Numerical Study on Combustion of Hydrogen Jet in Supersonic Airflow with Detailed and Skeletal Mechanisms
Understanding supersonic hydrogen combustion is crucial to design propulsion systems in hypersonic vehicles. The choice of a hydrogen combustion chemical kinetics mechanism requires careful consideration of both accuracy and computational efficiency. The goal of this paper is to study the influence...
Saved in:
Published in | Bulletin of the Lebedev Physics Institute Vol. 52; no. Suppl 2; pp. S130 - S143 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.07.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1068-3356 1934-838X |
DOI | 10.3103/S1068335624602620 |
Cover
Loading…
Abstract | Understanding supersonic hydrogen combustion is crucial to design propulsion systems in hypersonic vehicles. The choice of a hydrogen combustion chemical kinetics mechanism requires careful consideration of both accuracy and computational efficiency. The goal of this paper is to study the influence of this choice on the performance of the mechanisms on the problem of transverse hydrogen injection into supersonic flow with subsequent combustion taking place. The skeletal mechanism, including 7 species and 8 chemical reactions only and the detailed Kéromnès mechanism, consisting 9 species and 19 reactions are employed to quantify the effect of chemical reactions. A numerical simulation of this supersonic combustion system is performed by solving the three-dimensional Favre-averaged Navier–Stokes equations coupled with a
turbulence model. It is revealed that the basic behavior of the flowfield is mostly identical for the two mechanisms for moderate
. The notable differences are observed in the distribution of the OH mass fraction close to the wall region behind the oblique shock wave in the area of lateral flow, with a 12% increase using the detailed Kéromnès mechanism. It is found that with the growth of the
difference increases between the results of combustion products, derived via the abridged skeletal and detailed chemical reaction mechanisms. |
---|---|
AbstractList | Understanding supersonic hydrogen combustion is crucial to design propulsion systems in hypersonic vehicles. The choice of a hydrogen combustion chemical kinetics mechanism requires careful consideration of both accuracy and computational efficiency. The goal of this paper is to study the influence of this choice on the performance of the mechanisms on the problem of transverse hydrogen injection into supersonic flow with subsequent combustion taking place. The skeletal mechanism, including 7 species and 8 chemical reactions only and the detailed Kéromnès mechanism, consisting 9 species and 19 reactions are employed to quantify the effect of chemical reactions. A numerical simulation of this supersonic combustion system is performed by solving the three-dimensional Favre-averaged Navier–Stokes equations coupled with a
turbulence model. It is revealed that the basic behavior of the flowfield is mostly identical for the two mechanisms for moderate
. The notable differences are observed in the distribution of the OH mass fraction close to the wall region behind the oblique shock wave in the area of lateral flow, with a 12% increase using the detailed Kéromnès mechanism. It is found that with the growth of the
