Favre-averaged Navier–Stokes equations coupled with a turbulence model. It is revealed that the basic behavior of the flowfield is mostly identical for the two mechanisms for moderate . The notable differences are observed in the distribution of the OH mass fraction close to the wall region behind the oblique shock wave in the area of lateral flow, with a 12% increase using the detailed Kéromnès mechanism. It is found that with the growth of the difference increases between the results of combustion products, derived via the abridged skeletal and detailed chemical reaction mechanisms.
AbstractList Understanding supersonic hydrogen combustion is crucial to design propulsion systems in hypersonic vehicles. The choice of a hydrogen combustion chemical kinetics mechanism requires careful consideration of both accuracy and computational efficiency. The goal of this paper is to study the influence of this choice on the performance of the mechanisms on the problem of transverse hydrogen injection into supersonic flow with subsequent combustion taking place. The skeletal mechanism, including 7 species and 8 chemical reactions only and the detailed Kéromnès mechanism, consisting 9 species and 19 reactions are employed to quantify the effect of chemical reactions. A numerical simulation of this supersonic combustion system is performed by solving the three-dimensional Favre-averaged Navier–Stokes equations coupled with a turbulence model. It is revealed that the basic behavior of the flowfield is mostly identical for the two mechanisms for moderate . The notable differences are observed in the distribution of the OH mass fraction close to the wall region behind the oblique shock wave in the area of lateral flow, with a 12% increase using the detailed Kéromnès mechanism. It is found that with the growth of the difference increases between the results of combustion products, derived via the abridged skeletal and detailed chemical reaction mechanisms.
Understanding supersonic hydrogen combustion is crucial to design propulsion systems in hypersonic vehicles. The choice of a hydrogen combustion chemical kinetics mechanism requires careful consideration of both accuracy and computational efficiency. The goal of this paper is to study the influence of this choice on the performance of the mechanisms on the problem of transverse hydrogen injection into supersonic flow with subsequent combustion taking place. The skeletal mechanism, including 7 species and 8 chemical reactions only and the detailed Kéromnès mechanism, consisting 9 species and 19 reactions are employed to quantify the effect of chemical reactions. A numerical simulation of this supersonic combustion system is performed by solving the three-dimensional Favre-averaged Navier–Stokes equations coupled with a turbulence model. It is revealed that the basic behavior of the flowfield is mostly identical for the two mechanisms for moderate . The notable differences are observed in the distribution of the OH mass fraction close to the wall region behind the oblique shock wave in the area of lateral flow, with a 12% increase using the detailed Kéromnès mechanism. It is found that with the growth of the difference increases between the results of combustion products, derived via the abridged skeletal and detailed chemical reaction mechanisms.
Author Ashirova, G. A.
Naimanova, A. Zh
Beketaeva, A. O.
Bykov, V. V.
Author_xml – sequence: 1
  givenname: G. A.
  orcidid: 0000-0001-7301-2035
  surname: Ashirova
  fullname: Ashirova, G. A.
  email: ashirova@math.kz
  organization: Institute of Mathematics and Mathematical Modeling, Narxoz University
– sequence: 2
  givenname: A. O.
  orcidid: 0000-0003-4360-3728
  surname: Beketaeva
  fullname: Beketaeva, A. O.
  organization: Institute of Mathematics and Mathematical Modeling, Al-Farabi Kazakh National University
– sequence: 3
  givenname: A. Zh
  orcidid: 0000-0001-5722-6367
  surname: Naimanova
  fullname: Naimanova, A. Zh
  organization: Institute of Mathematics and Mathematical Modeling
– sequence: 4
  givenname: V. V.
  orcidid: 0000-0002-2274-8410
  surname: Bykov
  fullname: Bykov, V. V.