difference increases between the results of combustion products, derived via the abridged skeletal and detailed chemical reaction mechanisms. Understanding supersonic hydrogen combustion is crucial to design propulsion systems in hypersonic vehicles. The choice of a hydrogen combustion chemical kinetics mechanism requires careful consideration of both accuracy and computational efficiency. The goal of this paper is to study the influence of this choice on the performance of the mechanisms on the problem of transverse hydrogen injection into supersonic flow with subsequent combustion taking place. The skeletal mechanism, including 7 species and 8 chemical reactions only and the detailed Kéromnès mechanism, consisting 9 species and 19 reactions are employed to quantify the effect of chemical reactions. A numerical simulation of this supersonic combustion system is performed by solving the three-dimensional Favre-averaged Navier–Stokes equations coupled with a turbulence model. It is revealed that the basic behavior of the flowfield is mostly identical for the two mechanisms for moderate . The notable differences are observed in the distribution of the OH mass fraction close to the wall region behind the oblique shock wave in the area of lateral flow, with a 12% increase using the detailed Kéromnès mechanism. It is found that with the growth of the difference increases between the results of combustion products, derived via the abridged skeletal and detailed chemical reaction mechanisms. |
Author | Ashirova, G. A. Naimanova, A. Zh Beketaeva, A. O. Bykov, V. V. |
Author_xml | – sequence: 1 givenname: G. A. orcidid: 0000-0001-7301-2035 surname: Ashirova fullname: Ashirova, G. A. email: ashirova@math.kz organization: Institute of Mathematics and Mathematical Modeling, Narxoz University – sequence: 2 givenname: A. O. orcidid: 0000-0003-4360-3728 surname: Beketaeva fullname: Beketaeva, A. O. organization: Institute of Mathematics and Mathematical Modeling, Al-Farabi Kazakh National University – sequence: 3 givenname: A. Zh orcidid: 0000-0001-5722-6367 surname: Naimanova fullname: Naimanova, A. Zh organization: Institute of Mathematics and Mathematical Modeling – sequence: 4 givenname: V. V. orcidid: 0000-0002-2274-8410 surname: Bykov fullname: Bykov, V. V. organization: Institute of Technical Thermodynamics, Karlsruhe Institute of Technology |
BookMark | eNp1UMtKAzEUDVLBtvoB7gKuRzPJPDLLUh9Vqi5Gwd2Qydy0qTNJTWYo_XtTKrgQF5d7Ludx4UzQyFgDCF3G5JrFhN2UMck4Y2lGk4zQjJITNI4LlkSc8Y9RwIGODvwZmni_ISRNeZGOkX4ZOnBaihaX_dDssTV4brt68L0O0Cq82DfOrsDgJ-ixNrgctuC8NVrimXaqtTu80_0a30IvdAsNFqbB5Se04W7xM8i1MNp3_hydKtF6uPjZU_R-f_c2X0TL14fH-WwZSZqTPsrSmCS0JiwRgnOuAPJaZnXDc0lVUZCE8KKuM0ZYEaepJCoMKQB4Do2SlLEpujrmbp39GsD31cYOzoSXFaMsoWnCaB5U8VElnfXegaq2TnfC7auYVIdGqz-NBg89enzQmhW43-T_Td_Fmnmv |
Cites_doi | 10.1016/j.combustflame.2007.10.024 10.1021/ef9011005 10.1063/5.0040398 10.1002/kin.20218 10.1016/0021-9991(92)90046-2 10.2172/5681118 10.1063/1.5084751 10.2514/2.5487 10.1017/jfm.2015.454 10.1016/j.combustflame.2005.10.004 10.3390/aerospace10030292 10.1002/kin.20603 10.1016/j.combustflame.2014.08.007 10.1016/j.ijhydene.2019.01.005 10.1002/kin.20026 10.1134/S1063784219100049 10.1016/j.combustflame.2014.03.006 10.26577/ijmph.2023.v14.i1.05 10.1016/j.combustflame.2013.01.001 10.1016/j.actaastro.2012.02.017 10.1080/10407789708914042 10.1002/kin.20036 10.2514/3.2834 10.2514/6.2012-612 |
ContentType | Journal Article |
Copyright | Allerton Press, Inc. 2025 ISSN 1068-3356, Bulletin of the Lebedev Physics Institute, 2025, Vol. 52, Suppl. 2, pp. S130–S143. © Allerton Press, Inc., 2025. Allerton Press, Inc. 2025. |
Copyright_xml | – notice: Allerton Press, Inc. 2025 ISSN 1068-3356, Bulletin of the Lebedev Physics Institute, 2025, Vol. 52, Suppl. 2, pp. S130–S143. © Allerton Press, Inc., 2025. – notice: Allerton Press, Inc. 2025. |
DBID | AAYXX CITATION |
DOI | 10.3103/S1068335624602620 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1934-838X |
EndPage | S143 |
ExternalDocumentID | 10_3103_S1068335624602620 |
GroupedDBID | -Y2 .86 .VR 06D 0R~ 0VY 1N0 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5GY 5VS 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDBE ABDZT ABECU ABFSG ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ATHPR AXYYD B-. BA0 BDATZ BGNMA CAG COF CS3 DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OK1 P9T PF0 PT4 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR ZMTXR ~A9 AAYXX CITATION |
ID | FETCH-LOGICAL-c270t-651042b034aa888fee7bc6bd87c2f9904089bb63039155c0f5c009ee87edfc233 |
IEDL.DBID | U2A |
ISSN | 1068-3356 |
IngestDate | Wed Aug 13 07:38:23 EDT 2025 Wed Aug 27 16:28:20 EDT 2025 Tue Jul 29 01:10:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Suppl 2 |
Keywords | Navier–Stokes equations chemical kinetic mechanisms supersonic combustion hydrogen combustion multispecies mixture |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-651042b034aa888fee7bc6bd87c2f9904089bb63039155c0f5c009ee87edfc233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7301-2035 0000-0001-5722-6367 0000-0003-4360-3728 0000-0002-2274-8410 |
PQID | 3234254327 |
PQPubID | 2044454 |
ParticipantIDs | proquest_journals_3234254327 crossref_primary_10_3103_S1068335624602620 springer_journals_10_3103_S1068335624602620 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: New York |
PublicationTitle | Bulletin of the Lebedev Physics Institute |
PublicationTitleAbbrev | Bull. Lebedev Phys. Inst |
PublicationYear | 2025 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | 11817_CR11 A.A. Konnov (11817_CR19) 2008; 152 11817_CR1 11817_CR12 11817_CR13 J. Li (11817_CR22) 2004; 36 11817_CR14 11817_CR4 11817_CR15 11817_CR5 11817_CR39 11817_CR7 M.P. Burke (11817_CR21) 2012; 44 D.C. Wilcox (11817_CR30) 2000 G.A. Ashirova (11817_CR38) 2023; 14 11817_CR8 11817_CR9 C. Olm (11817_CR25) 2014; 161 T.J. Poinsot (11817_CR35) 1992; 101 H. Schlichting (11817_CR34) 1979 P. Saxena (11817_CR23) 2006; 145 A. Saghafian (11817_CR3) 2015; 162 D. Healy (11817_CR17) 2010; 24 11817_CR31 K. Clutter (11817_CR32) 1997; 31 11817_CR24 A.O. Beketaeva (11817_CR36) 2018; 12 W. Huang (11817_CR26) 2012; 76 J. Li (11817_CR20) 2007; 39 11817_CR29 P.K. Pavalavanni (11817_CR28) 2023; 10 M. Gamba (11817_CR2) 2015; 780 A.O. Beketaeva (11817_CR37) 2019; 64 G. Moretti (11817_CR10) 1965; 3 Ó Conaire (11817_CR18) 2004; 36 B. Liu (11817_CR27) 2019; 44 M.R. Gruber (11817_CR6) 1999; 15 L.G. Loytsyanskiy (11817_CR33) 1966 A. Kéromnès (11817_CR16) 2013; 160 |