  organization: Institute of Technical Thermodynamics, Karlsruhe Institute of Technology
BookMark eNp1UMtKAzEUDVLBtvoB7gKuRzPJPDLLUh9Vqi5Gwd2Qydy0qTNJTWYo_XtTKrgQF5d7Ludx4UzQyFgDCF3G5JrFhN2UMck4Y2lGk4zQjJITNI4LlkSc8Y9RwIGODvwZmni_ISRNeZGOkX4ZOnBaihaX_dDssTV4brt68L0O0Cq82DfOrsDgJ-ixNrgctuC8NVrimXaqtTu80_0a30IvdAsNFqbB5Se04W7xM8i1MNp3_hydKtF6uPjZU_R-f_c2X0TL14fH-WwZSZqTPsrSmCS0JiwRgnOuAPJaZnXDc0lVUZCE8KKuM0ZYEaepJCoMKQB4Do2SlLEpujrmbp39GsD31cYOzoSXFaMsoWnCaB5U8VElnfXegaq2TnfC7auYVIdGqz-NBg89enzQmhW43-T_Td_Fmnmv
Cites_doi 10.1016/j.combustflame.2007.10.024
10.1021/ef9011005
10.1063/5.0040398
10.1002/kin.20218
10.1016/0021-9991(92)90046-2
10.2172/5681118
10.1063/1.5084751
10.2514/2.5487
10.1017/jfm.2015.454
10.1016/j.combustflame.2005.10.004
10.3390/aerospace10030292
10.1002/kin.20603
10.1016/j.combustflame.2014.08.007
10.1016/j.ijhydene.2019.01.005
10.1002/kin.20026
10.1134/S1063784219100049
10.1016/j.combustflame.2014.03.006
10.26577/ijmph.2023.v14.i1.05
10.1016/j.combustflame.2013.01.001
10.1016/j.actaastro.2012.02.017
10.1080/10407789708914042
10.1002/kin.20036
10.2514/3.2834
10.2514/6.2012-612
ContentType Journal Article
Copyright Allerton Press, Inc. 2025 ISSN 1068-3356, Bulletin of the Lebedev Physics Institute, 2025, Vol. 52, Suppl. 2, pp. S130–S143. © Allerton Press, Inc., 2025.
Allerton Press, Inc. 2025.
Copyright_xml – notice: Allerton Press, Inc. 2025 ISSN 1068-3356, Bulletin of the Lebedev Physics Institute, 2025, Vol. 52, Suppl. 2, pp. S130–S143. © Allerton Press, Inc., 2025.
– notice: Allerton Press, Inc. 2025.
DBID AAYXX
CITATION
DOI 10.3103/S1068335624602620
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1934-838X
EndPage S143
ExternalDocumentID 10_3103_S1068335624602620
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
1N0
23N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5GY
5VS
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATHPR
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
P9T
PF0
PT4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
ZMTXR
~A9
AAYXX
CITATION
ID FETCH-LOGICAL-c270t-651042b034aa888fee7bc6bd87c2f9904089bb63039155c0f5c009ee87edfc233
IEDL.DBID U2A
ISSN 1068-3356
IngestDate Wed Aug 13 07:38:23 EDT 2025
Wed Aug 27 16:28:20 EDT 2025
Tue Jul 29 01:10:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue Suppl 2
Keywords Navier–Stokes equations
chemical kinetic mechanisms
supersonic combustion
hydrogen combustion
multispecies mixture
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-651042b034aa888fee7bc6bd87c2f9904089bb63039155c0f5c009ee87edfc233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7301-2035
0000-0001-5722-6367
0000-0003-4360-3728
0000-0002-2274-8410
PQID 3234254327
PQPubID 2044454
ParticipantIDs proquest_journals_3234254327
crossref_primary_10_3103_S1068335624602620
springer_journals_10_3103_S1068335624602620
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Bulletin of the Lebedev Physics Institute
PublicationTitleAbbrev Bull. Lebedev Phys. Inst
PublicationYear 2025
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References 11817_CR11
A.A. Konnov (11817_CR19) 2008; 152
11817_CR1
11817_CR12
11817_CR13
J. Li (11817_CR22) 2004; 36
11817_CR14
11817_CR4
11817_CR15
11817_CR5
11817_CR39
11817_CR7
M.P. Burke (11817_CR21) 2012; 44
D.C. Wilcox (11817_CR30) 2000
G.A. Ashirova (11817_CR38) 2023; 14
11817_CR8
11817_CR9
C. Olm (11817_CR25) 2014; 161
T.J. Poinsot (11817_CR35) 1992; 101
H. Schlichting (11817_CR34) 1979
P. Saxena (11817_CR23) 2006; 145
A. Saghafian (11817_CR3) 2015; 162
D. Healy (11817_CR17) 2010; 24
11817_CR31
K. Clutter (11817_CR32) 1997; 31
11817_CR24