References_xml | – volume-title: Turbulence Modeling for CFD year: 2000 ident: 11817_CR30 – volume: 152 start-page: 507 year: 2008 ident: 11817_CR19 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2007.10.024 – volume-title: Boundary-Layer Theory year: 1979 ident: 11817_CR34 – ident: 11817_CR24 – volume: 24 start-page: 1521 year: 2010 ident: 11817_CR17 publication-title: Energy Fuels doi: 10.1021/ef9011005 – ident: 11817_CR5 doi: 10.1063/5.0040398 – volume: 39 start-page: 109 year: 2007 ident: 11817_CR20 publication-title: Int. J. Chem. Kinet. doi: 10.1002/kin.20218 – volume: 101 start-page: 104 year: 1992 ident: 11817_CR35 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90046-2 – ident: 11817_CR31 doi: 10.2172/5681118 – ident: 11817_CR39 – ident: 11817_CR9 – ident: 11817_CR7 – ident: 11817_CR4 doi: 10.1063/1.5084751 – volume: 15 start-page: 633 year: 1999 ident: 11817_CR6 publication-title: J. Propuls. Power doi: 10.2514/2.5487 – ident: 11817_CR12 – volume: 780 start-page: 226 year: 2015 ident: 11817_CR2 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.454 – volume: 145 start-page: 316 year: 2006 ident: 11817_CR23 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2005.10.004 – volume: 10 start-page: 292 year: 2023 ident: 11817_CR28 publication-title: Aerospace doi: 10.3390/aerospace10030292 – volume: 44 start-page: 444 year: 2012 ident: 11817_CR21 publication-title: Int. J. Chem. Kinet. doi: 10.1002/kin.20603 – ident: 11817_CR14 – ident: 11817_CR29 – volume: 162 start-page: 652 year: 2015 ident: 11817_CR3 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2014.08.007 – volume-title: Mechanics of Liquids and Gases year: 1966 ident: 11817_CR33 – volume: 44 start-page: 5007 year: 2019 ident: 11817_CR27 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.01.005 – volume: 36 start-page: 566 year: 2004 ident: 11817_CR22 publication-title: Int. J. Chem. Kinet. doi: 10.1002/kin.20026 – volume: 64 start-page: 1430 year: 2019 ident: 11817_CR37 publication-title: Tech. Phys. doi: 10.1134/S1063784219100049 – volume: 161 start-page: 2219 year: 2014 ident: 11817_CR25 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2014.03.006 – volume: 14 start-page: 32 year: 2023 ident: 11817_CR38 publication-title: Int. J. Math. Phys. doi: 10.26577/ijmph.2023.v14.i1.05 – ident: 11817_CR8 – volume: 160 start-page: 995 year: 2013 ident: 11817_CR16 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2013.01.001 – volume: 76 start-page: 51 year: 2012 ident: 11817_CR26 publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2012.02.017 – volume: 31 start-page: 355 year: 1997 ident: 11817_CR32 publication-title: J. Numer. Heat Transfer Appl. doi: 10.1080/10407789708914042 – volume: 36 start-page: 603 year: 2004 ident: 11817_CR18 publication-title: Int. J. Chem. Kinet. doi: 10.1002/kin.20036 – ident: 11817_CR11 – volume: 12 start-page: 88 year: 2018 ident: 11817_CR36 publication-title: Int. J. Mech. – volume: 3 start-page: 223 year: 1965 ident: 11817_CR10 publication-title: AIAA J. doi: 10.2514/3.2834 – ident: 11817_CR1 doi: 10.2514/6.2012-612 – ident: 11817_CR15 – ident: 11817_CR13 |
SSID | ssj0055895 |
Score | 2.309835 |