A.O. Beketaeva (11817_CR36) 2018; 12
W. Huang (11817_CR26) 2012; 76
J. Li (11817_CR20) 2007; 39
11817_CR29
P.K. Pavalavanni (11817_CR28) 2023; 10
M. Gamba (11817_CR2) 2015; 780
A.O. Beketaeva (11817_CR37) 2019; 64
G. Moretti (11817_CR10) 1965; 3
Ó Conaire (11817_CR18) 2004; 36
B. Liu (11817_CR27) 2019; 44
M.R. Gruber (11817_CR6) 1999; 15
L.G. Loytsyanskiy (11817_CR33) 1966
A. Kéromnès (11817_CR16) 2013; 160
References_xml – volume-title: Turbulence Modeling for CFD
  year: 2000
  ident: 11817_CR30
– volume: 152
  start-page: 507
  year: 2008
  ident: 11817_CR19
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2007.10.024
– volume-title: Boundary-Layer Theory
  year: 1979
  ident: 11817_CR34
– ident: 11817_CR24
– volume: 24
  start-page: 1521
  year: 2010
  ident: 11817_CR17
  publication-title: Energy Fuels
  doi: 10.1021/ef9011005
– ident: 11817_CR5
  doi: 10.1063/5.0040398
– volume: 39
  start-page: 109
  year: 2007
  ident: 11817_CR20
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.20218
– volume: 101
  start-page: 104
  year: 1992
  ident: 11817_CR35
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(92)90046-2
– ident: 11817_CR31
  doi: 10.2172/5681118
– ident: 11817_CR39
– ident: 11817_CR9
– ident: 11817_CR7
– ident: 11817_CR4
  doi: 10.1063/1.5084751
– volume: 15
  start-page: 633
  year: 1999
  ident: 11817_CR6
  publication-title: J. Propuls. Power
  doi: 10.2514/2.5487
– ident: 11817_CR12
– volume: 780
  start-page: 226
  year: 2015
  ident: 11817_CR2
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.454
– volume: 145
  start-page: 316
  year: 2006
  ident: 11817_CR23
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2005.10.004
– volume: 10
  start-page: 292
  year: 2023
  ident: 11817_CR28
  publication-title: Aerospace
  doi: 10.3390/aerospace10030292
– volume: 44
  start-page: 444
  year: 2012
  ident: 11817_CR21
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.20603
– ident: 11817_CR14
– ident: 11817_CR29
– volume: 162
  start-page: 652
  year: 2015
  ident: 11817_CR3
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2014.08.007
– volume-title: Mechanics of Liquids and Gases
  year: 1966
  ident: 11817_CR33
– volume: 44
  start-page: 5007
  year: 2019
  ident: 11817_CR27
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.01.005
– volume: 36
  start-page: 566
  year: 2004
  ident: 11817_CR22
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.20026
– volume: 64
  start-page: 1430
  year: 2019
  ident: 11817_CR37
  publication-title: Tech. Phys.
  doi: 10.1134/S1063784219100049
– volume: 161
  start-page: 2219
  year: 2014
  ident: 11817_CR25
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2014.03.006
– volume: 14
  start-page: 32
  year: 2023
  ident: 11817_CR38
  publication-title: Int. J. Math. Phys.
  doi: 10.26577/ijmph.2023.v14.i1.05
– ident: 11817_CR8
– volume: 160
  start-page: 995
  year: 2013
  ident: 11817_CR16
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2013.01.001
– volume: 76
  start-page: 51
  year: 2012
  ident: 11817_CR26
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2012.02.017
– volume: 31
  start-page: 355
  year: 1997
  ident: 11817_CR32
  publication-title: J. Numer. Heat Transfer Appl.
  doi: 10.1080/10407789708914042
– volume: 36
  start-page: 603
  year: 2004
  ident: 11817_CR18
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.20036
– ident: 11817_CR11
– volume: 12
  start-page: 88
  year: 2018
  ident: 11817_CR36
  publication-title: Int. J. Mech.
– volume: 3
  start-page: 223
  year: 1965
  ident: 11817_CR10
  publication-title: AIAA J.
  doi: 10.2514/3.2834
– ident: 11817_CR1
  doi: 10.2514/6.2012-612
– ident: 11817_CR15
– ident: 11817_CR13
SSID ssj0055895
Score 2.309835
Snippet Understanding supersonic hydrogen combustion is crucial to design propulsion systems in hypersonic vehicles. The choice of a hydrogen combustion chemical...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage S130
SubjectTerms Air flow
Chemical reactions
Combustion products
Hydrogen
Hydrogen combustion
Hypersonic vehicles
Oblique shock waves
Physics
Physics and Astronomy
Propulsion systems
Reaction kinetics
Reaction mechanisms
Supersonic combustion
Supersonic flow
Turbulence models
Turbulent flow
Title Numerical Study on Combustion of Hydrogen Jet in Supersonic Airflow with Detailed and Skeletal Mechanisms
URI https://link.springer.com/article/10.3103/S1068335624602620
https://www.proquest.com/docview/3234254327
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kRfAiPrFayx48KcFkd_M6ptpaKu2lFuopZDezEKxJaVKk_97dPCi-Dh7ygAx7mMzjm52ZHYRupEYRvhMbYEnfYJFjKzsoYkPoFBol3OaR3u-YTJ3RnI0X9qLu486bavcmJVla6jKuNOn9TAUvukPIIUyPTSIqTm_bKnTXdXxzEjTm17a9ctSKpjY0eZXK_H2Jr85ohzC_JUVLXzM8Qoc1SMRB9VeP0R6kJ2i_LNYU-SlKppsqz7LEugxwi7MUK73mejCXes0kHm3jdaZEA4-hwEmKZ5tViawTgYNkLZfZB9YbsPixLCCFGEdpjGdvygUpLI4noNuBk_w9P0Pz4eDlYWTUIxMMQVyzMBylYoxwk7IoUrGtBHC5cHjsuYJI5XiY6fmcO7Q6F16YUl2mD-C5EEtBKD1HrTRL4QJhYK5gtikIExbjnPkCKAiwYmCWupkddNvwLlxVJ2OEKqLQjA5_MLqDug13w1pJ8pASynQvPnE76K7h-O7zn4td_ov6Ch1oKalKbLuoVaw3cK2ARMF7qB0M-_2pfj69Pg96pSB9AspvwJE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_IhujFb3E6NQdPSrVL0nY9Dt2cm9tlE_RUmvQVitqOtUPmX2_SD8Svg4eWQtOQ5iXvvV_eF8BZqLUI1w4MbIWuwX3bUnxQBobUJjRGhSV8fd4xGtv9Bz54tB7LOO608navTJI5p85xpcmuJgq86Aghm3JdNokqnF7nCoLzGtQ7t0_DbsWALaudF1vR7Q39QWHM_L2Tr-LoU8f8ZhbNpU1vE6bVOAsnk-fLRSYu5fu3FI7__JEt2Ci1T9Iplss2rGC8A6u5F6hMdyEaLwoDzgvR_oVLksREMQyhK36pxyQk_WUwT9SaIwPMSBSTyWKWq-yRJJ1oHr4kb0Sf7JKb3DMVA-LHAZk8K9mmlHwyQh1nHKWv6R489LrT675R1mIwJHXMzLDV3uVUmIz7vgLNIaIjpC2CtiNpqCQaN9uuEDYrEs5LM1SX6SK2HQxCSRnbh1qcxHgABLkjuWVKymWLC8FdiQwltgLkLXUzG3BekcSbFSk3PAVV9Nx5P-auAc2KaF65-1KPUcZ1kD91GnBR0eDz9Z-dHf6r9Sms9aeje-_-bjw8gnWqCwPnfrxNqGXzBR4rbSUTJ-Xq_AB_Lt0p
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6hIlZ74b2iPH3gBApNbSdpjhVQyqtC6iKxpxDbYykCkqpJheDXY-chBLt7QBwSRYpjOZ6xZ8bzzQzAvrZaROgrB7s6dHjse2YflMqR1oXGqPBEbM87rkf-8JZf3Hl3dZ3TvEG7Ny7JKqbBZmlKi85E6U5pY7qsMzaGjI0W8im3JZSosdnnuc3N3oL5_tmfy9NmM_a8Xll4xbZ37AeVY_PfnXwUTe_65icXaSl5Bktw34y5Apw8HM0KcSRfP6Vz_MZPLcNirZWSfsVGKzCH6SoslOhQma9BMppVjp1HYnGHLyRLidlIhK0EZh4zTYYvapoZXiQXWJAkJePZpFTlE0n6yVQ_Zs_EnviSkxKxiorEqSLjByPzjPJPrtHGHyf5U74Ot4PT38dDp67R4EgauIXjmzXNqXAZj2NjTGvEQEhfqF4gqTaSzlAlFMJnVSJ66WpzuSFiL0ClJWXsF7TSLMUNIMgDyT1XUi67XAgeSmQosauQd83NbcNBQ55oUqXiiIwJY-cu-mvu2rDdEDCqV2UeMcq4Df6nQRsOG3q8v_5vZ5tfar0HP25OBtHV-ehyC35SWy-4hPduQ6uYznDHKDGF2K0Z9Q2ZOeYN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Study+on+Combustion+of+Hydrogen+Jet+in+Supersonic+Airflow+with+Detailed+and+Skeletal+Mechanisms&rft.jtitle=Bulletin+of+the+Lebedev+Physics+Institute&rft.au=Ashirova%2C+G.+A.&rft.au=Beketaeva%2C+A.+O.&rft.au=Naimanova%2C+A.+Zh&rft.au=Bykov%2C+V.+V.&rft.date=2025-07-01&rft.issn=1068-3356&rft.eissn=1934-838X&rft.volume=52&rft.issue=S2&rft.spage=S130&rft.epage=S143&rft_id=info:doi/10.3103%2FS1068335624602620&rft.externalDBID=n%2Fa&rft.externalDocID=10_3103_S1068335624602620
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-3356&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-3356&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-3356&client=summon