Snippet | Understanding supersonic hydrogen combustion is crucial to design propulsion systems in hypersonic vehicles. The choice of a hydrogen combustion chemical... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | S130 |
SubjectTerms | Air flow Chemical reactions Combustion products Hydrogen Hydrogen combustion Hypersonic vehicles Oblique shock waves Physics Physics and Astronomy Propulsion systems Reaction kinetics Reaction mechanisms Supersonic combustion Supersonic flow Turbulence models Turbulent flow |
Title | Numerical Study on Combustion of Hydrogen Jet in Supersonic Airflow with Detailed and Skeletal Mechanisms |
URI | https://link.springer.com/article/10.3103/S1068335624602620 https://www.proquest.com/docview/3234254327 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kRfAiPrFayx48KcFkd_M6ptpaKu2lFuopZDezEKxJaVKk_97dPCi-Dh7ygAx7mMzjm52ZHYRupEYRvhMbYEnfYJFjKzsoYkPoFBol3OaR3u-YTJ3RnI0X9qLu486bavcmJVla6jKuNOn9TAUvukPIIUyPTSIqTm_bKnTXdXxzEjTm17a9ctSKpjY0eZXK_H2Jr85ohzC_JUVLXzM8Qoc1SMRB9VeP0R6kJ2i_LNYU-SlKppsqz7LEugxwi7MUK73mejCXes0kHm3jdaZEA4-hwEmKZ5tViawTgYNkLZfZB9YbsPixLCCFGEdpjGdvygUpLI4noNuBk_w9P0Pz4eDlYWTUIxMMQVyzMBylYoxwk7IoUrGtBHC5cHjsuYJI5XiY6fmcO7Q6F16YUl2mD-C5EEtBKD1HrTRL4QJhYK5gtikIExbjnPkCKAiwYmCWupkddNvwLlxVJ2OEKqLQjA5_MLqDug13w1pJ8pASynQvPnE76K7h-O7zn4td_ov6Ch1oKalKbLuoVaw3cK2ARMF7qB0M-_2pfj69Pg96pSB9AspvwJE |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_IhujFb3E6NQdPSrVL0nY9Dt2cm9tlE_RUmvQVitqOtUPmX2_SD8Svg4eWQtOQ5iXvvV_eF8BZqLUI1w4MbIWuwX3bUnxQBobUJjRGhSV8fd4xGtv9Bz54tB7LOO608navTJI5p85xpcmuJgq86Aghm3JdNokqnF7nCoLzGtQ7t0_DbsWALaudF1vR7Q39QWHM_L2Tr-LoU8f8ZhbNpU1vE6bVOAsnk-fLRSYu5fu3FI7__JEt2Ci1T9Iplss2rGC8A6u5F6hMdyEaLwoDzgvR_oVLksREMQyhK36pxyQk_WUwT9SaIwPMSBSTyWKWq-yRJJ1oHr4kb0Sf7JKb3DMVA-LHAZk8K9mmlHwyQh1nHKWv6R489LrT675R1mIwJHXMzLDV3uVUmIz7vgLNIaIjpC2CtiNpqCQaN9uuEDYrEs5LM1SX6SK2HQxCSRnbh1qcxHgABLkjuWVKymWLC8FdiQwltgLkLXUzG3BekcSbFSk3PAVV9Nx5P-auAc2KaF65-1KPUcZ1kD91GnBR0eDz9Z-dHf6r9Sms9aeje-_-bjw8gnWqCwPnfrxNqGXzBR4rbSUTJ-Xq_AB_Lt0p |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6hIlZ74b2iPH3gBApNbSdpjhVQyqtC6iKxpxDbYykCkqpJheDXY-chBLt7QBwSRYpjOZ6xZ8bzzQzAvrZaROgrB7s6dHjse2YflMqR1oXGqPBEbM87rkf-8JZf3Hl3dZ3TvEG7Ny7JKqbBZmlKi85E6U5pY7qsMzaGjI0W8im3JZSosdnnuc3N3oL5_tmfy9NmM_a8Xll4xbZ37AeVY_PfnXwUTe_65icXaSl5Bktw34y5Apw8HM0KcSRfP6Vz_MZPLcNirZWSfsVGKzCH6SoslOhQma9BMppVjp1HYnGHLyRLidlIhK0EZh4zTYYvapoZXiQXWJAkJePZpFTlE0n6yVQ_Zs_EnviSkxKxiorEqSLjByPzjPJPrtHGHyf5U74Ot4PT38dDp67R4EgauIXjmzXNqXAZj2NjTGvEQEhfqF4gqTaSzlAlFMJnVSJ66WpzuSFiL0ClJWXsF7TSLMUNIMgDyT1XUi67XAgeSmQosauQd83NbcNBQ55oUqXiiIwJY-cu-mvu2rDdEDCqV2UeMcq4Df6nQRsOG3q8v_5vZ5tfar0HP25OBtHV-ehyC35SWy-4hPduQ6uYznDHKDGF2K0Z9Q2ZOeYN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Study+on+Combustion+of+Hydrogen+Jet+in+Supersonic+Airflow+with+Detailed+and+Skeletal+Mechanisms&rft.jtitle=Bulletin+of+the+Lebedev+Physics+Institute&rft.au=Ashirova%2C+G.+A.&rft.au=Beketaeva%2C+A.+O.&rft.au=Naimanova%2C+A.+Zh&rft.au=Bykov%2C+V.+V.&rft.date=2025-07-01&rft.issn=1068-3356&rft.eissn=1934-838X&rft.volume=52&rft.issue=S2&rft.spage=S130&rft.epage=S143&rft_id=info:doi/10.3103%2FS1068335624602620&rft.externalDBID=n%2Fa&rft.externalDocID=10_3103_S1068335624602620 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-3356&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-3356&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-3356&client=summon |